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Problem
 Symbolic techniques are useful in very restricted

subject domains that exhibit standard patterns:
 e.g., mining of a weather report

 In most settings language is characterized by:
 a variety of patterns that express the same or similar

meanings
 ambiguous patterns that receive their meaning based

on the context
 Patterns change in time (e.g., blog and chat languages)
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Problem
⇒ manual effort is huge to build all the needed

(contextual) patterns for all kinds of information
extraction tasks

 IE in terrorism domain: experiment of Riloff (1996):
automatic construction of dictionary of extraction
patterns from an annotated training corpus achieved
98% of the performance of handcrafted patterns

=> machine learning of extraction patterns

[Riloff AI 1996]
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Problem
 Since 1996: interest in machine learning for information

extraction:
 Usually supervised learning algorithms:

• e.g., learning of rules and trees, support vector
machines, maximum entropy classification,
hidden Markov models, conditional random fields

 Unsupervised learning algorithms:
• e.g., clustering (e.g., noun phrase coreferent

resolution)
 Weakly supervised learning algorithms
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Overview

 Features
 Supervised methods:

 Support vector machines and kernel methods
 Probabilistic models:

• Naive Bayes models
• Maximum entropy models

(exemplary results are added)
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Symbols used
 x = object (to be) classified
 y = class label (to be) assigned to x



© 2008 M.-F. Moens  K.U.Leuven 7

Generative versus discriminative
classification
 In classification: given inputs x and their labels y:

 Generative classifier learns a model of the joint
probability p(x,y) and makes its predictions by using
Bayes’ rule to calculate p(y|x) and then selects the
most likely label y:

• e.g., Naive Bayes, hidden Markov model
• to make computations tractable: simplifying

independence assumptions
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Generative versus discriminative
classification

 Discriminative classifier is trained to model the
conditional probability p(y|x) directly and selects the
most likely label y, or learns a direct map from inputs
x to the class labels:

• e.g., maximum entropy model, support vector
machine

• better suited when including rich, overlapping
features
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Maximum entropy principle
 Text classifiers are often trained with incomplete

information
 Probabilistic classification can adhere to the principle of

maximum entropy: When we make inferences based on
incomplete information, we should draw them from that
probability distribution that has the maximum entropy
permitted by the information we have: e.g.,
 maximum entropy model, conditional random fields
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Combining classifiers
 Multiple classifiers are learned and combined:

 Bagging: e.g., sample of size n is taken randomly with
replacement from the original set of n training documents

• Adaptive resampling: no random sampling, but objective
= to increase the odds of sampling documents that
previously induced classifiers have erroneously been
classified

 Stacking: predictions from different classifiers are used as
input for a meta-learner

 Boosting: generating a sequence of classifiers, after each
classification greater weights are assigned to objects with
an uncertain classification, and classifier is retrained



© 2008 M.-F. Moens  K.U.Leuven 11

Feature selection and
extraction

 In classification tasks: object is described with set of attributes
or features

 Typical features in text classification tasks:
 word, phrase, syntactic class of a word, text position,  the

length of a sentence, the relationship between two
sentences, an n-gram, a document (term classification), ….

 choice of the features is application- and domain-specific
 Features can have a value, for text the value is often:

 numeric, e.g., discrete or real values
 nominal, e.g. certain strings
 ordinal, e.g., the values 0= small number, 1 = medium

number, 2 = large number
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Feature selection and
extraction

 The features together span a multi-variate space called the
measurement space or feature space:
 an object x can be represented as:

• a vector of features:
x = [x1, x2, …, xp]T

where  p  = the number of features measured
• as a structure: e.g.,

• representation in first order predicate logic
• graph representation (e.g., tree) where relations

between features are figured as edges between
nodes and nodes can contain attributes of features
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Feature selection
 = eliminating low quality features:

• redundant features
• noisy features

 decreases computational complexity
 decreases the danger of overfitting in supervised learning

(especially when large number of features and few training
examples)

 increases the chances of detecting valuable patterns in
unsupervised learning and weakly supervised learning

