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Problem definition
 Much of our communication is in the form of natural

language text:
 When processing text, many variables are

interdependent (often dependent on previous content
in the discourse):

• e.g., the named entity labels of neighboring words
are dependent: New York  is a location, New York
Times  is an organization
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Problem definition
 Our statements have some structure

• Sequences
• Hierarchical
• ...

 A certain combination of statements often conveys a
certain meaning
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Problem definition
 Fact extraction from text could benefit from modeling

context:
 at least at the sentence level

 But text mining should move beyond fact extraction
towards concept extraction, and while integrating
discourse context

 Could result in a fruitful blending of text mining and
natural language understanding
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Overview

 Dealing with sequences:
 Hidden Markov model

 Dealing with undirected graphical network:
 Conditional random field

 Dealing with directed graphical networks:
 Probabilistic Latent Semantic Analysis
 Latent Dirichlet Allocation

+ promising research directions
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Context-dependent classification
 The class to which a feature vector is assigned depends

on:
1) the feature vector itself
2) the values of other feature vectors
3) the existing relation among the various classes

 Examples:
 hidden Markov model
 conditional random field
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Hidden Markov model

 =  is a probabilistic finite state automaton to
model the probabities of a linear sequence of
events

 The task is to assign:
    a class sequence Y= (y1,…,yT)  to the sequence of

observations X = (x1,…,xT)
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Markov model
 The model of the content is implemented as a Markov

chain of states
 The model is defined by:

 a set of states
 a set of transitions between states and the

probabilities of the transitions (probabilities of the
transitions that go out from each state sum to one)

 a set of output symbols å that can be emitted when
in a state (or transition) and the probabilities of the
emissions
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Figure 5.3. An example Markov model that represents a Belgian criminal court 

decision. Some examples of emissions are shown without their probabilities. 
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The probability of a sequence of states or classes Y = (y1,…,yT) is 

easily calculated for a Markov chain :  

 
        P(y1,…,yT ) = P(y1 )P(y2|y1) P(y3|y1, y2) … P (yT| y1,…,yT-1)            

 

A first order Markov model assumes that class dependence is lim-

ited only within two successive classes yielding: 

  
 P(y1,…,yT ) = P(y1 )P(y2|y1) P(y3|y2)…P (yT| yT-1)                       

 

          

! 

= P(y1) P(yi yi " 1)
i= 2

T

#                    

 
The models that we consider in the context of information extraction 

have a discrete output, i.e., an observation outputs discrete values.  
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Markov model

So, using the first-order Markov model in the above example
gives:
P(start, court, date number, victim) = 0.86

When a sequence can be produced by several paths: sum of
path probabilities is taken.
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Markov model

 Visible Markov model:
 we can identify the path that was taken inside the model

to produce each training sequence: i.e., we can directly
observe the states and the emitted symbols

 Hidden Markov model:
 you do not know the state sequence that the model

passed through when generating the training examples,
i.e., the states of the training examples are not fully
observable 
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Fig. 5.4. Example of a visible Markov Model for a named entity recognition task.  
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Fig. 5.5. Example of a hidden Markov model for a named entity recognition task.  
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Markov model: training
 The task is learning the probabilities of the initial

state, the state transitions and of the emissions of the
model µ
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Visible Markov model: training
The labeling is used to directly compute the probabilities of the parame-

ters of the Markov model by means of maximum likelihood estimates in 
the training set Xall. The transition probabilities P(y’|y) and the emission 
probabilities P(x|y) are based on the counts of respectively the class transi-
tions (y->y’) or (y,y’) and of the emissions occurring in a class (y) 
where y↑xi  considered at the different times  t:  

€ 

P(y' y) =

ξt(y,y' )
t=1

T−1

∑

γt(y)
t=1

T−1

∑
           

          

  

€ 

P(x y) =

γt(y)
t=1 and y↑x

T

∑

γt(y)
t=1

T

∑
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Hidden Markov model: training
 The Baum-Welch approach:

1. Start with initial estimates for the probabilities chosen randomly or according
to some prior knowledge.

2. Apply the model on the training data:
• Expectation step (E): Use the current model and observations to calculate

the expected number of traversals across each arc and the expected number
of traversals across each arc while producing a given output.

