Text Mining, Information

and Fact Extraction
Part 2: Machine Learning
Techniques

Marie-Francine Moens

Department of Computer Science
Katholieke Universiteit Leuven, Belgium
sien.moens@cs.kuleuven.be

Problem

m Symbolic techniques are useful in very restricted
subject domains that exhibit standard patterns:

m €.g., mining of a weather report
m In most settings language is characterized by:

m a variety of patterns that express the same or similar
meanings

m ambiguous patterns that receive their meaning based
on the context

m Patterns change in time (e.g., blog and chat languages)

© 2008 M.-F. Moens K.U.Leuven 2

Problem

— manual effort is huge to build all the needed
(contextual) patterns for all kinds of information
extraction tasks

m |E in terrorism domain: experiment of Riloff (1996):
automatic construction of dictionary of extraction
patterns from an annotated training corpus achieved
98% of the performance of handcrafted patterns

=> machine learning of extraction patterns

© 2008 M.-F. Moens K.U.Leuven

Problem

m Since 1996: interest in machine learning for information
extraction:

m Usually supervised learning algorithms:

* e.g., learning of rules and trees, support vector
machines, maximum entropy classification,
hidden Markov models, conditional random fields

m Unsupervised learning algorithms:

* e.g., clustering (e.g., noun phrase coreferent
resolution)

m Weakly supervised learning algorithms

© 2008 M.-F. Moens K.U.Leuven 4

Overview

m Features
m Supervised methods:
m Support vector machines and kernel methods
= Probabilistic models:
- Naive Bayes models
- Maximum entropy models

(exemplary results are added)

© 2008 M.-F. Moens K.U.Leuven

Symbols used

m x = object (to be) classified
m y = class label (to be) assigned to x

© 2008 M.-F. Moens K.U.Leuven

Generative versus discriminative
classification

m |n classification: given inputs x and their labels y:

m Generative classifier learns a model of the joint
probability p(x,y) and makes its predictions by using
Bayes’ rule to calculate p(y|x) and then selects the
most likely label y:

* ¢.g., Naive Bayes, hidden Markov model

- to make computations tractable: simplifying
iIndependence assumptions

© 2008 M.-F. Moens K.U.Leuven 7

Generative versus discriminative
classification

m Discriminative classifier is trained to model the
conditional probability p(y|x) directly and selects the
most likely label y, or learns a direct map from inputs
x to the class labels:

* ¢.g., maximum entropy model, support vector
machine

* better suited when including rich, overlapping
features

© 2008 M.-F. Moens K.U.Leuven 8

Maximum entropy principle

m Text classifiers are often trained with incomplete
information

m Probabilistic classification can adhere to the principle of
maximum entropy: When we make inferences based on
incomplete information, we should draw them from that
probability distribution that has the maximum entropy
permitted by the information we have: e.g.,

® maximum entropy model, conditional random fields

© 2008 M.-F. Moens K.U.Leuven

Combining classifiers

m Multiple classifiers are learned and combined:

m Bagging: e.g., sample of size nis taken randomly with
replacement from the original set of n training documents
- Adaptive resampling: no random sampling, but objective

= to increase the odds of sampling documents that
previously induced classifiers have erroneously been

classified
m Stacking: predictions from different classifiers are used as
input for a meta-learner

m Boosting: generating a sequence of classifiers, after each
classification greater weights are assigned to objects with
an uncertain classification, and classifier is retrained

© 2008 M.-F. Moens K.U.Leuven 10

Feature selection and
extraction

m In classification tasks: object is described with set of attributes
or features
m Typical features in text classification tasks:

m word, phrase, syntactic class of a word, text position, the
length of a sentence, the relationship between two
sentences, an n-gram, a document (term classification),

m choice of the features is application- and domain-specific
m Features can have a value, for text the value is often:
® humeric, e.g., discrete or real values
= nominal, e.g. certain strings
m ordinal, e.g., the values O= small number, 1 = medium
number, 2 = large number

© 2008 M.-F. Moens K.U.Leuven 11

Feature selection and
extraction

m The features together span a multi-variate space called the
measurement space or feature space:

® an object x can be represented as:
- a vector of features:
X=[x,X5 ..., xp]T
where p =the number of features measured
- as a structure: e.qg.,
* representation in first order predicate logic