 Overfitting:
 the classifier perfectly fits the training data, but fails to

generalize sufficiently from the training data to correctly
classify the new case
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Feature selection

 In supervised learning:
 feature selection often incorporated in training algorithms:

• incrementally add features, discard features, or both,
evaluating the subset of features that would be produced
by each change (e.g., algorithms that induce decision
trees or rules from the sample data)

 feature selection can be done after classification of new
objects:

• by measuring the error rate of the classification
• those features are removed from or added to the feature

set when this results in a lower error rate on the test set
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Feature extraction

 = creates new features by applying a set of operators
upon the current features:
 a single feature can be replaced by a new feature

(e.g., replacing words by their stem)
 a set of features is replaced by one feature or

another set of features
• use of  logical operators (e.g., disjunction),

arithmetical operators (e.g., mean,
dimensionality reduction)

 choice of operators: application- and domain-
specific

 In supervised learning can be part of training or done
after classification of new objects
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Support vector machine (SVM)

 Discriminant analysis:
 determining a function that in a best way

discriminates between two classes
 text categorization: two classes: positive and

negative examples of a class
 e.g., linear discriminant analysis finds a linear

combination of the features (variables) :
hyperplane (line in two dimensions, plane in three
dimensions, etc.) in the p-dimensional feature
space that best separates the classes

 usually, there exist different hyperplanes that
separate the examples of the training set in
positive and negative ones
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Support vector machine
 Support vector machine:

 when two classes are linearly separable:
• find a hyperplane in the p-dimensional feature

space that best separates with maximum
margins the positive and negative examples

• maximum margins: with maximum Euclidean
distance (= margin d) to the closest training
examples (support vectors)

• e.g., decision surface in two dimensions
 idea can be generalized to examples that are not

necessarily linearly separable and to examples
that cannot be represented by linear decision
surfaces
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Support vector machine

 Linear support vector machine:
 case: trained on data that are separable (simple case)
 input is a set of n training examples:

where xi ∈       and yi ∈ {-1,+1} indicating that xi is a
negative or positive example respectively

! 

S = {(x1,y1),...,(xn,yn)}

! 

" p
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Support vector machine
Suppose we have some hyperplane which separates the

positive from the negative examples, the points which
lie on the hyperplane satisfy:

where    w    = normal to the hyperplane

= perpendicular distance from the
    hyperplane to the origin
= Euclidean norm of w

! 

w " xi + b = 0

! 

b

w

! 

w
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let d+ (d-) be the shortest distance from the separating
hyperplane to the closest positive (negative) example

define the margin of the separating hyperplane to be d+
and d-

search the hyperplane with largest margin

Given separable training data that satisfy the following
constraints:

 for yi =+1 (1)
for yi = -1 (2)

which can be combined in 1 set of inequalities:
               for i = 1,…, n (3)! 

w " xi + b #+1

! 

w " xi + b # $1

! 

yi( w " xi + b) #1$ 0
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The hyperplane that defines one margin is defined by:

with normal w and perpendicular distance from the
origin

The hyperplane that defines the other margin is defined
by:

with normal w and perpendicular distance from the
origin

Hence d+ = d- =        and the margin =

! 

1" b

w

! 

"1" b

w

! 

1

w

! 

2

w

! 

H1 : w " xi + b =1

! 

H 2 : w " xi + b = #1
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[Burges 1995]
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Hence we assume the following objective function to
maximize the margin:

A dual representation  is obtained by introducing Lagrange
multipliers λi, which turns out to be easier to solve:

(4)

! 

Minimize
w,b  w "w

Subject to yi( w " xi +  b) #1$ 0,   i =1,...,n     

! 

