

## Machine Learning for Web Related Problems

### Pavel Dmitriev, Mikhail Bilenko







### **Tutorial Outline**

- Introduction to ML
- ML against SPAM
- ML for Information Extraction
- ML in Web Search
- ML in the News
- ML for Finding Compound Documents

### **Tutorial Outline**

- Introduction to ML
- ML against SPAM
- ML for Information Extraction
- ML in Web Search
- ML in the News
- ML for Finding Compound Documents

### Part 1

### Machine Learning: Introduction

### Pavel Dmitriev, Mikhail Bilenko

Some slides provided by Radford Neal

### Machine Learning: Motivation

• Any computational task:



- For many tasks, programming *f* manually is impossible
  - Knowledge Engineering Bottleneck: *f* is too complex
    - Handwriting recognition, medical diagnosis
  - Need for adaptation: *f* changes at runtime
    - Spam filtering, AI in games
  - Knowledge discovery/data mining: f is undefined without input
    - Market basket analysis (discovery of correlations)

### Machine Learning: Motivation



- **Solution:** search through function space *F* to find optimum *f*\* from *F*
- **Example:** make *f* depend on parameters, write the program to *learn* parameter values from examples, feedback, data, ...

 $- f(Input) \equiv f_{\Lambda}(Input) \text{ where } \Lambda = \{\lambda_1, ..., \lambda_n\}$ 

• Machine learning: algorithms that use <u>training data</u> to identify optimum *f*\* for a given task

### Outline

- Definition of Machine Learning
- Standard Problems
- Canonical Settings
- Bayesian and Optimization Approaches to ML

### ML: Classic Definition

• [Mitchell 1997]: An algorithm that improves on task *T*, with respect to performance measure *P*, based on experience *E* 

#### • T: Spam detection

- P: Number of false negatives (spam in Inbox) and false positives (good messages in Junk)
- E: Lots of email, some of it labeled as spam

#### • T: Ranking for web search

- P: Some ranking metric (e.g., Mean Average Precision)
- E: A training set of queries and top documents for them

#### • T: Financial prediction

- P: Net worth (actually not that simple: constraints on volatility,...)
- E: Market/trading history

### Task Examples

| Task                                      | Input                                           | Output                                                        |
|-------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|
| Ranking for web search<br>and advertising | Query                                           | Ranking of relevant web pages and ads                         |
| Webpage classification                    | Webpage                                         | Topical category of page                                      |
| Spam detection                            | Email message                                   | Spam vs. Not Spam                                             |
| Medical diagnosis                         | Medical history, tests,<br>images,              | Disease vs. No disease<br>Request for more tests              |
| Information extraction                    | A document                                      | Extracted entities (names, dates,<br>locations, brands,)      |
| Financial prediction                      | Market data                                     | Buy vs. Sell vs. Hold                                         |
| News clustering                           | News articles                                   | Grouping of articles                                          |
| Speech recognition                        | Audio signal                                    | Sequence of words                                             |
| Recommending                              | User ratings, history of viewed/purchased items | Recommendations of novel items<br>(to buy, to read, to watch) |

ML = Improve on task *T*, wrt perf. measure *P*, based on experience *E* 

### Performance Measures

- Performance measure computes error on *distinct test set*
- Error costs can be imbalanced, multi-dimensional, indirect
  - Webpage classification: % of correctly classified pages
  - Spam: % of false positives, % of false negatives
  - Medical diagnosis: % of false positives, % of false negatives (!)
  - Financial prediction: earnings, risk, earnings wrt market, ...
  - Recommending: uptake, ratings, customer churn, ...
- **"Prime directive" of machine learning experiments:** test data is *held-out* (not seen during training); multiple samples used for statistical testing

ML = Improve on task *T*, wrt **perf. measure** *P*, based on experience *E* 

### Experience – Training Data

- Classic assumption: training instances are independently sampled from some underlying distribution
  - IID: independently and identically distributed
- Assumption is false when instances are related
  - Examples:
    - Webpage classification: links tend to connect same-category pages
    - Spam: multiple emails from same address are all spam/not spam
  - Collective/Relational learning methods account for the connections
- Active learning: learner can construct/request labels for most informative examples
  - Typically "least certain" / "hard" / "near miss" examples

ML = Improve on task *T*, wrt perf. measure *P*, based on experience *E* 

### Outline

- Definition of Machine Learning
- Standard Problems
- Canonical Settings
- Bayesian and Optimization Approaches to ML

### Standard ML Problems: Classification

#### • Input: instance x

- Vector/sequence/graph/set/etc.
- May include continuous/discrete/ordinal/etc. attributes
- Output: discrete  $y \in \{1,..,k\}$  (set of labels)
  - Example: binary classification diabetes
    - Input: *x* = {*blood\_pressure, heart\_rate, smoking,...*}
    - Output: y = true or y = false
- Training data: set of instances with true labels  $\{(x_i, y_i)\}_{i=1..n}$
- Performance measure: error rate
  - Averaged over all categories:  $\Sigma[y \neq y']$  where y' is prediction
  - Weighted for cost-sensitive classification (spam, medical, ...)

### Standard ML Problems: Classification

- Most common case: x = [x<sub>i</sub>]<sub>i=1..d</sub> is a d-dimensional vector of real values
  - Linear classifier: y=1 if  $(w_1x_1 + w_2x_2 + \dots + w_dx_d) > 0$
  - Rule-based classifier: y=1 if  $(x_1 > 0)$  &&  $(x_2=3)$  &&  $(x_7 < 5)$
  - Nearest-neighbor: y=y', (x',y') is training example closest to x

#### • Learning as search in function space:

- Linear: space of all possible values for  $w_1 \dots w_k$
- Rule-based: all possible rules (boolean formulas)
- Nearest-neighbor: all possible distance metrics (defining "closest")

### Classification Example

#### • Learning for spam:

- x=[number\_of\_fonts\_used, emails\_sent\_by\_author]
- y = spam/not\_spam



### **Classification Example**

#### • Learning for spam:

- x=[number\_of\_fonts\_used, emails\_sent\_by\_author]
- y = spam/not\_spam



### Classification Example

#### • Learning for spam:

- x=[number\_of\_fonts\_used, emails\_sent\_by\_author]
- y = spam/not\_spam



### Standard ML Problems: Regression

#### • Input: instance x

- Vector/sequence/graph/set/etc.
- May include continuous/discrete/ordinal/etc. attributes
- Output: continuous y (numeric output)
- Example: web traffic prediction (e.g., news site)
  - Input: x = {day\_of\_week, today\_traffic, breaking\_news,...}
  - Output: y = traffic\_tomorrow
- Training data: set of instances with true output  $\{(x_i, y_i)\}_{i=1..n}$
- Performance measure: error rate
  - L2-norm:  $\Sigma(y-y')^2$
  - L1-norm:  $\Sigma |y-y'|$

### **Regression Example**

- Dataset:
  - x = heights of boys in Birmingham, England
  - y = their weights



### Standard ML Problems: Clustering

- Input: set of instances  $x = \{x_i\}_{i=1..n}$
- Output: partitioning the dataset into *k* non-overlapping clusters X={X<sub>1</sub>,..., X<sub>k</sub>}
  - Example: news clustering (part 5 of this tutorial)
- Training data: none!
- Performance measures:
  - Recall: given a true clustering, compute the proportion of correct clusters
  - Pairwise accuracy: given a true clustering, compute the proportions of same-cluster and different-cluster pairs that have been correctly placed in the same/different clusters



### Bias in Machine Learning

- Learning is search in some (very large!) function space:
  - Classification: search for weights/rules/distances
  - Regression: search for weights
  - Clustering: search for a partitioning
- Bias: strategy for search in function space
- Language bias: only consider some class of functions among all possible functions (e.g. only disjunctive rules)
- Search bias: search criteria besides agreement with data
  - Simplicity, e.g., in rule-based learning, prefer a minimum number of rules that agree with data (Occam's Rasor)
  - Closeness to prior knowledge: penalize weights that are too large / too small / too different from priors

### Outline

- Definition of Machine Learning
- Standard Problems
- Canonical Settings
- Bayesian and Optimization Approaches to ML

### ML: Canonical Settings

• *Unsupervised Learning*: given input data, find features/structure/a model that provides insights

- Topic detection, Clustering, Hierarchy Learning

- *Supervised Learning*: given examples of input data and corresponding output data, find a function that correctly predicts outputs for future inputs
  - Classification, Regression
- *Semi-supervised Learning*: above tasks, given a mixture of labeled an unlabeled data
  - Transductive Classification: know future inputs at training time
  - Semi-supervised Clustering: unlabeled data accompanied by labeled data (same/different cluster pairs or cluster labels)

### Transductive Classification



### Transductive Classification



# Transductive Classification















### Outline

- Definition of Machine Learning
- Standard Problems
- Canonical Settings
- Bayesian and Optimization Approaches to ML

### Bayesian Approach

#### • Formulate knowledge about the situation probabilistically

- Define a model that expresses qualitative aspects of our knowledge (forms of distributions, independence assumptions, etc.) This model will have some unknown parameters
- Specify a prior probability distribution for these unknown parameters (defines which values are more likely before seeing the data)
- Gather data
- Compute the posterior probability distribution for the parameters, given the observed data
- Use this posterior distribution to
  - Answer all kinds of questions, such as making predictions or inferring correlations

### Bayesian Approach

• Learning is finding values of parameters maximizing the posterior probability computed using the Bayes Rule

 $parameters_{opt} = \arg \max_{parameters} P(parameters | data)$  $= \frac{P(parameters) * P(data | parameters)}{P(data)}$ 

- The denominator is just a normalizing constant which is often not necessary
- If the *P*(*parameters*) is uniform (all values are equally likely), then *parameters*<sub>opt</sub> is called a Maximum Likelihood Estimate (MLE)
- Otherwise, it is called Maximum Aposteriori Estimate (MAP)
# **Optimization Approach**

- Formulate the knowledge of situation as assumptions about the form of the concept we want to learn
  - Choose a class of functions (hypotheses) *H* so that the concept we want to learn can be expressed as a one of the functions from *H*
- Gather data
- Use the data to find an optimal *f* from *H*, according to some notion of "optimal"
  - For regression, find *f* minimizing the prediction error
  - For classification, find *f* maximizing accuracy
- Often can prove that

 $P(|testErrorRate - trainingErrorRate | > \varepsilon) < \partial$ 

### Summary

- Machine Learning is concerned with improving the performance of an algorithm on a specific task with experience
- Many ML problems can be represented as one of, or a combination of several standard problems: classification, regression, and clustering
- Depending on the kind of information available, ML algorithms can be categorized into supervised, unsupervised, and semi-supervised
- Two most popular approaches to ML are Bayesian and Optimization approaches

#### Note

- This is an extremely brief overview of Machine Learning!
- There are many more problems, settings, and approaches in ML
- Often a relationship can be found among seemingly different approaches (e.g., Bayesian and Optimization approaches are often related)

#### References

• [Mitchell, 1997] Mitchell, M.T., *Machine Learning*, McGraw Hill, 1997, ISBN 0070428077.

