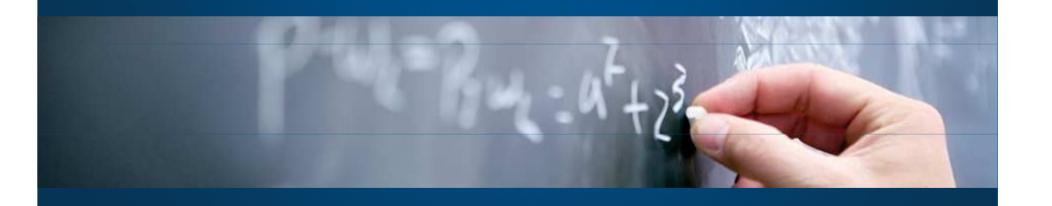


Content Based Image Retrieval

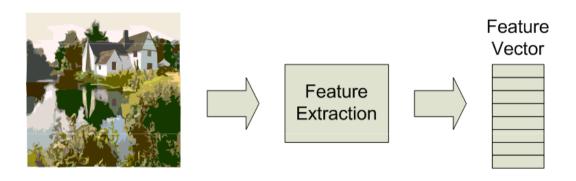
Natalia Vassilieva nvassilieva@hp.com HP Labs Russia



Tutorial outline

- Lecture 1
 - Introduction
 - Applications
- Lecture 2
 - Performance measurement
 - Visual perception
 - Color features
- Lecture 3
 - Texture features
 - Shape features
 - Fusion methods
- Lecture 4
 - Segmentation
 - Local descriptors
- Lecture 5
 - Multidimensional indexing
 - Survey of existing systems

Lecture 5 Multidimensional indexing Survey of existing systems

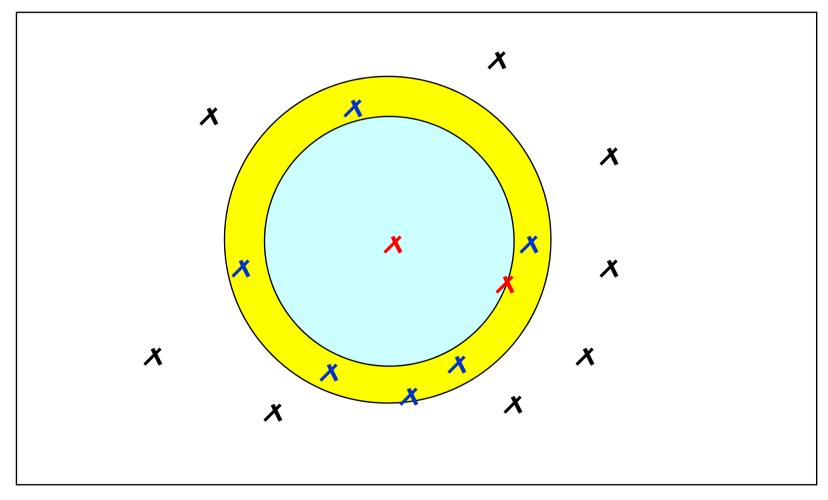


Lecture 5: Outline

- Multidimensional indexing
 - Tree structures
 - VP-tree
 - Locality Sensitive hashing
- Survey of existing systems

Need of multidimensional indexing

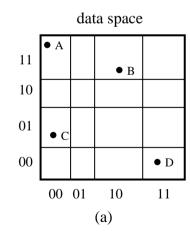
- High-dimensional data
 - Mean Color = RGB = 3 dimensional vector
 - Color Histogram = 256 dimensions
 - ICA-based texture = 21*30 dimensions
- Effective storage and speedy retrieval needed
- Similarity search, Nearest neighbour



Problem Description

- ε Nearest Neighbor Search (ε NNS)
 - Given a set P of points in a normed space , preprocess P so as to efficiently return a point $p \in P$ for any given query point q, such that
 - $dist(q,p) \le (1 + \varepsilon) \times min_{r \in P} dist(q,r)$
- Generalizes to K- nearest neighbor search (K >1)

Problem Description


Lecture 5: Outline

- Multidimensional indexing
 - Tree structures
 - VP-tree
 - Locality Sensitive hashing
- Survey of existing systems