Maximize W (") = "i
i=1

n

# $
1

2
"i"jyiyj xi%xj

i, j=1

n

#

Subject to :  "i & 0

                 "iyi = 0

i=1

n

#  ,  i =1,...,n     
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Yielding the following decision function:

(5)

The decision function only depends on support vectors,
i.e., for which λi > 0. Training examples that are not
support vectors have no influence on the decision
function

! 

h (x ) = sign ( f (x ))

! 

f (x ) = "iyi xi # x + b

i=1

n

$
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Support vector machine

 Trained on data not necessarily linearly separable (soft
margin SVM):
 the amount of training error is measured using slack

variables ξi the sum of which must not exceed some upper
bound

 The hyperplanes that define the margins are now defined
as:

    

 Hence we assume the following objective function to
maximize the margin:! 

H1: w " xi + b =1#$i

! 

H 2 : w " xi + b = #1+$i
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where =   penalty for misclassification

C =   weighting factor

The decision function is computed as in the case of data
objects that are linearly separable (cf. 5)

! 

"
i

2

i=1

n

#
! 

Minimize
",w, b

 w # w +C "
i

2

i=1

n

$

Subject to yi( w # xi +b) %1+ "i & 0 ,    i =  1,...,n   
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[Burges 1995]
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Support vector machine
 When classifying natural language data, it is not always

possible to linearly separate the data: in this case we
can map them into a feature space where they are
linearly separable

 Working in a high dimensional feature space gives
computational problems, as one has to work with very
large vectors

 In the dual representation the data appear only inside
inner products (both in the training algorithm shown by
(4) and in the decision function of (5)): in both cases a
kernel function can be used in the computations
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Kernel function
 A kernel function K is a mapping K: S x S → [0, ∞] from the

instance space of training examples S to a similarity score:

 In other words a kernel function is an inner product in some
feature space

 The kernel function must be:
 symmetric [K(xi,xj) = K(xj,xi)]
 positive semi-definite: if x1,…,xn ∈ S, then the n x n

matrix G (Gram matrix or kernel matrix) defined by Gij =
K (xi,xj) is positive semi-definite*

* has non-negative eigenvalues

! 

K(xi,xj) = "k(xi)"k(xj) =

k

# "(xi) $"(xj)
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Support vector machine
 The decision function f(x) we can just replace the dot

products with kernels K(xi,xj):

! 

f (x ) = "iyi # (xi) $# (x ) + b

i=1

n

%

! 

f (x ) = "iyiK (xi ,x )+ b
i=1

n

#

! 

h (x ) = sign ( f (x ))
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Support vector machine

 Advantages:
 SVM can cope with many (noisy) features: no

need for a priori feature selection, though you
might select features for reasons of efficiency

 many text categorization problems are linearly
separable
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Kernel functions
 Typical kernel functions: linear (mostly used in text

categorization), polynomial, radial basis function (RBF)
 In natural language: data are often structured by the

modeling of relations=> kernels that (efficiently)
compare structured data:  e.g.,
 Rational kernels = similarity measures over sets of

sequences
• n-gram kernels
• convolution kernels

 Kernels on trees
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n-gram kernels
 n-gram is a block of adjacent characters from an alphabet Σ
 n-gram kernel: to compare sequences by means of

subsequences they contain:
 

#(s∈xi) #(s∈xj)

    where #(s∈x) denotes the number of occurrences of s in x
 the kernel function can  be computed in O(|xi| + |xj|) time and

memory by means of a special suited data structure allowing
one to find a compact representation of all subsequences in
x in only O(|x|) time and space

! 

K(xi,xj) =

s"#n

$

[Vishwanathan & Smola 2004]
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Convolution kernels
 Object x ∈ X consists  of substructures xp ∈ Xp where 1≤

p≤r and r denotes the number of overall substructures
 Given the set of all possible substructures P(X), one can

define a relation R (e.g., part of) between a subset of P
and the composite object x

 Given a finite number of subsets, R  is called finite
 Given a finite relation R,R-1 defines the set of all possible

decompositions of x into its substructures: R-1(x)= {z ∈
P(X): R (z, x)}
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Convolution kernels
 The R-convolution kernel:

 is a valid kernel with Ki being a positive semi-definite
kernel on Xi

 The idea of decomposing a structured object into parts
can be applied recursively so that one only requires to
construct kernels over the “atomic” parts of Xi

! 