# Part 2

# Machine Learning against SPAM

#### Pavel Dmitriev, Mikhail Bilenko

Some slides provided by Thorsten Joachims

## **Problem Definition**

- Given a piece of text dermine whether it is SPAM or not SPAM
  - Email SPAM
  - Search Engine SPAM
  - Blog SPAM
  - Etc.

#### **Classification Problem:**

Assign pieces of text to predefined categories based on content

#### **Confirmation Link**

Thank you for your loan request, which we recieved yesterday, your refinance application has been accepted

Good Credit or Not, We are ready to give you a \$343,000 loan, after further review, our lenders have established the lowest monthly payments.

Approval process will take only 1 minute.

Please visit the confirmation link below and fill-out our short 30 second Secure Web-Form.

SPAM?

http://ureforhealthred.com/





# Outline

- Bayesian Classification
- Naïve Bayes Classifier for Text
- Experimental Results for SPAM Filtering

### Generative vs. Discriminative Training

- **Training examples:**  $(x_i, y_i) \sim P(X, Y), i=1..n$
- Discriminative Training
  - Make assumptions about the set H of classifiers
  - Estimate error of classifiers in H from the training data
  - Select a classifier with the lowest error rate

#### Generative Training

- Make assumptions about the parametric form of P(X, Y)
- Estimate the parameters of P(X, Y) from the training data
- Derive optimal classifier using Bayes' Rule

#### Bayes' Rule

• If you know P(Y=1 | X) and P(Y=-1 | X), the optimal classification is

$$h(\overline{x}) = \begin{cases} 1, \text{ if } P(Y=1 \mid X=\overline{x}) > P(Y=-1 \mid X=\overline{x}) \\ -1, \text{ otherwise} \end{cases}$$

• Minimizes the prediction error

#### Bayes' Theorem

• It is possible to "switch" conditional probabilities according to the following rule

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

• Note that

$$P(B) = \sum_{a \in A} P(B \mid A = a) * P(A = a)$$

#### Bayes' Rule/Theorem for Classification

• Need to know conditional probability

$$P(Y = 1 | X = \overline{x}) = 1 - P(Y = -1 | X = \overline{x})$$

#### to apply Bayes' Rule

• Use Bayes' Theorem to get

$$P(Y=1 \mid X=\overline{x}) = \frac{P(X=\overline{x} \mid Y=1) * P(Y=1)}{P(X=\overline{x})}$$

• Equivalence

$$P(Y=1 \mid X=\overline{x}) > P(Y=-1 \mid X=\overline{x})$$

 $\Leftrightarrow$ 

 $P(X = \overline{x} \mid Y = 1) * P(Y = 1) > P(X = \overline{x} \mid Y = -1) * P(Y = -1)$ 

# Applying it to Text

- Multinomial Model for Text
  - Assume words are drawn randomly from class dependent lexicons (with replacement)
  - $l_x =$ total number of words in document x
  - $w_i =$  the *i*-th word in the document

$$P(X = \overline{x} \mid Y = 1) = \prod_{i=1}^{l_{\overline{x}}} P(W = w_i \mid Y = 1)$$
$$P(X = \overline{x} \mid Y = -1) = \prod_{i=1}^{l_{\overline{x}}} P(W = w_i \mid Y = -1)$$

### Naïve Bayes Classifier for Text

• Multinomial model for each class

$$P(X = \overline{x} \mid Y) = \prod_{i=1}^{l_{\overline{x}}} P(W = w_i \mid Y)$$

• Prior probabilities

Classification rule

$$h(\overline{x}) = \begin{cases} 1, \text{ if } P(Y=1) * \prod_{i=1}^{l_{\overline{x}}} P(W=w_i \mid Y=1) > P(Y=-1) * \prod_{i=1}^{l_{\overline{x}}} P(W=w_i \mid Y=-1) \\ -1, \text{ otherwise} \end{cases}$$

• Y = 1 means SPAM, Y = -1 means Not SPAM

## **Estimating Parameters**

- Count frequences in the training data
  - n = number of training examples
  - pos/neg = number of positive/negative training examples
  - TF(w, y) = number of times word w occurs in class y
  - $l_v =$  total number of word occurences in class y
- Estimating P(Y)

$$P(Y=1) = \frac{pos}{n} \qquad P(Y=-1) = \frac{neg}{n}$$

- Estimating  $P(W \mid Y)$ 
  - Smoothing with Laplace estimate

$$P(W = w | Y = y) = \frac{TF(w, y) + 1}{l_y + 2}$$

### Assumptions of Naïve Bayes

- Words occur independently given a class according to one multinomial distribution per class
- Each document is in exactly one class
- Word probabilities do not depend on the document length

### Pros and Cons of Naïve Bayes

#### • Pros:

- Explicit theoretical foundation
- Relatively effective
- Very simple
- Very fast in learning and classification
- Fast to update when new training examples become available

#### • Cons:

- Multinomial model / independence assumption are clearly wrong for text
- Typically performs worse than other methods in practice

### Experimental Results for SPAM filtering

#### • [Sahami et. al, 1998]

- 1789 e-mail messages, 1578 SPAM, 211 legitimate
- Training set: 1538 messages
- Test set: 251 messages

|                                   | Jun       | k 🛛                     | Legitin   | $\mathbf{nate}$         |
|-----------------------------------|-----------|-------------------------|-----------|-------------------------|
| Feature Regime                    | Precision | $\operatorname{Recall}$ | Precision | $\operatorname{Recall}$ |
| Words only                        | 97.1%     | 94.3%                   | 87.7%     | 93.4%                   |
| Words + Phrases                   | 97.6%     | 94.3%                   | 87.8%     | 94.7%                   |
| Words + Phrases + Domain-Specific | 100.0%    | 98.3%                   | 96.2%     | 100.0%                  |

Table 1: Classification results using various feature sets.

### Experimental Results for SPAM filtering

- [Michelakis et. al, 2004]
  - 1099 e-mail messages, 618 legitimate, 481 SPAM
  - 10-fold cross-validation

|                |             | $\lambda = 1$ |       |       | $\lambda = 9$ |       |  |  |  |  |
|----------------|-------------|---------------|-------|-------|---------------|-------|--|--|--|--|
|                | Pr          | Re            | WAcc  | Pr    | Re            | WAcc  |  |  |  |  |
| 1–grams        |             |               |       |       |               |       |  |  |  |  |
| Naive Bayes    | 90.56       | 94.73         | 94.65 | 91.57 | 92.17         | 94.87 |  |  |  |  |
| Flexible Bayes | 95.55       | 89.89         | 95.15 | 98.88 | 74.63         | 97.76 |  |  |  |  |
| LogitBoost     | 92.43       | 90.08         | 93.64 | 97.71 | 74.89         | 97.24 |  |  |  |  |
| SVM            | 94.95       | 91.43         | 95.42 | 98.12 | 78.33         | 97.60 |  |  |  |  |
|                | 1/2/3-grams |               |       |       |               |       |  |  |  |  |
| Flexible Bayes | 92.98       | 91.89         | 93.89 | 97.43 | 81.36         | 96.91 |  |  |  |  |
| SVM            | 94.73       | 91.70         | 95.05 | 98.70 | 76.40         | 97.67 |  |  |  |  |
|                |             |               |       |       | •             |       |  |  |  |  |

### Experimental Results for SPAM filtering

#### • [Carreras et. al, 2001]

- 1099 e-mail messages, 618 legitimate, 481 SPAM
- 10-fold cross-validation

|              | Т   | $\operatorname{recall}$ | precision | $F_1$ | $F_1^{max}$ |
|--------------|-----|-------------------------|-----------|-------|-------------|
| N. Bayes     | _   | 83.98                   | 95.11     | 89.19 | _           |
| D. Trees     | -   | 89.81                   | 88.71     | 89.25 | -           |
| Stumps       | 525 | 96.47                   | 97.48     | 96.97 | 97.39       |
| TreeBoost[1] | 525 | 96.88                   | 97.90     | 97.39 | 97.60       |
| TreeBoost[2] | 725 | 96.67                   | 98.31     | 97.48 | 97.59       |
| TreeBoost[3] | 675 | 96.88                   | 97.90     | 97.39 | 97.81       |
| TreeBoost[4] | 450 | 97.09                   | 98.73     | 97.90 | 98.01       |
| TreeBoost[5] | 550 | 96.88                   | 98.52     | 97.69 | 98.12       |

## Summary

- SPAM filtering can be viewed as a text classification problem
- Naïve Bayes is a simple and effective approach to address it
  - Pros: simple, learning and updating is fast
  - Cons: the independence assumption is wrong
- If you are willing to invest more into training, there are algorithms that outperform Naïve Bayes
- Often SPAM filtering is not just text classification
  - Web SPAM
  - Click SPAM

### References

- [Sahami et. al., 1998] Sahami, M., Dumais, S., Heckerman, D., Horvitz, E. *A Bayesian Approach to Filtering Junk Email*. AAAI-1998 Workshop on Learning for Text Categorization.
- [Michelakis et. al., 2004] Michelakis, E., Androutsopoulos, I., Paliouras, G., Sakkis, G., Stamatopoulos, P. *Filtron: A Learning-Based Anti-Spam Filter*. CEAS-2004.
- [Carreras et. al., 2001] Carreras, X., Marquez, L. *Boosting Trees for Anti-Spam E-mail Filtering*. RANLP-2001.