• Maximization step (M): Use these calculations to update the model into a
model that most likely produces these ratios.

3. Iterate step 2 until a convergence criterion is satisfied (e.g., when the
differences of the values with the values of a previous step are smaller than a
threshold value ε).
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Hidden Markov model: training
Expectation step (E) 
We consider the number of times that a path passes through state y at 

time t and through state y’ at the next time t + 1 and the number of times 
this state transition occurs while generating the training sequences Xall 
given the parameters of the current model . We then can define:  

 

 t(y,y’) ≡  t(y,y’|Xall, ) = 

€ 

ξt(y,y ',Xall µ)
P(Xall µ)

         

 

€ 

=
α( yt = y)P( y' y)P(xt + 1 y ')β(yt + 1 = y ' )

P( Xall µ)
        

 
where )( yyt =α  accounts for the path history terminating at time t and 

state y (i.e., the probability of being at state y at time t and outputting the 
first t symbols) and 

€ 

β(yt + 1 = y ')  accounts for the future of the path, which 
at time t+1 is at state y’ and then evolves unconstrained until the end (i.e., 
the probability of being at the remaining states and outputting the remain-
ing symbols).  
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Hidden Markov model: training
We define also the probability of being at time t at state y :  
 

€ 

γt(y) ≡ γt(y Xall,µ) =
α(yt = y)β(yt = y)

P(Xall µ)
           

 

€ 

γt(y)
t=1

T −1

∑  can be regarded as the expected number of transitions from state y 

given the model  and the observation sequences Xall.  
 

∑
−

=

1

1

)',(
T

t
t yyξ  can be regarded as the expected number of transitions from 

state y to state y’, given the model  and the observation sequences Xall.  
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Hidden Markov model: training
Maximization step (M) 

During the M-step the following formulas compute reasonable estimates of 

the unknown model parameters:  
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% 

P (x y) =

#t(y)
t=1 and y&x
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Hidden Markov Model

 The task is to assign a class sequence Y= (y1,…,yT)  to the
observation sequence X = (x1,…,xT): how do we choose the
class sequence that best explains the observation sequence?

 Best path is computed with the Viterbi algorithm:
 efficient algorithm for computing the optimal path
 computed by storing the best extension of each possible

path at time t! 

P(Y X ) =P(y1)P(x1y1) P(yi yi " 1)P(xi
i=2

T

# yi)

! 

Y* = argmax
Y

P(Y X )
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Hidden Markov model

 Advantage:
 useful for extracting information that is sequentially

structured
 Disadvantage:

 need for an a priori notion of the model topology,
attempts to learn the model topology

 large amounts of training data needed
 two independence assumptions: a state depends only on

its immediate preprocessor; each observation variable xt
depends only on the current state yt

 Used for named entity recognition and other information
extraction tasks, especially in the biomedical domain
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Maximum Entropy Markov model
 MEMM = Markov model in which the transition

distributions are given by a maximum entropy model

 Linear-chain CRF is an improvement of this model
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Conditional random field
 Let X be a random variable over data sequences to be labeled

and Y a random variable over corresponding label sequences
 All components Yi of Y are assumed to range over a finite

label alphabet ∑
 A conditional random field is viewed as an undirected

graphical model or Markov random field, conditioned on X
 We define G =(V, E) to be an undirected graph such that

there is a node v ∈ V corresponding to each of the random
variables representing an element Yv of Y