K(x,y) = Ki(x
'
i

i=1

r

"
y '#R $1

( y )

%
x'#R $1

(x )

% ,y
'
i)
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Tree kernels
 Based on convolution kernels
 A tree is mapped into its sets of subtrees, the kernel

between two trees K(xi, xj) is then computed by taking
the weighted sum of all terms between both trees

 Efficient algorithms to compute the subtrees:
 O(|xi|.|xj|), where |x| is the number of nodes of the

tree
 O(|xi|+|xj|), when restricting the sum to all proper

rooted subtrees

[Vishwanathan & Smola 2004] [Collins & Duffy 2004] 
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Tree kernels
 Comparison of augmented dependency trees for

relation extraction from sentences:
 recursive function to combine parse tree similarity

with similarity s(xi, xj) based on feature
correspondence of the nodes of the trees

where m(xi, xj) ∈ {0, 1} determines whether two
nodes are matchable or not

         c = children subtrees
! 

K(xi,xj) =
0,                                      if m(xi,xj) =  0

s(xi,xj) + Kc(xi c[ ],xj c[ ])       otherwise 

" 
# 
$ 
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[Culotta & Sorensen 2004] 
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Naive Bayes (NB) model
 Bayesian classifier:

 the posterior probability that a new, previously
unseen object belongs to a certain class given the
features of the object is computed:

• based on the probabilities that these individual
features are related to the class

 Naive Bayes classifier:
 computations simplified by the assumption that the

features are conditionally independent
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Naive Bayes model

! 

P Cj w1,...,wp( ) =

! 

=   P Cj( )  P wiCj( )
i=1

p

"

! 

P w1,...,wpCj( )P Cj( )

! 

= log   P Cj( )   +     log   P wiCj( )
i=1

p

"

! 

P Cj w1,...,wp( ) =
P w1,...,wpCj( )P Cj( )

P w1,...,wp( )

independence assumption

where w1,…, wp = set of p features

ranking

practical implementation
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Naive Bayes model

! 

=

! 

P Cj w1,...,wp( ) = P Cj( )

P Cj( )  P wiCj( )
i=1

p

"

P Ck( )  P wiCk( )
i=1

p

"
k=1

C

#

normalized form
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Naive Bayes model
 Estimations from training set:

 P(Cj)
 P(wi|Cj):

• binomial or Bernoulli model:
• fraction of objects of class Cj  in which feature wi

occurs
• multinomial model:

• fraction of times that feature wi occurs across all
objects of class Cj

• additional positional independence assumptions
 To avoid zero probabilities: add one to each count (add-

one or Laplace smoothing)
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[Manning et al. 2008]
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[Manning et al. 2008]
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Naive Bayes model
 Class assignment:

 find the k most probable classes; k = 1:

 alternative: select classes for which

 Advantages:
 Efficiency

 Disadvantages:
 Independence assumptions
 No accurate probability estimates: close to 0; winning

class after normalization close to 1

! 

argmax
Cj

P Cj w1,...,wp( )

! 

P Cj w1,...,wp( ) > threshold
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Maximum entropy principle

 Used in classifiers that compute a probabilistic class
assignment

 Maximum entropy principle: given a set of training
data, model what is known and assume no further
knowledge about the unknowns by assigning them
equal probability

 In other words we choose the model p*  that
preserves as much uncertainty as possible between
all the models p ∈ P that satisfy the constraints
enforced by the training examples

 Examples:
 maximum entropy model
 conditional random field
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Maximum entropy model

 Given n training examples  S = {(x, y)1,…,(x, y)n}.
where x = feature vector and y = class

 We choose the model p* that preserves as much
uncertainty as possible, or which maximizes the
entropy H(p) between all the models p ∈P that satisfy
the constraints enforced by the training examples:

H(p) =

)(maxarg* pHp
Pp!

=

! 