# Part 3

# Machine Learning for Information Extraction

#### Pavel Dmitriev, Mikhail Bilenko

Some slides provided by Ray Mooney and Andrew Moore

# Outline

- Definition of Information Extraction
- Naïve Approach to Information Extraction
- Hidden Markov Models
- Experimental Results for Information Extraction

# Natural Language Processing (NLP)

- An entire field focused on tasks involving syntactic, semantic, and pragmatic *analysis* of natural language text
  - Part-of-speech tagging
  - Discourse analysis
  - Text summarization
  - Opinion extraction
  - Machine translation
- Using machine learning methods for automating these tasks is a very active area of research

### Information Extraction (IE)

- Identify specific pieces of information (data) in a unstructured or semi-structured textual document
  - Transform unstructured information in a corpus of documents or web pages into a structured database
- Can be applied to different types of text
  - Newspaper articles, web pages, scientific articles, newsgroup messages, classified ads, medical notes, ...
- Can employ output of other Natural Language Processing tasks for enriching the text representation ("NLP features")

#### Information Extraction

#### • Given a piece of text extract values for specific fields

- Job postings from newsgroups and web pages
- Position details and requirements from a job posting
- Product name, specs, and prices from web pages
- Appartment rental ads from e-mails
- Biological information from journal articles
- A basis for many web start-up's, and of great interest to the intelligence community (CIA, NSA)



Papa John's Pizza Reviews - "I have one question ... how do they cook the pizza to get





# Sample Job Posting

Subject: US-TN-SOFTWARE PROGRAMMER Date: 17 Nov 1996 17:37:29 GMT Organization: Reference.Com Posting Service Message-ID: <56nigp\$mrs@bilbo.reference.com>

#### SOFTWARE PROGRAMMER

Position available for Software Programmer experienced in generating software for PC-Based Voice Mail systems. Experienced in C Programming. Must be familiar with communicating with and controlling voice cards; preferable Dialogic, however, experience with others such as Rhetorix and Natural Microsystems is okay. Prefer 5 years or more experience with PC Based Voice Mail, but will consider as little as 2 years. Need to find a Senior level person who can come on board and pick up code with very little training. Present Operating System is DOS. May go to OS-2 or UNIX in future.

Please reply to: Kim Anderson AdNET (901) 458-2888 fax kimander@memphisonline.com

# Sample Job Posting

Subject: US-TN-SOFTWARE PROGRAMMER Date: 17 Nov 1996 17:37:29 GMT Organization: Reference.Com Posting Service Message-ID: <56nigp\$mrs@bilbo.reference.com>

#### SOFTWARE PROGRAMMER

Position available for Software Programmer experienced in generating software for PC-Based Voice Mail systems. Experienced in C Programming. Must be familiar with communicating with and controlling voice cards; preferable Dialogic, however, experience with others such as Rhetorix and Natural Microsystems is okay. Prefer 5 years or more experience with PC Based Voice Mail, but will consider as little as 2 years. Need to find a Senior level person who can come on board and pick up code with very little training. Present Operating System is DOS. May go to OS-2 or UNIX in future.

Please reply to: Kim Anderson AdNET (901) 458-2888 fax kimander@memphisonline.com

#### **Extracted Template**

computer science job id: 56nigp\$mrs@bilbo.reference.com title: SOFTWARE PROGRAMMER salary: company: recruiter: state: TN city: country: US language: C platform: PC \ DOS \ OS-2 \ UNIX application: area: Voice Mail req\_years\_experience: 2 desired\_years\_experience: 5 req degree: desired\_degree: post date: 17 Nov 1996

# Outline

- Definition of Information Extraction
- Naïve Approach to Information Extraction
- Hidden Markov Models
- Experimental Results for Information Extraction

#### Text as Data

- Representing documents: a continuum of richness
  - Vector-space: text is a |V|-dimensional vector (V is vocabulary of all possible words), order is ignored ("bag-of-words")
  - Sequence: text is a string of contiguous tokens/characters
  - Language-specific: text is a sequence of contiguous tokens along with various syntactic, semantic, and pragmatic properties (e.g. part-of-speech features, semantic roles, discourse models)
- Higher representation richness leads to higher computational complexity, more parameters to learn, etc., but may lead to higher accuracy

# Learning for IE

- Given examples of labeled text, learn how to label tokens (or groups of tokens)
- Basic approach: token classification
  - Treat each token as an isolated instance to be classified.
  - Features include token word, neighbors, capitalization, ...
  - Use labeled data as a training set: fields to extract are positive examples, other tokens are negative examples
- Example: biomedical text, protein name extraction

| 0  | 0   | 0   | 0           | 0  | Ι     | 0    | Ι        | Ι    | 0     | 0 | ••• |
|----|-----|-----|-------------|----|-------|------|----------|------|-------|---|-----|
| to | man | the | interaction | of | PTHrP | with | importin | heta | usino | ล |     |

### IE via Token Classification

| to      | map                   | the                   | interaction | of    | PTHrP | with                  | importin | beta  | using   | a                      |     |
|---------|-----------------------|-----------------------|-------------|-------|-------|-----------------------|----------|-------|---------|------------------------|-----|
| $x_{I}$ | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $x_4$       | $x_5$ | $x_6$ | <i>x</i> <sub>7</sub> | $x_8$    | $x_8$ | $x_{9}$ | <i>x</i> <sub>10</sub> | ••• |

- Each token is represented by a feature vector
- **Possible features:** {token\_value, is\_dictionary\_word, has\_uppercase, ends\_with\_"-in", is\_noun}
- **Task:** given training data, learn a classifier that labels every new *t<sub>i</sub>* as either *Inside* or *Outside*
### Naïve Bayes for IE

• Can use Naïve Bayes Classifier:

$$p(y_i = I | x_i = \{x_{i1}, \dots, x_{i5}\}) = \frac{p(y_i = I) \prod_{k=1}^{5} p(x_{ik} | y_i = I)}{\prod_{k=1}^{5} p(x_{ik})}$$

• For individual features, probabilities can be obtained from training data sequences:

$$- p(y_i = I) = 0.1$$
  
-  $p(x_{i1} = `PTHrP` | y_i = I) = 0.9, p(x_{i1} = `beta` | y_i = I) = 0.7,$   
...  
-  $p(x_{i2} = T | y_i = I) = 0.4, p(x_{i3} = T | y_i = I) = 1.0, ...$ 

# Shortcomings of Single-Token Classification

- Natural language has very rich structure (syntax, semantics, topical structure, ...)
  - Many dependencies exist between words within the sentence
  - "Myopic" classification that considers one token a time is ignoring the dependencies
- In many IE tasks, fields of interest are composed of *several adjacent tokens* ("<u>Cornell University</u>", "<u>cyclin D1</u>")
  - Labels of adjacent tokens are *related*, labeling decisions should be made *collectively*

# Outline

- Definition of Information Extraction
- Naïve Approach to Information Extraction
- Hidden Markov Models
- Experimental Results for Information Extraction

# Relational Learning and Graphical Models

- Want to learn a classifier that would account for relationships between the tokens
- *Graphical models* provide an intuitive and principled framework
  - Instances are nodes, features are attributes of nodes
  - Edges encode dependencies between instance labels and features
- Example: web page classification
  - Nodes = pages
  - Edges = hyperlinks
  - Attributes = words, etc.



# Relational Learning for IE

• Strongest dependencies in text are between adjacent words



What is "best" configurations?
Need to define it, Hidden Markov Models is one option

## Markov System

- A Markov System has N states  $s_1, ..., s_N$
- There are discrete timesteps t=0, t=1,...
- On the t<sup>th</sup> timestep the system is in exactly one of the available states. Call it *q*<sub>t</sub>
- Between each timestep, the next state is chosen randomly
- The current state determines the probability distribution for the next state



### Markov Property

• Markov property:  $q_{t+1}$  is conditionally independent of  $\{q_{t-1}, q_{t-2}, ..., q_0\}$  given  $q_t$ . In other words

 $P(q_{t+1} = s_j | q_t = s_i) = P(q_{t+1} = s_j | q_t = s_i, \text{ any earlier history})$ 

• Notation:  $P(q_{t+1}=s_j|q_t=s_i) = a_{ij}$ 



### Hidden Markov Model (HMM)

- A Markov System satisfying the Markov Property
- The states *s<sub>i</sub>* are hidden
- At every state  $s_i$  one of the symbols  $\{o_1, \dots, o_M\}$  is observed with probability  $b_j(i), j=1, \dots, M$



# Formal Definition of HMM

- An HMM  $\lambda$  is a 5-tuple consisting of
  - -N states
  - *M* possible observations
  - $A = \{a_{ij}\},$  matrix of state transition probabilities
  - $B = \{b_k(i)\},$  matrix of observation probabilities
  - $-\pi = \{\pi_i\}$ , the starting state probabilities



# Central Problems in HMM Modelling

#### • Problem 1: Evaluation

- Given an HMM and a sequence of observations, what is the probability of the HMM generating this sequence?