 If each random variable Yv obeys the Markov property with
respect to G, then the model (Y,X) is a conditional random
field
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Conditional random field
 In theory the structure of graph G may be arbitrary, however,

when modeling sequences, the simplest and most common
graph structure encountered is that in which the nodes
corresponding to elements of Y form a simple first-order
Markov chain (linear-chain CRF)

 In an information extraction task, X might range over the
sentences of a text, while Y ranges over the semantic classes
to be recognized in these sentences

 Note: in the following x refers to an observation sequence and
not to a feature vector and y to a labeling sequence
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Conditional random field
 Feature functions depend on the current state or on the

previous and current states

 We use a more global notation fj for a feature function where
fj(yi-1,yi, x, i) is either a state function sj(yi, x, i) = sj(yi-1, yi, x, i)
or a transition function tj(yi-1,yi, x, i)

 

! 

sj(yi,x,i) =
1 if the observation at position i is the word "say"

0 otherwise

" 
# 
$ 

        

 

! 

tj(yi % 1, yi,x,i) =
1 if yi - 1 =  "person" and yi  =  "movement" 

0 otherwise

" 
# 
$ 
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Conditional random field
 Considering k feature functions, the conditional probability

distribution defined by the CRF is:

! 

p(y x ) =
1

Z
exp( "jfj(yi # 1,yi ,x ,i)

i=1

T

$ )

j =1

k

$            

 

where  j = parameter adjusted to model the observed statistics 

      Z = normalizing constant  
 

The most probable label sequence y* for input sequence x is:  

 

 

! 

y* = argmax
y

p(y x) 
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Conditional random field:
training
 Like for the maximum entropy model, we need

numerical methods in order to derive λj given the set of
constraints

 The problem of efficiently calculating the expectation of
each feature function with respect to the linear-chain
CRF model distribution for every observation sequence
x in the training data: dynamic programming techniques
that are similar to the Baum-Welch algorithm (cf. HMM)

 In general CRFs we use approximate inference (e.g.,
Markov Chain Monte Carlo sampler)
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Conditional random field
 Advantages:

 Combines the possibility of dependent features,
context-dependent classification and the maximum
entropy principle

 One of the current most successful information
extraction techniques

 Disadvantage:
 Training is computationally expensive, especially

when the graphical structure is complex
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Named entity recognition: 2-stage approach: 1) CRF with local features; 2) local
information and output of first CRF as features. Comparison against competitive
approaches. Baseline results are shown on the first line of each approach.

[Krishnan & Manning 2006]
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Evaluation of the supervised
learning methods

 Results approach the results of using hand-
crafted patterns

 But, for some tasks the results fall short of human
capability:
 both for the hand-crafted and learned patterns
 explanation:

• high variation of natural language expressions
that form the context of the information or that
constitute the information

• ambiguous patterns and lack of discriminative
features

• lack of world knowledge not made explicit in the
text
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Evaluation of the supervised
learning methods

 Annotating: tedious task !
 integration of existing knowledge resources, if

conveniently available (e.g., use of dictionary of
classified named entities  when learning named entity
classification patterns)

 the learned patterns are best treated as reusable
knowledge components

 bootstrapping (weakly supervised learning) 
• given a limited set of patterns manually constructed

or patterns learned from annotations
• expand “seed patterns” with techniques of

unsupervised learning and/or external knowledge
resources
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Less supervision?
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Latent semantic topic models
 = a class of unsupervised (or semi-supervised) models in

which the semantic properties of words and documents are
expressed in terms of topics
 models are also called aspect models

 Latent Semantic Indexing:
 the semantic information can be derived from a word-

document matrix
[Deerweester et al. 1990]

 But, LSI is unable to capture multiple senses of a word
 Probabilistic topic models

w

d
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Panini
 Panini =  Indian grammarian (6th-4thcentury B.C. ?) who

wrote a grammar for sanskrit
 Realizational chain when creating natural language texts:

 Ideas -> broad conceptual components of a text ->
subideas -> sentences -> set of semantic roles-> set of
grammatical and lexical concepts ->character sequences