" p(x ,y) log p(x ,y)

(x, y )

#
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Maximum entropy model

 The training data are described with k feature functions*:

e.g.,

* Are usually binary-valued because of efficient training

! 

fj(x ,y) =
1  if (x ,y) satisfies a certain constraint

0 otherwise

" 
# 
$ 

! 

fj(x,y) =
1 if x2 =  say and y =  person

0  otherwise

" 
# 
$ 

! 

fj(x,y) =
1  if x1 = Lou Gerigh and y =  disease

0 otherwise

" 
# 
$ 
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Maximum entropy model
 The statistics of a feature function is captured by ensuring

that the model adheres to the following equality: 

where
(1)

= expectation of the feature function fj

(2)
= empirical expectation of the feature function fj

)()( ~ jpjp fEfE =

! 

E ˜ p ( fj) = ˜ p (x ,y) fj(x ,y)

x, y

"
! 

Ep( fj) = ˜ p (x)p(y x) fj(x,y)
x,y

"
  (approximated)
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Maximum entropy model

 The principle of maximum entropy recommends that we use
p*:

   
   

It has been shown that p*(S) is unique and must be in the
following form:

      (3)
where
fj(x, y) = one of the k binary-valued feature functions
λj  = parameter adjusted to model the observed statistics
Z = normalizing constant

! 

P = {p | Ep( fj) = E˜ p ( fj),    j =1,...,k}   

)(maxarg* pHp
Pp!

=

! 

p* (y x ) =
1

Z
exp( "jfj(x ,y)

j=1

k

# ),  0 <  "j <$
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Maximum entropy model:
training

The empirical distribution (2) is estimated from the
training data via maximum likelihood estimation:

                   (x2 = “say”, y = person)
≈ count (x2 = “say” and y = person)/N where N  is the

total number of training events
The model must adjust the parameter λj such that its

expectation of fj matches the empirical one, while
simultaneously matching the rest of the feature
functions with their expectations

The model estimates p*(S) by adjusting the k model
parameters λj , 1 < = j <= k, subject to the constraints
of the k feature functions

e.g., by the generalized iterative scaling algorithm

pfE jp
~)(~ =
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Maximum entropy model

Generalized iterative scaling:
input: feature functions: f1,…, fk,  empirical distribution
output: for the feature functions: the optimal parameter

values λj

The algorithm requires that the sum of the features for each
possible (x,y) is equal to a constant C, which is set at the
greatest possible feature sum and therefore adds a
feature as:

 

Initialize {λj
(1)}, usually we choose λj

(1)
 = 1 , 1 <= j <= k +1

)(~ jp fE

! 

fk+1(x,y) =C " f j (x,y)

j=1

k

#
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Maximum entropy model
Iteration:
1. Compute p(l)(x,y) for the distribution p(l) given by the {λj

(l)},  for
each element (x,y) in the training set with (3) taking into account
k+1 features

2. Compute according to (1)                         1<=j<=k+1

3. Update the parameters λj :

Iteration stops:  when the differences between λj
(l)  and λj

(l+1)  are
very small

! 

Ep ( l ) ( fj)

! 

"j
( l +1)

= "j
(l )

E ˜ p f j

E
p

( l ) f j

# 

$ 

% 
% 

& 

' 

( 
( 

1

C
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Maximum entropy model

 To classify new information unit with feature vector x:
compute (3) for each possible class y and choose y
with greatest probability

 Advantages:
 good results:

• when dependencies exist between the features
• with incomplete training data

 no need for a priori feature selection
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Maximum entropy model

 For example, used in named entity recognition:
 = assignment of a semantic class to a named

entity in the text
 often restricted to the classification of proper

names: i.e., as persons, companies, locations,
currencies, ...

 maximum entropy classification gives good results
even with a limited number of training examples,
e.g., MENERGI-system in next example
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[Chieu & Ng COLING. 2002]
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 For example, used in temporal relation recognition:
 Problem of data sparseness: here use of temporal

reasoning to artificially expand the amount of training
data (“CLOSED” in next slide): e.g.,

If relation (A,B) = BEFORE && relation (B,C) =
INCLUDES

then infer relation (A,C) = BEFORE



© 2008 M.-F. Moens  K.U.Leuven 60

[Mani et al. COLING-ACL 2006]
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