# Central Problems in HMM Modelling

- Problem 2: Decoding
  - Given an HMM and a sequence of observations, what is the most probable path that could generate this sequence?



# Central Problems in HMM Modelling

- Problem 3: Learning
  - Given a sequence of observations, what is the maximum likelihood HMM that could have produce that sequence?



## Problem 1: Evaluation

- Given an HMM λ and a sequence of observations O, what is the probability of the HMM generating this sequence?
- Naïve inefficient approach

$$P(O \mid \lambda) = \sum_{\text{all paths } Q} P(O \mid Q, \lambda) * P(Q \mid \lambda)$$

• Complexity:  $O(N^T * T)$ 

### Problem 1: Evaluation

- Given an HMM λ and a sequence of observations O, what is the probability of the HMM generating this sequence?
- Efficient Dynamic Programming approach
  - Define  $\alpha_t(i) = P(o_1, o_2, ..., o_t \& q_t = s_i | \lambda)$
  - $-\alpha_t(i)$  is the probability that, in a random trial, we would have seen the first *t* observations, and we would have ended up at state  $s_i$  on step *t*
- Can define  $\alpha_t(i)$  recursively

$$\alpha_{1}(i) = P(o_{1} \& q_{1} = s_{i}) = \pi_{i} * b_{o_{1}}(i)$$
  
$$\alpha_{t+1}(j) = P(o_{1}o_{2}...o_{t+1} \& q_{t+1} = s_{j}) = \sum_{i=1}^{N} \alpha_{t}(i) * a_{ij} * b_{o_{t+1}}(j)$$

### Problem 1: Evaluation

- Given an HMM λ and a sequence of observations O, what is the probability of the HMM generating this sequence?
- Efficient Dynamic Programming approach

$$\alpha_1(i) = P(o_1 \& q_1 = s_i) = \pi_i * b_{o_1}(i)$$

$$\alpha_{t+1}(j) = P(o_1 o_2 \dots o_{t+1} \& q_{t+1} = s_j) = \sum_{i=1}^N \alpha_t(i) * a_{ij} * b_{o_{t+1}}(j)$$

• Then the probability of observation sequence is

$$P(O \mid \lambda) = \sum_{i=1}^{N} \alpha_{T}(i)$$

• **Complexity:**  $O(N^2 * T)$ 

# Problem 2: Decoding

- Given an HMM λ and a sequence of observations O, what is the most probable path that could generate this sequence?
- Again, a Dynamic Programming approach, known as Viterbi Algorithm
  - Want to compute  $\arg \max_{Q} P(Q | O, \lambda)$
  - Define  $\partial_t(i) = \max_{q_1, q_2, \dots, q_{t-1}} P(q_1, q_2, \dots, q_{t-1} \& q_t = s_i \& o_1 o_2 \dots o_t)$ -  $\delta_t(i)$  = the probability of the path of length *t*-1 with the maximum chance of occuring, ending up in state  $s_i$ , and producing output  $o_1 o_2 \dots o_t$
  - Define  $mpp_t(i)$  = that path

# Problem 2: Decoding

- Given an HMM λ and a sequence of observations O, what is the most probable path that could generate this sequence?
- Again a Dynamic Programming approach, known as Viterbi Algorithm

- Can define  $\delta_t(i)$  and  $mpp_t(i)$  recursively

$$\partial_{1}(i) = \pi_{i} * b_{o_{1}}(i)$$

$$mpp_{t}(i) = s_{i}$$

$$i^{*} = \arg\max_{i} \partial_{t}(i) * a_{ij} * b_{o_{t+1}}(j)$$

$$\partial_{t+1}(j) = \partial_{t}(i^{*}) * a_{ij} * b_{o_{t+1}}(j)$$

$$mpp_{t+1}(j) = mpp_{t}(i^{*})s_{i^{*}}$$

# Problem 2: Decoding

- Given an HMM λ and a sequence of observations O, what is the most probable path that could generate this sequence?
- Again a Dynamic Programming approach, known as Viterbi Algorithm

- Then the most probable path is

$$q_T^* = mpp_T(\arg\max_{1 \le i \le N} \partial_T(i))$$
$$q_{t-1}^* = mpp_t(q_t^*)$$

- And its corresponding probability is

$$P^* = \max_{1 \le i \le N} \partial_T(i)$$

- Complexity:  $O(N^2 * T)$ 

# HMM for IE

- Observations are words
- Hidden states are labels we want to find
- Finding the maximum likelyhood label configuration is solving the "decoding" problem
- Learning the transition and emission probabilities is solving the "learning" problem
  - The Baum-Welch algorithm (an iterative Expectation-Maximization procedure)

# **Richer Models**

- HMMs only model dependencies between adjacent states (word labels)
- **Model the joint distribution** *P*(*Q*,*O*)
- Conditional Random Fields (CRFs) are models which allow for arbitrary dependencies between states as well as between features
- Model the conditional distribution P(Q|O)
- Have superior accuracy on IE and other similar tasks
- However, they are slower to train and do not scale well to large amounts of training data

# Summary

- Information Extraction is an old problem which gained importance with the growing popularity of the Web
- Simple approaches such as Naïve Bayes do not work well due to strong dependencies between word labels
- HMMs, more sophisticated generative models which allow accounting for dependencies between adjacent word labels perform much better
- Discriminative models, such as CRFs, which directly optimize the desired property and allow for arbitrary dependencies perfrom even better

### References

 [Rabiner, 1989] Rabiner, L.R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, Proceedings of IEEE, Vol. 77, No. 2, pp. 257-286, 1989.

# Part 4

# Machine Learning in Web Search

### Pavel Dmitriev, Mikhail Bilenko

Some slides provided by Thorsten Joachims

# Adaptive Search Engines

- Current Search Engines
  - One-size-fits-all
  - Hand-tuned retrieval function

#### • Hypothesis

- Different users need different retrieval functions
- Different collections need different retrieval functions

#### Machine Learning

- Learn improved retrieval functions
- User Feedback as training data



# Outline

- How can we get training data for learning improved retrieval functions?
  - Explicit vs. implicit feedback
  - Absolute vs. relative feedback
  - User study with eye-tracking and relevance judgments
- What learning algorithms can use this training data?
  - Ranking Support Vector Machine
  - User study with meta-search engine

# Sources of Feedback

- Explicit Feedback

   Overhead for user
   Only few users give feedback
   not representative
- Implicit Feedback
  - Queries, clicks, time, mousing, scrolling, etc.
  - No Overhead
  - More difficult to interpret



# Types of Feedback

- Absolute Feedback
  - Feedback about relevance of document on absolute scale
  - Examples
    - Document  $d_i$  is relevant to query q
    - Document  $d_i$  is not relevant to query q
    - Document  $d_l$  has relevance 0.73 with respect to query q

### Relative Feedback

- Feedback reflects preference between documents
- Examples
  - Document  $d_i$  is more relevant to query q than document  $d_j$
  - Document  $d_i$  is the least relevant to query q among  $\{d_i, d_j, d_l, d_m\}$

# Feedback from Clickthrough Data

#### **Relative Feedback:** Clicks reflect preference between observed links.

**Absolute Feedback:** The clicked links are relevant to the query.



Rel(1), NotRel(2), Rel(3), NotRel(4), NotRel(5), NotRel(6), Rel(7)

# Is Implicit Feedback Reliable?

#### How do users view the results?

- How many abstracts do users evaluate before clicking?
- Do users scan abstracts from top to bottom?
- Do users view all abstracts above a click?
- Do users look below a clicked abstract?

#### How do clicks relate to relevance?

- Absolute Feedback: Are clicked links relevant? Are not clicked links not relevant?
- Relative Feedback: Are clicked links more relevant than not clicked links?

- 1. Kernel Machines http://www.kernel-machines.org/
- 2. Support Vector Machine http://jbolivar.freeservers.com/
- 3. SVM-Light Support Vector Machine http://ais.gmd.de/~thorsten/svm light/
- 4. An Introduction to SVMs *http://www.support-vector.net/*
- 5. Support Vector Machine and ... http://svm.bell-labs.com/SVMrefs.html
- 6. Archives of SUPPORT-VECTOR... http://www.jisc.ac.uk/lists/SUPPORT...
- 7. Lucent Technologies: SVM demo applet *http://svm*.bell-labs.com/SVMsvt.html
- 8. Royal Holloway SVM http://svm.dcs.rhbnc.ac.uk
- 9. SVM World http://www.svmworld.com
- 10. Fraunhofer FIRST SVM page *http://svm.first.gmd.de*

# User Study: Eye-Tracking and Relevance

#### Scenario

- WWW search
- Google search engine
- Subjects were not restricted
- Answer 10 questions
- Eye-Tracking



The Statistician - Things That Make You Go Hmmmm ... Nothing, 1,302,540, 0.501177394. The \$20 Million A Year Man "I can accept failure, but I can't accept not trying," - Michael Jordan Michael Jeffrey Jordan ... www.thestatistician.com/archives/080801/page32.html - 20k - <u>Cached</u> - <u>Similar pages</u>

#### <a href="http://infolab.cs.uchicago.edu/webseer/">WebSeer</A> ..

... Searching for "**Michael Jordan**, photograph" retrieves images of **Jordan** kissing the ... Camegie-Mellon's. University of Chicago **statistician** Yali Amit ... www-news.uchicago.edu/releases/96/961120.webseer.shtml - 9k - <u>Cached</u> - <u>Similar pages</u>

#### 2003 schedule

... Head Coach/Offensive Coordinator: Michael Esposito, Defensive Coordinator: Brad Winder, Defensive Line ... Quarterbacks: Jordan Haylor, Head Statistician: Steve St ... www.footballme.com/coaches%20list.htm - 17k - <u>Cached</u> - <u>Similar pages</u>

- Record the sequence of eye movements
- Analyze how users scan the results page of Google
- Relevance Judgements
  - Ask relevance judges to explicitly judge the relevance of all pages encountered
  - Compare implicit feedback from clicks to explicit judgments

# What is Eye-Tracking?

#### Eye tracking device





#### Device to detect and record where and what people look at

- Fixations: ~200-300ms; information is acquired
- Saccades: extremely rapid movements between fixations
- **Pupil dilation**: size of pupil indicates interest, arousal

"Scanpath" output depicts pattern of movement throughout screen. Black markers represent fixations.