- graph representation (e.g., tree) where relations
between features are figured as edges between
nodes and nodes can contain attributes of features

© 2008 M.-F. Moens K.U.Leuven 12

Feature selection

= eliminating low quality features:
* redundant features
* noisy features
m decreases computational complexity

m decreases the danger of overfitting in supervised learning

(especially when large number of features and few training
examples)

increases the chances of detecting valuable patterns in
unsupervised learning and weakly supervised learning

Overfitting:

m the classifier perfectly fits the training data, but fails to

generalize sufficiently from the training data to correctly

classify the new case
© 2008 M.-F. Moens K.U.Leuven

13

Feature selection

m |In supervised learning:
m feature selection often incorporated in training algorithms:

- incrementally add features, discard features, or both,
evaluating the subset of features that would be produced
by each change (e.g., algorithms that induce decision
trees or rules from the sample data)

m feature selection can be done after classification of new
objects:

- by measuring the error rate of the classification

* those features are removed from or added to the feature
set when this results in a lower error rate on the test set

© 2008 M.-F. Moens K.U.Leuven 14

Feature extraction

m = creates new features by applying a set of operators
upon the current features:

m a single feature can be replaced by a new feature
(e.g., replacing words by their stem)

m a set of features is replaced by one feature or
another set of features

- use of logical operators (e.g., disjunction),
arithmetical operators (e.g., mean,
dimensionality reduction)

m choice of operators: application- and domain-
specific
m |n supervised learning can be part of training or done

after classification of new objects
© 2008 M.-F. Moens K.U.Leuven

15

Support vector machine (SVM)

m Discriminant analysis:

m determining a function that in a best way
discriminates between two classes

m text categorization: two classes: positive and
negative examples of a class

m e.g., linear discriminant analysis finds a linear
combination of the features (variables) :
hyperplane (line in two dimensions, plane in three
dimensions, etc.) in the p-dimensional feature
space that best separates the classes

m usually, there exist different hyperplanes that
separate the examples of the training set in

positive and negative ones
© 2008 M.-F. Moens K.U.Leuven

16

Support vector machine

m Support vector machine:
m when two classes are linearly separable:

- find a hyperplane in the p-dimensional feature
space that best separates with maximum
margins the positive and negative examples

* maximum margins: with maximum Euclidean
distance (= margin @) to the closest training
examples (support vectors)

* e.g., decision surface in two dimensions

m idea can be generalized to examples that are not
necessarily linearly separable and to examples
that cannot be represented by linear decision
surfaces

© 2008 M.-F. Moens K.U.Leuven

17

Support vector machine

m Linear support vector machine:
m case: trained on data that are separable (simple case)
m input is a set of n training examples:

S = {(XJ,yJ),...,(Xn,yn)}

where x; € R’and y, € {-1,+1} indicating that x; is a
negative or positive example respectively

© 2008 M.-F. Moens K.U.Leuven 18

Support vector machine

Suppose we have some hyperplane which separates the
positive from the negative examples, the points which
lie on the hyperplane satisfy:

<W‘Xi>+b=0

where w = normal to the hyperplane

b
—‘ = perpendicular distance from the
|w hyperplane to the origin

w| = Euclidean norm of w

© 2008 M.-F. Moens K.U.Leuven 19

let d, (d) be the shortest distance from the separating
hyperplane to the closest positive (negative) example

define the margin of the separating hyperplane to be d,
andd.

search the hyperplane with largest margin

Given separable training data that satisfy the following
constraints:

<w- Xi>+b2+1 for y; =+1 (1)
(w- xi)+b=-1 for y;= -1 (2)

which can be combined in 1 set of inequalities:
yi(<W'Xi>+b)—1ZO fori=1,...,n (3)

© 2008 M.-F. Moens K.U.Leuven 20

The hyperplane that defines one margin is defined by:
H1:<w-xi>+b=1
with normal w and perpendicular distance from the
origin
-9
[

The hyperplane that defines the other margin is defined
by:
Y H22<W’Xi>+b=—1

with normal w and perpendicular distance from the
origin

-1-9)
[
Hence d,=d.= | andthe margin= 2
#] [

© 2008 M.-F. Moens K.U.Leuven 21

Figure 5. Linear separating hyperplanes for the separable case. The support vectors are circled.