Some known indexing techniques

- Trees
 - R-tree low dimensions (2D), overlap
 - Quad-tree low dimensions (2D), inefficient for skewed data
 - k-D tree inefficient for high dimensional skewed data
 - VP tree (metric trees)
- VA-file not good for skewed data
- Hashing

approximation			
A	0011		
В	1011		
С	0001		
D	1100		

(b)

Spheres vs. Rectangles

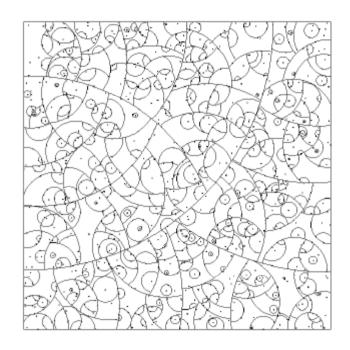


Figure 1: vp-tree decomposition

• ratio =
$$\frac{\text{Volume(Sphere)}}{\text{Volume(Cube)}} \le 1$$

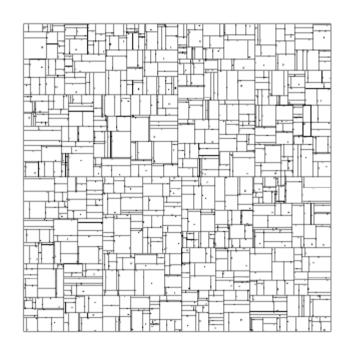
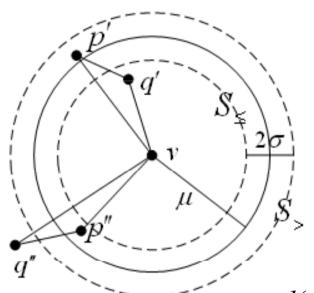


Figure 2: kd-tree decomposition

• dimensionality $\uparrow \Rightarrow$ ratio \uparrow

relative distances



Lecture 5: Outline

- Multidimensional indexing
 - Tree structures
 - VP-tree
 - Locality Sensitive hashing
- Survey of existing systems

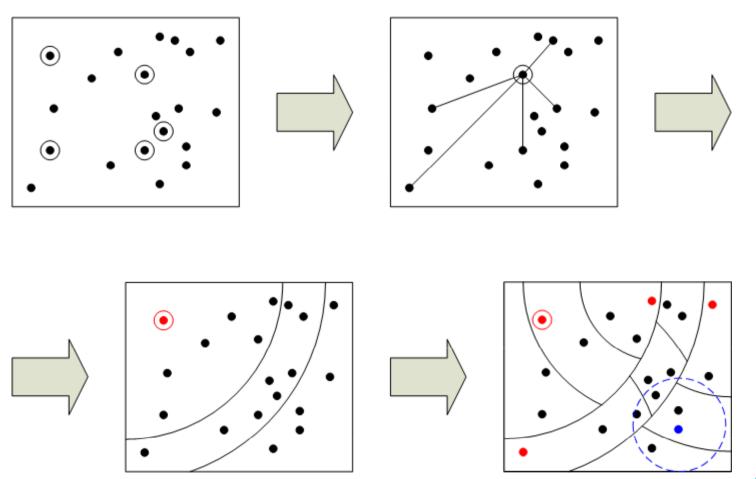
Vantage point method

$$d(v,q) \le \mu - \sigma \qquad p \in S_{>}$$

$$d(q,p) \ge |d(v,p) - d(v,q)| > |\mu - (\mu - \sigma)| = \sigma$$

$$d(v,q) > \mu + \sigma \qquad p \in S_{\leq}$$

$$d(q,p) \ge |d(v,q) - d(v,p)| > |(\mu + \sigma) - \mu| = \sigma$$


Conditions

- Minimum circuit
- "Corners" of the space
- Balanced tree
- Maximum standard deviation

Algorithms

Lecture 5: Outline

- Multidimensional indexing
 - Tree structures
 - VP-tree
 - Locality Sensitive hashing
- Survey of existing systems

LSH: Motivation

- Similarity Search over High-Dimensional Data
 - Image databases, document collections etc
- Curse of Dimensionality
 - All space partitioning techniques degrade to linear search for high dimensions
- Exact vs. Approximate Answer
 - Approximate might be good-enough and much-faster
 - Time-quality trade-off