# **Experiment Setup**

### • Study (Phase I)

- 36 subjects
- Undergraduate students
- Familiar with Google

### • 10 Questions

 Balanced informational and navigational

### • Task

- Answer questions
- Start with Google search, no restrictions
- Users unaware of study goal

| Who discovered the first modern antibiotic?              |
|----------------------------------------------------------|
| Find the homepage of Emeril - the chef who has a TV      |
| cooking program.                                         |
| What actor starred as the main character in the original |
| 'Time Machine' movie?                                    |
| Find the page displaying the routemap for Greyhound      |
| buses.                                                   |
| You are excited to cast your vote in the democratic      |
| presidential primary - when can you do so in NY?         |
| Find the homepage of Michael Jordan, the statistician.   |
| Where is the tallest mountain in NY located?             |
| Find the homepage for graduate housing at Carnegie       |
| Mellon University.                                       |
| A friend told you that Mr. Cornell used to live close to |
| campus - between University and Stewart Aves -           |
| does anyone live in his house now; if so, who?           |
| Find the homepage of the 1,000 Acres Dude Ranch.         |



=> Top ranked results are viewed/clicked substantially more often

### In Which Order are the Results Viewed?



=> Users tend to read the results in order

# Do Users Look Below the Clicked Link?



=> Users typically do not look at links below before they click (except maybe the next link)

## **Conclusion: Viewing Behavior**

- Users most frequently view two abstracts
- Users typically view results in order from top to bottom
- Users view links one and two more thoroughly and often
- Users click most frequently on link one
- Users typically do not look at links below before they click (except maybe the next link)
- => Design strategies for interpreting clickthrough data that respect these properties!
## How do Clicks Relate to Relevance?

#### • Experiment (Phase II)

- Additional 16 subjects
- Manually judged relevance
  - Abstract
  - Page

#### Manipulated Rankings

- Normal: Google's ordering
- Swapped: Top Two Swapped
- Reversed: Ranking reversed
- Experiment Setup
  - Same as Phase I
  - Manipulations not detectable

- 1. Kernel Machines http://www.kernel-machines.org/
- 2. Support Vector Machine http://jbolivar.freeservers.com/
- 3. SVM-Light Support Vector Machine http://ais.gmd.de/~thorsten/svm light/
- 4. An Introduction to SVMs *http://www.support-vector.net/*
- 5. Support Vector Machine and ... http://svm.bell-labs.com/SVMrefs.html
- 6. Archives of SUPPORT-VECTOR... http://www.jisc.ac.uk/lists/SUPPORT...
- 7. Lucent Technologies: SVM demo applet *http://svm*.bell-labs.com/SVMsvt.html
- 8. Royal Holloway SVM *http://svm.dcs.rhbnc.ac.uk*
- 9. SVM World http://www.svmworld.com
- 10. Fraunhofer FIRST SVM page http://svm.first.gmd.de

#### **Presentation Bias**

Hypothesis: Order of presentation influences where users

look, but not where they elick!

| "normal"                                                                                               | $ _{1}^{-}, _{2}^{-}$             | $ _{1}^{+}, _{2}^{-}$         | $ _{1}^{-}, _{2}^{+}$                | $ _{1}^{+}, _{2}^{+}$                       | total                   |
|--------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------|--------------------------------------|---------------------------------------------|-------------------------|
| $rel(I_1) > rel(I_2)$                                                                                  | 15                                | 19                            | 1                                    | 1                                           | 36                      |
| $rel(I_1) < rel(I_2)$                                                                                  | 11                                | 5                             | 2                                    | 2                                           | 20                      |
| $rel(I_1) = rel(I_2)$                                                                                  | 19                                | 9                             | 1                                    | 0                                           | 29                      |
| total                                                                                                  | 45                                | 33                            | 4                                    | 3                                           | 85                      |
|                                                                                                        |                                   |                               |                                      |                                             |                         |
| "swapped"                                                                                              | $ _{1}^{-}, _{2}^{-}$             | $ _{1}^{+}, _{2}^{-}$         | $ _{1}^{-}, _{2}^{+}$                | $ _{1}^{+}, _{2}^{+}$                       | total                   |
| "swapped"<br>rel( $I_1$ ) > rel( $I_2$ )                                                               | $ _{1}^{-}, _{2}^{-}$<br>11       | $ ^+_1, ^2$<br>15             | $ _{1}^{-}, _{2}^{+}$<br>1           | $ ^+_1, ^+_2$<br>1                          | total<br>28             |
| "swapped"<br>$rel(I_1) > rel(I_2)$<br>$rel(I_1) < rel(I_2)$                                            | $ _{1}^{-}, _{2}^{-}$<br>11<br>17 | $ ^+_1, ^2$<br>15<br>10       | $ _{1}^{-}, _{2}^{+}$<br>1<br>7      | $ _{1}^{+}, _{2}^{+}$<br>1<br>2             | total<br>28<br>36       |
| "swapped"<br>rel( $l_1$ ) > rel( $l_2$ )<br>rel( $l_1$ ) < rel( $l_2$ )<br>rel( $l_1$ ) = rel( $l_2$ ) | , _2<br>11<br>17<br>36            | $ ^+_1, ^2$<br>15<br>10<br>11 | $ _{1}^{-}, _{2}^{+}$<br>1<br>7<br>3 | <sup>+</sup> ,  <sup>+</sup><br>1<br>2<br>0 | total<br>28<br>36<br>50 |

## Quality-of-Context Bias Hypothesis: Clicking depends only on the link itself, but not on other links.

|                  | Rank of clicked link as sorted by relevance judges |
|------------------|----------------------------------------------------|
| Normal + Swapped | 2.67                                               |
| Reversed         | 3.27                                               |

=> Users click on less relevant links, if they are embedded between irrelevant links.

#### Are Clicks Absolute Relevance Judgments?

- Clicks depend not only on relevance of a link, but also
  - On the position in which the link was presented
  - The quality of the other links
- => Interpreting Clicks as absolute feedback is extremely difficult!

#### Strategies for Generating Relative Feedback

#### **Strategies**

- "Click > Skip Above"
  (3>2), (5>2), (5>4)
- "Last Click > Skip Above"
  (5>2), (5>4)
- "Click > Earlier Click"
  (3>1), (5>1), (5>3)
- "Click > Skip Previous"
  (3>2), (5>4)
- "Click > Skip Next"
  - (1>2), (3>4), (5>6)

- 1. Kernel Machines http://www.kernel-machines.org/
- 2. Support Vector Machine http://jbolivar.freeservers.com/
- 3. SVM-Light Support Vector Machine http://ais.gmd.de/~thorsten/svm light/
- 4. An Introduction to SVMs *http://www.support-vector.net/*
- 5. Support Vector Machine and ... http://svm.bell-labs.com/SVMrefs.html
- 6. Archives of SUPPORT-VECTOR... http://www.jisc.ac.uk/lists/SUPPORT...
- 7. Lucent Technologies: SVM demo applet *http://svm*.bell-labs.com/SVMsvt.html
- 8. Royal Holloway SVM http://svm.dcs.rhbnc.ac.uk
- 9. SVM World http://www.svmworld.com
- 10. Fraunhofer FIRST SVM page *http://svm.first.gmd.de*

## Comparison with Explicit Feedback

| Explicit Feedback       | Abstracts       |
|-------------------------|-----------------|
| Data                    | Phase I         |
| Strategy                | "normal"        |
| Inter-Judge Agreement   | 89.5            |
| Click > Skip Above      | $80.8 \pm 3.6$  |
| Last Click > Skip Above | $83.1\pm3.8$    |
| Click > Earlier Click   | $67.2 \pm 12.3$ |
| Click > Skip Previous   | $82.3\pm7.3$    |
| Click > No Click Next   | $84.1 \pm 4.9$  |

=> All but "Click > Earlier Click" appear accurate

## Conclusions: Implicit Feedback

- Interpreting clicks as absolute feedback is difficult
  - Presentation Bias
  - Quality-of-Context Bias
- Relative preferences derived from clicks are accurate
  - "Click > Skip Above"
  - "Last Click > Skip Above"
  - "Click > Skip Previous"

## Outline

- How can we get training data for learning improved retrieval functions?
  - Explicit vs. implicit feedback
  - Absolute vs. relative feedback
  - User study with eye-tracking and relevance judgments
- What learning algorithms can use this training data?
  - Ranking Support Vector Machine
  - User study with meta-search engine

#### Optimal Hyperplanes Linear Hard-Margin Support Vector Machine

Assumption: Training examples are linearly separable.