© 2008 M.-F. Moens K.U.Leuven

22

Hence we assume the following objective function to
maximize the margin:

Minimize ,, <w ’ w>

Subject to yi(<W'Xi>+ b)-1=0, i=1,...,n

A dual representation is obtained by introducing Lagrange
multipliers 4, which turns out to be easier to solve:

. o, 1%
Maximize W()L) = E Ai— 5 E)u)gyzy]<xz'x]>
i=1 i, j=1 (4)
Subjectto: Ai=0

i)\,iyi=0 , 1 =1,...,n
i=1

© 2008 M.-F. Moens K.U.Leuven 23

Yielding the following decision function:
h(x)=sign(f(x))

f(x)=i)u’yi<xi'x>+b ()

The decision function only depends on support vectors,
l.e., for which A, > 0. Training examples that are not

support vectors have no influence on the decision
function

© 2008 M.-F. Moens K.U.Leuven

24

Support vector machine

m Trained on data not necessarily linearly separable (soft
margin SVM):

m the amount of training error is measured using slack
variables &;the sum of which must not exceed some upper

bound
m The hyperplanes that define the margins are now defined

s H1:<W° xi>+b=1—§i
H2:<W°xi>+b=—1+§i

m Hence we assume the following objective function to
maximize the margin:

© 2008 M.-F. Moens K.U.Leuven 25

g, w,

Minimize (w-w)+ CS g’
=]
Subject to yi(<w' .X'i> +b)-1+& =0, i=1,...n

n

where Y&

i=1

C

penalty for misclassification

weighting factor

The decision function is computed as in the case of data
objects that are linearly separable (cf. 5)

© 2008 M.-F. Moens K.U.Leuven 26

Figure 6. Linear separating hyperplanes for the non-separable case.

© 2008 M.-F. Moens K.U.Leuven

27

Support vector machine

m When classifying natural language data, it is not always
possible to linearly separate the data: in this case we
can map them into a feature space where they are
linearly separable

m Working in a high dimensional feature space gives
computational problems, as one has to work with very
large vectors

m In the dual representation the data appear only inside
inner products (both in the training algorithm shown by
(4) and in the decision function of (5)): in both cases a
kernel function can be used in the computations

© 2008 M.-F. Moens K.U.Leuven 28

Fig. 5.2. A mapping of the features can make the classification task more easy (af-
ter Christianini and Shawe-Taylor 2000).

© 2008 M.-F. Moens K.U.Leuven

29

Kernel function

®m A kernel function K is a mapping K: § x § — [0, oo] from the
instance space of training examples S to a similarity score:

K (xix)) = Y ¢e(x)e(x) =(p(x) - $(x7))
k

m In other words a kernel function is an inner product in some
feature space

m The kernel function must be:
» symmetric [K(x;,x) = K(x,x;)]
m positive semi-definite: if x,,...x, € S, then the n X n

matrix G (Gram matrix or kernel matrix) defined by G;; =
K (x;x)) 1s positive semi-definite™

* has non-negative eigenvalues
© 2008 M.-F. Moens K.U.Leuven

30

Support vector machine

m The decision function f(x) we can just replace the dot
products with kernels K(x;,x)):

h(x)=sign(f(x))

f(x)=) Ayi{g(xi) - §(x)+ b
i=l

f(x) =§)\.iyiK(xi,X)+ b
i=1

© 2008 M.-F. Moens K.U.Leuven

31

Support vector machine

Advantages:

m SVM can cope with many (noisy) features: no
need for a priori feature selection, though you
might select features for reasons of efficiency

m many text categorization problems are linearly
separable

© 2008 M.-F. Moens K.U.Leuven 32

Kernel functions

m Typical kernel functions: linear (mostly used in text
categorization), polynomial, radial basis function (RBF)

m |In natural language: data are often structured by the
modeling of relations=> kernels that (efficiently)
compare structured data: e.g.,

m Rational kernels = similarity measures over sets of
sequences

* n-gram kernels
« convolution kernels
m Kernels on trees

© 2008 M.-F. Moens K.U.Leuven 33

n-gram kernels

m n-gram is a block of adjacent characters from an alphabet X

m n-gram kernel: to compare sequences by means of
subsequences they contain:

K(xi,%)) = Y #(sEx,) #(sEx)

sex"

where #(s&x) denotes the number of occurrences of s in x

= the kernel function can be computed in O(|x,| + |x;|) time and
memory by means of a special suited data structure allowing
one to find a compact representation of all subsequences in

x in only O(|x|) time and space
© 2008 M.-F. Moens K.U.Leuven 34

Convolution kernels

= Object x € X consists of substructures x, € Xp where 1<
p=<r and r denotes the number of overall substructures

= Given the set of all possible substructures P(X), one can
define a relation R (e.g., part of) between a subset of P
and the composite object x

m Given a finite number of subsets, R is called finite

m Given a finite relation R,R ' defines the set of all possible
decompositions of x into its substructures: R1(x)={z €
P(X): R (z, x)}

© 2008 M.-F. Moens K.U.Leuven 35

Convolution kernels

m [he R-convolution kernel:

K(x,y) = E E ﬁKi(x'i,y'i)

x'ER'l(x)y‘ER"l(y) i=1

Is a valid kernel with K;being a positive semi-definite
kernel on X,

m The idea of decomposing a structured object into parts
can be applied recursively so that one only requires to

construct kernels over the “atomic” parts of X,

© 2008 M.-F. Moens K.U.Leuven 36

Tree kernels

m Based on convolution kernels
m A tree is mapped into its sets of subtrees, the kernel
between two trees K(x;, x;) is then computed by taking
the weighted sum of all terms between both trees
m Efficient algorithms to compute the subtrees:
= O(lx].[x|), where |x| is the number of nodes of the
tree
= O(jx;|+|x|), when restricting the sum to all proper
rooted subtrees

© 2008 M.-F. Moens K.U.Leuven 37

Tree kernels

m Comparison of augmented dependency trees for
relation extraction from sentences:

m recursive function to combine parse tree similarity
with similarity s(x;, x,) based on feature
correspondence of the nodes of the trees

0, if m(xi,xj) = 0
K (xi,xj) =

s(xi, Xxj) + Kc(Xi[C], xj[c]) otherwise

where m(x;,, xj) € {0, 1} determines whether two
nodes are matchable or not

¢ = children subtrees
© 2008 M.-F. Moens K.U.Leuven 38

relation-argument

Feature Example
word troops, Tikrit
part-of-speech (24 values) NN, NNP
general-pos (5 values) noun, verb, adj
chunk-tag NP, VP, ADJP
entity-type person, geo-political-entity
entity-level name, nominal, pronoun
Wordnet hypernyms social group, city

ARG.A,ARGB

Table 3: List of features assigned to each node in

the dependency tree.

/N

' advanced |

T 7\

: Troops ’,: ‘\ near ,,J

" _
TR
'. Tikrit

_ /"

Figure 1: A dependency tree for the sentence
Toops advanced near Tikrit.

© 2008 M.-F. Moens K.U.Leuven 39

Naive Bayes (NB) model

m Bayesian classifier:

m the posterior probability that a new, previously
unseen object belongs to a certain class given the
features of the object is computed:

- based on the probabilities that these individual
features are related to the class

= Naive Bayes classifier:

m computations simplified by the assumption that the
features are conditionally independent

© 2008 M.-F. Moens K.U.Leuven 40

Naive Bayes model

where w,,..., w, = set of p features

ranking

independence assumption
Cj)
practical implementation

=log P(C)) + i log P(wl-\Cj)
=1

_ p(c,-)li[P(w

© 2008 M.-F. Moens K.U.Leuven 41

Naive Bayes model

normalized form

P(C)]] P(wic)

© 2008 M.-F. Moens K.U.Leuven

42

Naive Bayes model

m Estimations from training set:
= P(C)
n A(wlC):
- binomial or Bernoulli model:

- fraction of objects of class C; in which feature w;
occurs

 multinomial model:

- fraction of times that feature w;occurs across all
objects of class C;

- additional positional independence assumptions
m To avoid zero probabilities: add one to each count (add-
one or Laplace smoothing)

© 2008 M.-F. Moens K.U.Leuven

43

TraixMurninoMmiarNB(C, D)