LSH: Key idea

- Locality Sensitive Hashing (LSH) to get sublinear dependence on the data-size for highdimensional data
- Preprocessing :
 - Hash the data-point using several LSH functions so that probability of collision is higher for closer objects

LSH: Algorithm

```
Input

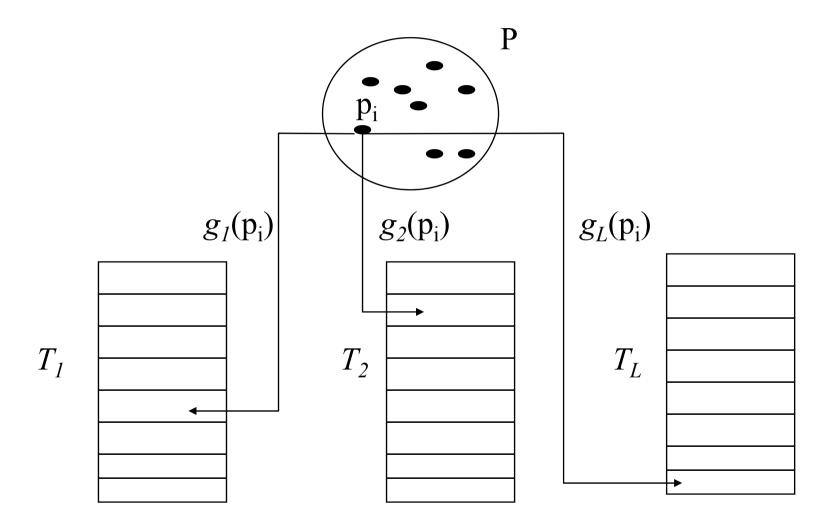
Set of N points { p<sub>1</sub>, ....... p<sub>n</sub>}
L (number of hash tables)

Output

Hash tables T<sub>i</sub>, i = 1, 2, .... L

Foreach i = 1, 2, .... L

Initialize T<sub>i</sub> with a random hash function g<sub>i</sub>(.)


Foreach i = 1, 2, .... L

Foreach j = 1, 2, .... N

Store point p<sub>j</sub> on bucket g<sub>i</sub>(p<sub>j</sub>) of hash table T<sub>i</sub>
```


LSH: Algorithm

LSH: ε - NNS Query

- Input
 - Query point q
 - K (number of approx. nearest neighbors)
- Access
 - Hash tables T_i , i = 1, 2, L
- Output
 - Set S of K (or less) approx. nearest neighbors
- $S \leftarrow \emptyset$

Foreach i = 1, 2, ..., L

- S ← S ∪ { points found in $g_i(q)$ bucket of hash table T_i }

LSH: Analysis

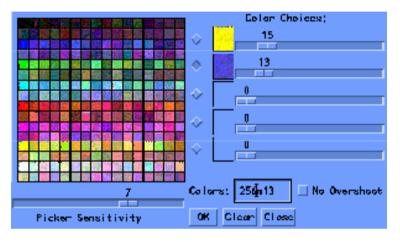
- Family H of (r_1, r_2, p_1, p_2) -sensitive functions, $\{h_i(.)\}$
 - dist(p,q) < r_1 ⇒ Prob_H [h(q) = h(p)] ≥ p_1
 - $\operatorname{dist}(p,q) \ge r_2 \Rightarrow \operatorname{Prob}_{H} [h(q) = h(p)] \le p_2$
 - $p_1 > p_2$ and $r_1 < r_2$
- LSH functions: $g_i(.) = \{ h_1(.) ... h_k(.) \}$
- For a proper choice of k and l, a simpler problem, (r,ε)-Neighbor, and hence the actual problem can be solved
- Query Time : $O(d \times n^{[1/(1+\varepsilon)]})$
 - d : dimensions, n : data size