#### The Optimization Problem

#### Requirement 1: Zero Training Error

 $\begin{cases} y_1(x_1w+b) > 0 \\ \cdots \\ y_n(x_nw+b) > 0 \end{cases}$ 

Requirement 2: Maximum Margin

$$\max_{w,b} \delta$$
, where  $\delta = \min_i \left| \frac{1}{\|w\|} (x_i w + b) \right|$ 



#### The Optimization Problem

#### **Requirements 1 and 2 together:**

$$\begin{cases} \max_{w,b} \delta \\ \forall i \colon y_i(\frac{1}{\|w\|}(x_iw+b)) \ge \delta \end{cases}$$

Choosing  $||w|| = 1/\delta$ , get:

$$\begin{cases} \min_{w,b} \frac{1}{2} ww \\ \forall i \colon y_i(x_i w + b) \ge 1 \end{cases}$$

## Hard-Margin Separation

**Goal:** Find hyperplane with the largest distance to the closest training examples.

Optimization Problem (Primal):  

$$\begin{array}{l} \min_{\vec{w},b} & \frac{1}{2}\vec{w}\cdot\vec{w} \\ s.t. & y_1(\vec{w}\cdot\vec{x}_1+b) \ge 1 \\ & \cdots \\ & y_n(\vec{w}\cdot\vec{x}_n+b) \ge 1 \end{array}$$



Support Vectors: Examples with minimal distance (i.e. margin).

For a new example, classify it according to the  $sign(wx_i+b)$ 

## Non-Separable Training Data

#### **Limitations of hard-margin formulation**

- For some training data, there is no separating hyperplane.
- Complete separation (i.e. zero training error) can lead to suboptimal prediction error.



## Soft-Margin Separation

#### Idea: Maximize margin and minimize training error.

| Hard-                 | Margin OP (Primal):                                                    |
|-----------------------|------------------------------------------------------------------------|
| min<br><sub>w.b</sub> | $\frac{1}{2}\vec{w}\cdot\vec{w}$                                       |
| s.t.                  | $\begin{vmatrix} -\\ y_1(\vec{w}\cdot\vec{x}_1+b) \ge 1 \end{vmatrix}$ |
|                       |                                                                        |
|                       | $y_n(\vec{w}\cdot\vec{x}_n+b)>1$                                       |

Soft-Margin OP (Primal):  

$$\min_{\vec{w},\vec{\xi},b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$$
s.t.  $y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1 - \xi_1 \land \xi_1 \ge 0$   
...  
 $y_n(\vec{w} \cdot \vec{x}_n + b) > 1 - \xi_n \land \xi_n > 0$ 

- Slack variable  $\xi_i$  measures by how much  $(x_i, y_i)$  fails to achieve margin  $\delta$
- $\Sigma \xi_i$  is upper bound on number of training errors
- C is a parameter that controls trade-off between margin and training error.



## **Controlling Soft-Margin Separation**

- $\Sigma \xi_i$  is upper bound on number of training errors
- C is a parameter that controls trade-off between margin and training error.

Soft-Margin OP (Primal):  

$$\min_{\vec{w},\vec{\xi},b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$$
s.t.  $y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1 - \xi_1 \land \xi_1 \ge 0$   

$$\dots$$
 $y_n(\vec{w} \cdot \vec{x}_n + b) \ge 1 - \xi_n \land \xi_n \ge 0$ 

$$\perp +$$



## **Dual SVM Optimization Problem**

#### Primal Optimization Problem

$$\begin{array}{ll} \text{minimize:} & P(\vec{w}, b, \vec{\xi}) = \frac{1}{2} \, \vec{w} \cdot \vec{w} + C \, \sum_{i=1}^{n} \xi_i \\ \text{subject to:} & \forall_{i=1}^{n} : y_i [\vec{w} \cdot \vec{x}_i + b] \geq 1 - \xi_i \\ & \forall_{i=1}^{n} : \xi_i > 0 \end{array}$$

Dual Optimization Problem

maximize: 
$$D(\vec{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j (\vec{x}_i \cdot \vec{x}_j)$$
  
subject to:  $\sum_{\substack{i=1 \ \forall i=1}}^{n} y_i \alpha_i = 0$   
 $\forall_{i=1}^{n} : 0 \le \alpha_i \le C$ 

• **Theorem:** If  $w^*$  is the solution of the Primal and  $\alpha^*$  is the solution of the Dual, then  $\vec{w}^* = \sum_{i=1}^{n} \alpha_i^* y_i \vec{x}_i$ 



#### **Problem:**

- some tasks have non-linear structure
- no hyperplane is sufficiently accurate

How can SVMs learn non-linear classification rules?



The separating hyperplane in feature space is degree two polynomial in input space.

## Example

- Input Space:  $\vec{x} = (x_1, x_2)(2 \text{ attributes})$
- Feature Space:  $\Phi(\vec{x}) = (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, 1)$ (6 attributes)



SVM with KernelTraining:maximize:
$$D(\vec{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j K(\vec{x}_i, \vec{x}_j)$$
subject to: $\sum_{i=1}^{n} y_i \alpha_i = 0$  $\forall_{i=1}^{n} : 0 \le \alpha_i \le C$ Classification: $h(\vec{x}) = sign\left(\left[\sum_{i=1}^{n} \alpha_i y_i \Phi(\vec{x}_i)\right] \cdot \Phi(\vec{x}) + b\right)$  $= sign\left(\sum_{i=1}^{n} \alpha_i y_i K(\vec{x}_i, \vec{x}) + b\right)$ 

New hypotheses spaces through new Kernels:

- Linear:  $K(\vec{a}, \vec{b}) = \vec{a} \cdot \vec{b}$
- Polynomial:  $K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^d$
- Radial Basis Function:  $K(\vec{a}, \vec{b}) = exp(-\gamma[\vec{a} \vec{b}]^2)$
- Sigmoid:  $K(\vec{a}, \vec{b}) = tanh(\gamma[\vec{a} \cdot \vec{b}] + c)$

### Back to the Problem of Learning from Clickthrough Data

**Training Data:** preferences in the form  $(q, d_i) > (q, d_j)$ **Idea:** Learn a ranking function, so that number of violated

pair-wise training preferences is minimized.

#### Form of Ranking Function:

 $rsv(q,d_i) = w_1 * (\#of query words in title of d_i)$  $+ w_2 * (\#of query words in anchortext)$ + ... $+ w_n * (page-rank of d_i)$  $= w * <math>\Phi(q,d_i)$ 

**Training:** Select *w* so that

if user prefers  $d_i$  to  $d_j$  for query q, then  $rsv(q, d_i) > rsv(q, d_j)$ 

## Ranking Support Vector Machine

• Find ranking function with low error and large margin

$$egin{aligned} \min & rac{1}{2}ec w\cdotec w+C\sum\limits_{i,j,k}\xi_{kij}\ s.t. & ec w\cdot\Phi(q_1,d_i)\geqec w\cdot\Phi(q_1,d_j)+1-\xi_{1ij}\ & \ & \ & \ & ec w\cdot\Phi(q_n,d_i)\geqec w\cdot\Phi(q_n,d_j)+1-\xi_{nij} \end{aligned}$$

#### • Properties

- Convex quadratic program
- Can learn non-linear functions using Kernels



## Experiment

#### Meta-Search Engine "Striver"

- Implemented meta-search engine on top of Google, MSNSearch, Altavista, Hotbot, Excite
- Retrieve top 100 results from each search engine
- Re-rank results with learned ranking functions

#### **Experiment Setup**

- User study on group of ~20 German machine learning researchers and students
  - => homogeneous group of users
- Asked users to use the system like any other search engine
- Train ranking SVM on 3 weeks of clickthrough data
- Test on 2 following weeks

# Which Ranking Function is Better?



#### Approach

- Combine the rankings in a "fair and unbiased" way: at each position in the combined ranking #links from Learned equals # links from Google plus/minus 1
- See which links users prefer

## Results

| Ranking A | Ranking B | A better | B better | Tie | Total |
|-----------|-----------|----------|----------|-----|-------|
| Learned   | Google    | 29       | 13       | 27  | 69    |
| Learned   | MSNSearch | 18       | 4        | 7   | 29    |
| Learned   | Toprank   | 21       | 9        | 11  | 41    |

#### **Result**:

- Learned > Google
- Learned > MSNSearch
- Learned > Toprank

Toprank: rank top 1 results from all 5 search engines first, then top 2, etc.