1 V « ExrracrVocasurary()

2 N « CounrtDocs(D)

3 for eachc e C

4 do N « CounrDocsInCrass(D, c)
prior[c] « N./N
texf. « CONCATENATETEXTOrALLDOCSINCLASS(D, ©)
for eachf e V
do T.: « CountToxkensOsTerMm(text,,)
for eachf e V
10 do condprob[t][c] « S—‘}f’—‘n
11 return V, prior, condprob

b = - B - NS

ArpLYMuLTINOMIALNB(C, V, prior, condprob, d)
1 W « ExrracrloxexsFromDoc({V, d)
2 for eachceC

3 doscorec] « log prior[c]

B for eacht e W

5 do score[c] += logcondprob[t](c]
6 return arg max,_..score[c]

Figure 13.2 Naive Bayes algorithm (multinomial model): Training and testing.
[Manning et al. 2008]

© 2008 M.-F. Moens K.U.Leuven 44

Table 13.3 Multinomial versus Bernoulli model.

multinomial model

Bernoulli model

event model
random variable(s)
document representation

parameter estimation
decision rule: maximize
multiple occurrences
length of docs

features

estimate for term the

generation of token
X = tiff t occurs at given pos
d = {t, coertks o)t € %4

P(X = t|c)

P©)[1;ken, P(X = tlc)
taken into account

can handle longer docs
can handle more

P(X = the|c) ~ 0.05

generation of document

U, = 1iff t occurs in doc

d=1(e,...,€i,...,em),
e; € {0, 1}

P(U; =elc)

PE) [T,y P(Ui = eilc)

ignored

works best for short docs

works best with fewer

P(Uge = 1lc) ~ 1.0

© 2008 M.-F. Moens K.U.Leuven

45

Naive Bayes model

m Class assignment:
m find the Ak most probable classes; k= 1: argmaxP(Cj|W1,...,wp)
.

J

= alternative: select classes for which P(Cijw,...,w,) > threshold

m Advantages:
m Efficiency
m Disadvantages:
m Independence assumptions

= No accurate probability estimates: close to 0; winning
class after normalization close to 1

© 2008 M.-F. Moens K.U.Leuven 46

Maximum entropy principle

m Used in classifiers that compute a probabilistic class
assignment

= Maximum entropy principle: given a set of training
data, model what is known and assume no further
knowledge about the unknowns by assigning them
equal probability

= In other words we choose the model p* that

preserves as much uncertainty as possible between
all the models p € P that satisfy the constraints

enforced by the training examples
m Examples:
= maximum entropy model

m conditional random field
© 2008 M.-F. Moens K.U.Leuven 47

p(a,b) | 0O 1

X 7T 7

y T
Total .6 1

Table 1: The task is

to find a probability distribution p under constraints
p(z,0) + p(y,0) = .6.

0 0 1

X v R | X B

y ol D y %
Total | .6 1 Total | .6 1

Table 1: a) One way to satisfy the constraints; b)The most “uncertain” way to
satisfy the constraints.

Maximum entropy model

m Given ntraining examples S ={(x, y)...,(x, y)}.
where x = feature vector and y = class

m We choose the model p*that preserves as much
uncertainty as possible, or which maximizes the
entropy H(p) between all the models p €P that satisfy

the constraints enforced by the training examples:

H(p) = —E p(x.y)log p(x.y)

(x,y)

* —
p* = argmax H (p)

© 2008 M.-F. Moens K.U.Leuven

49

Maximum entropy model

m The training data are described with k feature functions”

1 1f (x,y) satisfies a certain constraint

ﬁ(x’y) ={

0 otherwise

~

1 if x1= Lou Gerigh and y = disease
e.g., Jfilx,y)=-

\O otherwise

1ifx2 = sayandy = person

ﬁ(x’y) =9

\0 otherwise

* Are usually binary-valued because of efficient trainin
y y © 2008%.-?:. Moens K.8.Leuven

50

Maximum entropy model

m The statistics of a feature function is captured by ensuring
that the model adheres to the following equality:

E,(f) = E;())

where
En(f) = Ep(x)p(y\xmx,y) (1)
(approximated)
= expectatlon of the feature function 7,

Ei(f) =, B(x.))fi(x.))
2)