LSH: Applications

- To index local descriptors
 - Near duplicate detection
 - Sub image retrieval

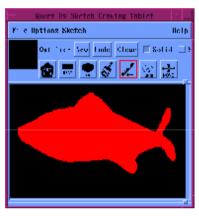
Lecture 5: Outline

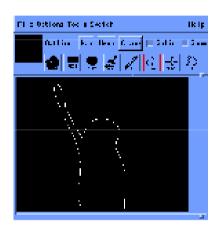
- Multidimensional indexing
 - Tree structures
 - VP-tree
 - Locality Sensitive hashing
- Survey of existing systems



IBM's QBIC

- http://wwwqbic.almaden.ibm.com/
- QBIC Query by Image Content
- First commercial CBIR system.
- Model system influenced many others.
- Uses color, texture, shape features
- Text-based search can also be combined.
- Uses R*-trees for indexing


QBIC – Search by color


QBIC – Search by shape

QBIC – Query by sketch

Virage

- http://www.virage.com/home/index.en.html
- Developed by Virage inc.
- Like QBIC, supports queries based on color, layout, texture
- Supports arbitrary combinations of these features with weights attached to each
- This gives users more control over the search process

VisualSEEk

- http://www.ee.columbia.edu/ln/dvmm/researchProjects/MultimediaIndexing/VisualSEEk/VisualSEEk
 .htm
- Research prototype University of Columbia
- Mainly different because it considers spatial relationships between objects.
- Global features like mean color, color histogram can give many false positives
- Matching spatial relationships between objects and visual features together result in a powerful search.

Features in some existing systems

	Color	Texture	Shape
QBIC	Histograms (HSV) $dist^2 = H_1 A H_2^T$	Tamura Image, Euclid dist	Boundary geometrical moments + Invariant moments
VisualSEEk	Histograms (HSV), Color Sets, Location info		
Netra	Histograms (HSV), Color codebook, Clusterisation	Gabor filters	Fourier-based
Mars	Histograms, HSV $dist = 1 - \sum_{i=1}^{N} \min(H_1(i), H_2(i))$	Tamura Image, 3D Histo	MFD (Fourier)

Other systems

- xCavator by CogniSign <u>http://xcavator.net/</u>
- CIRES
 http://amazon.ece.utexas.edu/~qasim/samples/sample_b
 uildings5.html
- MFIRS by University of Mysore <u>http://www.pilevar.com/mfirs/</u>
- PIRIA
 <u>http://www-list.cea.fr/fr/programmes/systemes_interactifs/labo_lic2m/piria/w3/pirianet.php?bdi=coil-100&cide=cciv&up=1&p=1

 </u>

Other systems

- IMEDIA http://www-rocq.inria.fr/cgi-bin/imedia/circario.cgi/v2std
- TILTOMO <u>http://www.tiltomo.com/</u>
- The GNU Image-Finding Tool http://www.gnu.org/software/gift/
- Behold http://www.beholdsearch.com/about/#features
- LTU technologies http://www.ltutech.com/en/

•

Lecture 5: Resume

- Multidimensional indexing
 - VP trees can be used
 - LSH is great for near duplicates and sub image retrieval
- There are a lot of systems
 - Research projects
 - Commercial projects (usually combined with text-based retrieval)
 - CBIR is a very active area: research is moving to commercialize projects just now

Lecture 5: Bibliography

- Christian Böhm, Stefan Berchtold, Daniel A. Keim. Searching in highdimensional spaces: Index structures for improving the performance of multimedia databases. ACM Computing Surveys 2001.
- Volker Gaede, Oliver Günther. Multidimensional Access Methods. ACM Computing Surveys 1998.
- Roger Weber, Hans-Jörg Schek, Stephen Blott. A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces. International Conference on Very Large Data Bases (VLDB) 1998.
- Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In SCG '04, pp 253-262, 2004.
- Kave Eshgi, Shyamsundar Rajaram. Locality Sensitive Hash Functions Based on Concomitant Rank Order Statistics. In Proc. of ACM KDD, 2008.

Tutorial outline

- Lecture 1
 - Introduction
 - Applications
- Lecture 2
 - Performance measurement
 - Visual perception
 - Color features
- Lecture 3
 - Texture features
 - Shape features
 - Fusion methods
- Lecture 4
 - Segmentation
 - Local descriptors
- Lecture 5
 - Multidimensional indexing
 - Survey of existing systems