#### Feedback across Query Chains [KDD 2005]

| MSN Search: svm - Microsoft Internet Explorer                                                                                                                        |                                                                                                                                                                                                                              |               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| File Edit View Favorites Tools Help                                                                                                                                  | MSN Search: support vector machine - Microsoft Internet Explorer                                                                                                                                                             | _ 🗆 🗙         |
| 😋 Back 🔻 🕥 👻 🖻 🐔 🔑 Search 📌 Favorites 🛛 😥 👟 💿 🔻 🖵 🎎 🕸                                                                                                                | File Edit View Favorites Tools Help                                                                                                                                                                                          | -             |
| Address 🕘 http://search.msn.com/results.aspx?q=svm&FORM=QBHP                                                                                                         | 😮 Back 🔻 🕤 👻 👔 🏠 🔎 Search 🔹 Favorites 🛛 🖉 🖉 💺 💿 💌 🛄 🖏                                                                                                                                                                        |               |
| Google - msn search - G Search - 🛷 PageBank 💁 37 blocked                                                                                                             | Address 🕘 http://search.msn.com/results.aspx?q=support+vector+machine&FORM=QI 🔻 🄁 Go                                                                                                                                         | Links »       |
| Web <u>News</u> Images <u>Desktop</u> Encarta                                                                                                                        | Coogle - msn search                                                                                                                                                                                                          |               |
| svm Search 🔻 Near Me                                                                                                                                                 | Web News Images Desktop Encarta                                                                                                                                                                                              |               |
| +Search Builder Setting: Help Español                                                                                                                                | support vector machine Search Vector Mear Me                                                                                                                                                                                 |               |
| Web Results reformulate                                                                                                                                              | +Search Builder Settings Help Español                                                                                                                                                                                        |               |
| 1-10 of 220,590 containing <b>svm</b> (0.14 seconds)                                                                                                                 | Web Results                                                                                                                                                                                                                  |               |
| Buy SVM Stock for \$4 - www.sharehuilder.com                                                                                                                         | 1-10 of 63,199 containing support vector machine (0.22 seconds)                                                                                                                                                              |               |
| No account or investment minimums and no inactivity fee. Automatically build a diversified portfo                                                                    |                                                                                                                                                                                                                              |               |
| ServiceMaster: In-depth Company Info - www.hoovers.com                                                                                                               | Programming Vector File Format Support - www.leadtools.com<br>C/C++ VB Delphi Net programmers: Create vector imaging software with support for loading editing proce                                                         | ssing s       |
| Go to Hoover's Online for in-depth, first-hand, company coverage provided by business experts.                                                                       | Support Vector Machines - analytics infotrack net                                                                                                                                                                            |               |
| ServiceMaster We Are Home                                                                                                                                            | Learn all about genetic programming in terms and contexts you can understand.                                                                                                                                                |               |
| ServiceMaster Reports First Quarter 2005 Results ServiceMaster Announces Secon                                                                                       | Buy "Support Vector Machines" at BN.com - www.barnesandnoble.com                                                                                                                                                             |               |
| Announcing First Quarter Earnings on May 10, 2005 2004 Annual Report 2005<br>www.svm.com Cached page 6/12/2005                                                       | Buy "Support Vector Machines" by Lipo Wang at Barnes & Noble. Fast and free delivery. Three days or less of                                                                                                                  | n orders      |
| SV/M World de                                                                                                                                                        | Support Vector Machines - The Book - Support Vector                                                                                                                                                                          | SP            |
| am Freitag Nachmittag auf den letzten Drücker gegen weiterlesen Willkommen                                                                                           | AN INTRODUCTION TO SUPPORT VECTOR MACHINES (and other kernel-based learning                                                                                                                                                  | Supp          |
| größten deutsch- sprachigen Fan-Homepages vom SV Meppen. Hier wirst du stets m                                                                                       | methods) N. Cristianini and J. Shawe-Taylor Cambridge University Press 2000 ISBN: 0 521<br>78019 5 NEWS: School                                                                                                              | Machi<br>Shon |
| www.svm-world.de <u>Cached page</u> 6/12/2005                                                                                                                        | www.support-vector.net Cached page                                                                                                                                                                                           | everyti       |
| SVM srl                                                                                                                                                              | Support Vector Machine - The Software                                                                                                                                                                                        | speci:        |
| ed erosione costiera La capacita di gestire le immagini tipica dei sistemi prodotti d<br>monitoraggio dei fenomeni di erosione e dei lavori di ripascimento costiero | on recent advances in statistical learning theory. This page gives pointers to free                                                                                                                                          |               |
| www.svm.it <u>Cached page</u>                                                                                                                                        | software about the authors                                                                                                                                                                                                   | Amaz          |
| School of Volunteer Management                                                                                                                                       | www.support-vector.net/software.html Cached page                                                                                                                                                                             | Buy bo        |
| The School of Volunteer Management offers a range of volunteer management and                                                                                        | Show more results from "www.support-vector.net".                                                                                                                                                                             | shopp         |
| customised to reliect the unique character and diverse needs of the hot-for-profit set<br>www.sym.net.au Cached page                                                 | Support vector machine - Wikipedia, the free encyclopedia                                                                                                                                                                    | WWW.8         |
| .:: SV Mattersburg Online ::.                                                                                                                                        | the distance to the nearest cleanly split examples. This work popularized the expression<br><b>Support Vector Machine</b> or SVM . The SVM was popularized in the <b>machine</b> learning<br>community by Bernhard Schölkopf | <u>See y</u>  |
| www.svm.au <u>cached page</u>                                                                                                                                        | en.wikipedia.org/wiki/Support_Vector_Machine Cached page                                                                                                                                                                     |               |
|                                                                                                                                                                      | GIST: Support Vector Machine 1.0 - Data submission                                                                                                                                                                           | <b>_</b>      |
| je j j j j j j j j j j j                                                                                                                                             |                                                                                                                                                                                                                              |               |
|                                                                                                                                                                      | 🕙                                                                                                                                                                                                                            | 11.           |

## Summary

- Clickthrough data can provide accurate feedback
  - Clickthrough provides relative instead of absolute judgments
- Ranking SVM can learn effectively from relative preferences
  - Improved retrieval through personalization in meta search
- Interesting directions for future work
  - Exploiting query chains
  - Robustness to "click-spam"
  - Learning theory for interactive learning with preference

### References

- **[Joachims, 2005]** Joachims, T., Granka, L., Pang, B., Hembrooke, H., Gay, G. *Accurately Interpreting Clickthrough Data as Implicit Feedback*. SIGIR-2005.
- [Joachims, 2002] Joachims, T. *Optimizing Search Engines Using Clickthrough Data*. KDD-2002.
- [Radlinski, 2005] Radlinski, F., Joachims, T. *Query Chains: Learning to Rank from Implicit Feedback*. KDD-2005.
- More Information, Papers, and Software

- http://www.joachims.org

## Part 5

## Machine Learning in the News

#### Pavel Dmitriev, Mikhail Bilenko

Some slides provided by Thorsten Joachims, Rich Caruana, and Ray Mooney

## Outline

- Architecture of an online news system
- Clustering news articles
- Personalization / Recommendation

## Examples of Online News Systems

#### Architecture of an Online News System Web **Summarization** Pages **Module** Clustering Classifier Module News Image Feeds **Processor** News **Database** and Index 0 0 **Search / Browse Personalization** Module Interface Users

• Based on [Gulli, 2005]

## Classifier

- Given an article need to classify it into one of the categories
  - E.g. Sports, Business, Science,...
- Some articles are already assigned a category
  - Training examples to continuously update the classifier

#### • Can use any classifier

- Naïve Bayes, SVM, Decision Trees, etc.
- Train one classifier for each category

## Outline

- Architecture of an online news system
- Clustering news articles
- Personalization / Recommendation

## Clustering Module

• Given the articles in a particular category, need to determine which ones are on the same topic

- Only show a representative of the set to the user

#### Clustering

- Given a dataset and a similarity/distance function
- Find a partitioning of data such that similar/close points are grouped together

#### • Tasks

- Define a similarity/distance function
- Choose a clustering algorithm

## Types of Clustering

#### • Types of Clustering

- Partitioning: K-means, K-medoids, EM clustering
- Hierarchical: *Divisive, Agglomerative*

#### Partitioning Clustering

- Hard: each object is in only one cluster
- Soft: each object has a probability of being in each cluster

#### • Distance/Similarity Space

- Vector space: distance between any two points is given
- Pairwise distance: only distances between some pairs of points are given
# Hierarchical Agglomerative Clustering

- Start with all instances in a separate cluster, then repeatedly merge the two most similar clusters until there is only one cluster with all points
- The history of merging forms a binary tree or hierarchy

### • Merging criteria

- Single link: similarity of two most similar members
- Complete link: similarity of two least similar members
- Group average: *average similarity between members*
- **Typical complexity is**  $O(n^2)$

# Partitioning as Optimization Problem

- Clustering Criterion
  - Function that assignes (usually real-valued) value to a clustering
- Find clustering that maximizes the criterion
  - Global optimization (often intractable)
  - Greedy Search
  - Approximation algorithms

# Centroid-based Clustering

- Assumes points are in vector space
- Clusters are represented via *centroids* mean points in a cluster. For a cluster *c*

$$\overline{\mu}(c) = \frac{1}{|c|} \sum_{\overline{x} \in c} \overline{x}$$

• Given *k*, find a *k*-partitioning such that the sum of the distances of points to their centroids is minimum

$$\min_{c} \sum_{c} \sum_{\overline{x} \in c} dist(\overline{x}, \overline{\mu}(c))$$

• NP-hard

# K-means Algorithm

#### • Input:

- -k number of clusters
- *dist* distance function

## • Algorithm

- Select k random instances  $\{s_1, \ldots, s_k\}$  as initial centroids
- For each object  $x_i$ 
  - Assign  $x_i$  to the cluster  $c_j$  such that  $dist(x_i, s_j)$  is minimal
- For each cluster  $c_i$ 
  - Update  $s_j$

# Properties of K-means Algorithm

- Always converges to a local optima depending on initial centers
  - Variety of heuristics for selecting good initial ceners
- Convergence is fast
- Complexity
  - Computing a distance between two points is O(m)
  - Reassigning clusters for n points is O(*knm*)
  - Recomputing centroids is O(nm)
  - Assume the two steps are each done for *i* iterations: O(*iknm*)
  - Linear in all relevant factors, more efficient than HAC

# Choosing K

• Typically heuristic / application specific

#### • K-means

- The goal is to minimize the objective function
- Always minimized for k = n
- Start with small k, and gradually increase, stop when the reduction in objective function is small

### • HAC

- Use the K-means approach
- Use similarity threshold for the merging criteria (can be determined empirically or learned from the training data)

# **Clustering News Articles**

- News articles are represented as N-dimensional vectors of features
  - Frequencies of occurrence of words in the title and body, phrases, named entities, etc.
  - Features are assigned different weights
- Similarity measure: weighted cosine similarity

$$sim(\overline{x}_1, \overline{x}_2) = \frac{\overline{x}_1 \bullet \overline{x}_2}{|\overline{x}_1|^* |\overline{x}_2|}$$

- Already have an existing clustering
  - Approximately know the value for k

# Outline

- Architecture of an online news system
- Clustering news articles
- Personalization / Recommendation

# Personalization

- Want to recommend the user articles he/she will be most interested in
- Two approaches
  - Collaborative filtering approach
  - Content based approach
- Machine Learning can allow learning a *user model* or *profile* of a particular user based on interaction history
- This model or profile can be used to recommend new articles to the user or to filter out unwanted articles

# Collaborative Filtering

- Maintain a database of users' reading history
- For a given user, find other similar users whose reading histories strongly correlate with the current user
- Recommend articles read by these similar users, but not read by the current user
- Note: The framework can easily incorporate ratings. Most existing commercial recommender systems use this approach.