= empirical expectation of the feature function
© 2008 M.-F. Moens K.U.Leuven 51

Maximum entropy model

m The principle of maximum entropy recommends that we use

P {pIE(f) = Es(f), j=l...k}
p* =argmax H(p)

It has been shown that p*(S) is unique and must be in the
following form: .

p* O0) =—exp(S Afixy), 0< 2 <0 (3)
where Z j=l
fi(x, y) = one of the k binary-valued feature functions
A, = parameter adjusted to model the observed statistics

Z = normalizing constant
© 2008 M.-F. Moens K.U.Leuven

52

Maximum entropy model;
training

The empirical distribution (2) is estimated from the
training data via maximum likelihood estimation:

Es(fi) = p (x, = “say”, y = person)
~ count (x, = “say” and y = person)/N where N is the
total number of training events

The model must adjust the parameter A;such that its
expectation of /;matches the emplrlcal one, while
simultaneously matchlng the rest of the feature
functions with their expectations

The model estimates p*(S) by adjusting the kA model
parameters A, 1 <= <= K, subject to the constraints

of the kfeature functions

e.g., by the generalized iterative scaling algorithm
© 2008 M.-F. Moens K.U.Leuven

53

Maximum entropy model

Generalized iterative scaling:

input: feature functions: f,,..., f,, empirical distribution E£;(f)

output: for the feature functions: the optimal parameter
values A,

The algorithm requires that the sum of the features for each
possible (x,y) is equal to a constant C, which is set at the
greatest possible feature sum and therefore adds a

feature as: .
fk+1(x’y) =C - Efj(x’y)
j=1

Initialize {11}, usually we choose A(V=1,1 <= j <=k +1

© 2008 M.-F. Moens K.U.Leuven 54

Maximum entropy model

lteration:

1. Compute p(x,y) for the distribution p given by the {Aj(’)}, for
each element (x,y) in the training set with (3) taking into account
k+1 features

2. Compute according to (1) £, (/i) 1<=j<=k+1
1
E.f |
[+ [
3. Update the parameters A : R S
J Ep(l)fj
lteration stops: when the differences between A} and A(*) are

very small

© 2008 M.-F. Moens K.U.Leuven

55

Maximum entropy model

m To classify new information unit with feature vector x:
compute (3) for each possible class y and choose y
with greatest probability

m Advantages:
m good results:
- when dependencies exist between the features
 with incomplete training data
® NO need for a priori feature selection

© 2008 M.-F. Moens K.U.Leuven 56

Maximum entropy model

m For example, used in named entity recognition:

= = assignment of a semantic class to a named
entity in the text

m often restricted to the classification of proper
names: i.e., as persons, companies, locations,
currencies, ...

® maximum entropy classification gives good results
even with a limited number of training examples,
e.g., MENERGI-system in next example

© 2008 M.-F. Moens K.U.Leuven

57

Systems Size of training data | F-measure
SRA 95 Hand-coded 064%
IdentiFinder '99 650 000 words 94 9%
MENERGQGI 160,000 tokens 0327%
IdentiFinder ' 99 > 200,000 words About 93%
(from graph)
IdentiFinder ' 97 450 000 words 93%

IdentiFinder ' 97

about 100 000 words

91%-92%

Table 5: Comparison of results for MUC-6

Systems Size of training data | F-measure
LTG system "98 Hybrid hand-coded 93.39%
IdentiFinder "98 790 000 words 90 .44%
MENE + Proteus | Hybrid hand-coded 88.80%
'OR 321 000 tokens
MENERGI 180,000 tokens 87.24%
MENE-+reference- 321,000 tokens 86.56%
resolution '99

MENE "98 321000 tokens 84 .22%

Table 6: Comparison of results for MUC-7

© 2008 M.-F. Moens K.U.Leuven

58

m For example, used in temporal relation recognition:

= Problem of data sparseness: here use of temporal
reasoning to artificially expand the amount of training
data (“CLOSED” in next slide): e.g.,

If relation (A,B) = BEFORE && relation (B,C) =
INCLUDES

then infer relation (A,C) = BEFORE

© 2008 M.-F. Moens K.U.Leuven 59

UNCLOSED (ME) CLOSED (ME-C)

Event-Event Event-Time Event-Event Event-Time

Accuracy: 62.5(51.6) 76.13 (65.3) 93.1(75.2) 88.25(62.3)
Relation Pree Rec F Prec | Rec ¥ Prec | Rec ¥ Pree | Rec F
IBEFORE 5000 | 2727|3539 | 0 0 0 | 7778 | 6086 | 6829 | O 0 0
BEGINS S0.00 | 41.18 | 45.16 | 60.00 | S0.00 | 5454 | 8525 | 82.54 | 8387 | 76.47 | 74.28 | 7536
ENDS 9474 | 66.67 | TR26 | 41.67 | 2778 | 3333 | K783 | 9420 | 9090 | 79.31 | 7797 | 7R.62
SIMULTANEOUS @ 50.35 5000 | S0.17 | 3333 | 2000 | 25.00 | 62.50 | 38.60 | 47.72 | 73.68 | 56.00 | 63.63
INCLUDES ATRK | 3434 | 4000 | 8O92 | 62.72 | 8229 | 9041 | 8823 | 8930 | 86.07 | BO.T8 | 83.34
BEFORE 6885 7924 | 7368 | 04T | 62.72 | 6637 | 9495 | 97.26 | 96.09 | 90.16 | 93.56 | 91.83

Table 2. Machine learning results using unclosed and closed data

© 2008 M.-F. Moens K.U.Leuven

[Mani et al. COLING-ACL 2006]

60

References

Bakir G.H., Hofmann, T.,Schélkopf, B., Smola, A.J., Taskar, B. & Vishwanathan, S.V.N.
(2007) (Eds.), Predicting Structured Data. Cambridge, MA: MIT Press.

Berger, Adam, Stephen A. Della Pietra and Vincent J. Della Pietra (1996). A maximum

entropy approach to natural language processing. Computational Linguistics, 22 (1),
39-71.

Chieu, H.L. & Ng Hwee Tou (2002). Named entity recognition: a maximum entropy
approach using global information. In COLING 2002. Proceedings of the 19th
International conference on Computational Linguistics (pp. 190-196). San Francisco:
Morgan Kaufmann.

Collins, M. & Duffy, N. (2002). Convolution kernels for natural language. In T.G.
Dieterich, S. Becker & Z. Ghahramani (Eds.), Advances in Neural Information
Processing Systems 14 (pp. 625-632. Cambridge, MA: The MIT Press.

Culotto, Aron and Jeffrey Sorenson (2004). Dependency tree kernels for relation
extraction. In Proceedings of the 42 Annual Meeting of the Association for
Computational Linguistics (pp. 424-430). East Stroudsburg, PA: ACL.

Krishnan, V. & C.D. Manning (2006). An effective two-stage model for exploiting non-
local dependencies in named entity recognition. Proceedings of COLING-ACL 2006

(pp. 1121-1128). East Stroudsburg, PA: ACL.
© 2008 M.-F. Moens K.U.Leuven 61

References

Mani, I. et al. (2006). Machine learning of temporal relations. In Proceedings of
COLING-ACL 2006 (pp. 753-760). East Stroudsburg, PA: ACL.

Manning, C.D., Raghaven, P. & Schiize, H. (2008). /ntroduction to Information Retrieval.
Cambridge University Press.

Moens, M.-F. (2006). /Information Extraction: Algorithms and Prospects in a Retrieval
Context (The Information Retrieval Series 21). New York: Springer.

Riloff, E. (1996). An empirical study for automated dictionary construction for
information extraction in three domains. Artificial Intelligence 85, 101-134.

Soderland, S. (1999). Learning information extraction rules for semi-structured and free
text. Machine Learning: hitp://citeseer.nj.nec.com/soderland99learning.html

Sutton, C. & McCallum A. (2007). Introduction to statistical relational learning. In L.
Getoor & B. Taskar (Eds.), Introduction to Statistical Relational Leaning (pp. 93-
127). Cambridge, MA: The MIT Press.

Vishwanathan, S.V.N. & Smola, A.J. (2004). Fast kernels for string and tree matching.
In K. Tsuda, B. Schélkopf and J.P. Vert (Eds.), Kernels and Bioinformatics.
Cambridge, MA, The MIT Press.

© 2008 M.-F. Moens K.U.Leuven 62