# **Collaborative Filtering Details**

- Similarity weighting:
  - Cosine similarity:  $sim(\overline{r_1}, \overline{r_2}) = \frac{r_1 \bullet r_2}{|\overline{r_1}| * |\overline{r_2}|}$

- Pearson correlation coefficient:  $sim(\overline{r_1}, \overline{r_2}) = \frac{cov(\overline{r_1}, \overline{r_2})}{\sigma_{\overline{r_1}} * \sigma_{\overline{r_2}}}$ 

• Typically, include significance weights based on the number of co-read articles *m*:

$$adj\_sim(\overline{r_1},\overline{r_2}) = w(m) * sim(\overline{r_1},\overline{r_2})$$

• "Interestingness" prediction:

$$pred(a,i) = r_a^{avg} + \frac{\sum_{u=1}^{n} sim(\overline{r_a}, \overline{r_u}) * (r_{u,i} - r_u^{avg})}{\sum_{u=1}^{n} sim(\overline{r_a}, \overline{r_u})}$$

# Problems with Collaborative Filtering

- **Cold Start:** There needs to be enough other users already in the system to find a match.
- **Sparsity:** If there are many articles to be recommended, even if there are many users, the user/read matrix is sparse, and it is hard to find users that have read the same articles.
- First Rater: Cannot recommend an article that has not been previously read
  - New articles
  - Esoteric articles
- **Popularity Bias:** Cannot recommend articles to someone with unique tastes
  - Tends to recommend popular articles

# **Content-Based Approach**

- Recommendations are based on the *content* of items rather than on other users' opinions
- Build a profile of the user preferences using content of the articles the user has previously read
- Recommend articles most similar to the user profile
  - Can use user feedback to learn an optimal similarity function
- Note: works for news articles, but typically is not applicable to non-textual items (movies, photo-cameras, etc.)

# **Content-Based Approach**

#### • Pros:

- No need for data on other users (no cold-start, sparsity, or first-rater problems)
- Able to recommend to users with unique tastes
- Able to recommend new and unpopular items
- Can provide explanations of recommended items by listing content-features that caused an item to be recommended
- Cons:
  - Users' tastes must be represented as a learnable function of these content features
  - Unable to exploit quality judgments of other users
  - Requires content that can be encoded as meaningful features

# Challenges in applying CF to News Articles

- Scale
  - Millions of users
  - Millions of articles
- Frequent updates
  - News stories change every few minutes
  - The most recent stories are the most important
- Noisy data
  - Interpreting clicks as absolute relevance judegements is dangerous
- See [Das et. al, 2007] for an example of how these issues can be addressed in a real system

# Summary

- Online news system is an example of a real system where ML algorithms are used on several stages
  - Classification
  - Clustering
  - Recommending
  - Ranking (potentially)
- Two types of clustering algorithms are hierarchical (HAC) and partitioning (K-means); either can be used for clustering new articles
- Two approaches to recommending are collaborative filtering and content-based; either can be used for recommending news articles
- Main challenges in applying ML algorithms in this setting are scalability, frequent updates, and noisy feedback data

## References

- [Gulli, 2005] Gulli, A. *The Anatomy of a News Search Engine*. WWW-2005.
- **[Das et. al, 2007]** Das, A., Datar, M., Garg, A., Rajaram, S. *Google News Personalization: Scalable Online Collaborative Filtering*. WWW-2007.

# Part 6

# Machine Learning for Finding Compound Documents

## Pavel Dmitriev, Mikhail Bilenko

# **Compound Documents**

- A *Compound Document* (*cDoc*) is a group of web pages that in aggregate correspond to a coherent information entity
  - A news article on the web consisting of several physical HTML pages
  - An entry in an online encyclopedia
  - A set of web pages describing product's specifications, price, reviews, etc.
- Want to design an algorithm for automatically identifying cDocs

# Finding cDocs as a weighted graph clustering problem

- Represent a web site as a directed graph
  - Nodes are web pages
  - Edges are hyperlinks
- Assign weights to the edges
  - The weight on a hyperlink between two web pages is higher if they are more likely to be in the same cDoc
- The set of cDocs is a clustering of this graph
  - Every cluster of more than 1 node is a cDoc

## Observation



What are the cDocs?



# Machine Learning Framework

- Goal: given a web site and a few examples of cDocs on this web site, identify other cDocs on the same web site
- Step 1
  - Use user examples to learn a "description" of a cDoc
- Step 2
  - Automatically identify new cDocs beased on the learned "description"







# Step 2: Inference









Combination of supervised and unsupervised learning

• Do unsupervised learning (clustering) in a supervised way (learn the similarity function)

## Learning algorithm

- Any density estimator (experiments used logistic regression)

### • Clustering algorithm

- A variant of HAC
- Number of clusters is determined automatically using a threshold learned during the training stage

# **Experimental Results**

- Dataset: 60 real websites
  - 20 educational, 20 news, 20 commercial
  - 169 pages, 1400 hyperlinks, 19 cDocs on average
- Training Data
  - 1, 2, 3 training examples picked at random
- Evaluation criterion
  - Recall (percentage of cDocs identified exactly right)
- Compare to approaches based on a single feature, directory sructure, and pattern matching



# Experimental Results: WGC



# Summary

• Used unsupervised learning (clustering) in a supervised way to solve the problem of finding boundaries of cDocs

Learned the similarity function

- Other approaches to learning how to cluster
  - Use training examples as constraints for the clustering algorithm
  - Train a classifier which for every pair of points will predict whether they should be in the same cluster or in different clusters. Somehow resolve the conflicts.
  - Directly optimize the clustering objective function

## References

 [Dmitriev et al, 2005] Dmitriev, P., Lagoze, C., Suchkov, B. "As We May Perceive: Inferring Logical Documents from Hypertext". Hypertext-2005.
# Conclusion

### Pavel Dmitriev, Mikhail Bilenko

#### • Introduction to ML

- ML is conserned with developing algorithms that can improve their performance with experience
- There are standard (very often encountered in practice) ML problems: classification, regression, and clustering
- By the type of information used, ML algorithms can be classified in unsupervised, supervised, and semi-supervised
- Two most common approaches to ML are Bayesian (or generative) and Optimization (or discriminative) approaches

- ML against SPAM
  - E-mail SPAM detection can be represented as a classification problem
  - Naïve Bayes is a simple generative method that can be used to solve it
  - Advantages of NB are that it is simple, fast to train and use, and easy to update
  - The main disadvantage is that the feature independence given class labels assumption it makes typically does not hold

#### • ML for Information Extraction

- IE is the task of extracting values for specific fields from text
- Can be viewed as a classification problem. In order to solve it effectively, need to account for dependencies among words
- Hidden Markov Model is a generative model which allows specifying dependencies among adjacent words
- Expectation-Maximization and Dynamic Programming can be used to perform learning and inference, still an order of magnitude slower than Naïve Bayes
- There are more expressive, slower, and often more effective models that can also be used (such as CRFs)

#### • ML in Web Search

- Can use clickthrough data to learn a ranking function for a search engine
- Clickthrough data is noisy and difficult to interpret
- A user study showed that interpreting clickthrough data as absolute feedback is difficult, but interpreting it as relative feedback seems reliable
- SVM is a discriminative linear classifier; it can still be used when the training data is not linearly separable; it can use kernels to learn non-linear functions
- SVM can be used to learn a ranking function from relative feedback obtained from clickthrough data

#### • ML in the News

- Example of a real world system where ML algorithms are used on several stages: classification, clustering, recommending, ranking
- Two types of clustering algorithms are hierarchical (HAC) and partitioning (K-means); either can be used for clustering new articles
- Two approaches to recommending are collaborative filtering and content-based; either can be used for recommending news articles
- Main challenges in applying the above ML algorithms in the setting of an online news system are scalability, frequent updates, and noisy feedback data

#### • ML for finding Compound Documents

- Given a web site, want to identify sets of pages corresponding to semantically coherent entites (cDocs)
- The definition of a cDoc depends on the user/application, so want to use ML
- Can formulate finding cDocs as a weighted graph clustering problem
- Can use ML to learn the distance function (edge weights), resulting in a semi-supervised clustering algorithm

### Note

- The goal of this tutorial was really to "introduce", rather than to "explain"...
- "Introduce" you to
  - The general area of ML
  - Some Web-related problems that can be addressed using ML methods
  - How to adapt classical ML algorithms to solve these problems
  - What to look out for when doing that
- Many (very interesting) details were left out

## More Information

#### • Books

- Mitchell, M.T., *Machine Learning*, McGraw Hill, 1997, ISBN 0070428077
- Hastie, T., Tibshirani, R., *The Elements of Statistical Learning*, ...

#### • Conferences

- ICML
- NIPS
- KDD
- Web
  - In <your\_favourite\_search\_engine> type

"<ml\_algorithm\_name> tutorial"



# Thank you!

### Pavel Dmitriev, Mikhail Bilenko