[Kiparsky 2002]
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Probabilistic topic model
 = Generative model for documents: probabilistic model by

which documents can be generated
 document = probability distribution over topics
 topic = probability distribution over words

 To make a new document, one chooses a distribution over
topics, for each topic one draws words according to a
certain distribution:
 select a document dj with probability P(dj)
 pick a latent class zk with probability P(zkdj)
 generate a word wi with probability P(wizk)[Steyers & Griffiths 2007]
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observed word
 distributions

word distributions
per topic

topic distributions
per document



© 2008 M.-F. Moens  K.U.Leuven 38

Probabilistic Latent Semantic Analysis (pLSA)

Topic 1John goes into the building, sits down
waitress shows him menu. John
orders. The waitress brings the food.
John eats quickly, puts $10 on the
table and leaves. ..

John goes the park with the magnolia
trees and meets his friend, ...

waitress

Menu
$ food

z wd

M
N

park
Tree
...

Topic 2

[Hofmann SIGIR 1999] 

...

M = number of documents
N = number of words
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 Translating the document or text  generation process
into a joint probability model results in the expression

where

K = number of topics (a priori defined)

 Training = maximizing

where n(dj,wi) = frequency of wi in dj
(e.g. trained with EM algorithm)

! 

P(dj,wi) = P(dj)P(wi dj)

! 

P(wi dj) = P
k=1

K

" (wi zk)P(zk dj)

pLSA

! 

L =  n(dj,wi)logP(dj,wi)
i=1

N

"
j=1

M

"



© 2008 M.-F. Moens  K.U.Leuven 40

[Steyvers & Griffiths  2007] 
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Latent Dirichlet Allocation

w

z

α θ

M

N

[Blei et al. JMLR 2003] 

β

γ

zθ

φ

N

M

(1) (2)
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Latent Dirichlet Allocation
 pLSA: learns P(zkdj) only for those documents on which it

is trained
 Latent Dirichlet Allocation (LDA) treats topic mixture

weights as a k-parameter hidden random variable θ
 Training

 Key inferential problem: computing the distribution of
the hidden variables  θ and z given a document , i.e.,
p(θ,z|w,α,β): intractable for exact inference

 α: Dirichlet prior, can be interpreted as a prior
observation count for the number of times a topic is
sampled in a document, before having observed any
actual words from that document
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Latent Dirichlet Allocation
 Model 2 = simple modification of the original graphical

model 1: the chain α → θ → z is replaced by γ → θ and φ
→ z

 Compute approximation of model 1 by model 2 for which
the KL divergence KL[p(θ,z|γ,φ), q(θ,z| w,α,β) is minimal

 Iterative updating of γ and φ for each document and
recalculation of corpus-level variables α and β by means
of EM algorithm

 Inference for new document:
 Given α and β: we determine γ (topic distribution) and φ

(word distribution) with a variational inference algorithm
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Probabilistic topic models
 Probabilistic models of text generation (cf. model of text

generation by Panini)
 Understanding by the machine =  we infer the latent

structure from which the document/text is generated
 Today:

 Bag-of-words representations
 Addition of other structural information is currently limited

(e.g., syntax information in [Griffiths et al. ANIPS 2004])
 But, acknowledged potential for richly structured

statistical models of language and text
understanding in general
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Example
Script: human (X) taking the bus to go from LOC1 to LOC3

1. X PTRANS X from LOC1 to bus stop

2. bus driver PTRANS bus from LOC2 to bus stop

3. X PTRANS X from bus stop to bus

4. X ATRANS money from X to bus driver

5. bus driver ATRANS ticket to X

6.

7. bus driver PTRANS bus from bus stop to LOC3

8. X PTRANS X from bus to LOC3

(3), (7), (8): mandatory

Various subscripts handling actions
possible during the ride.

X gives money to the bus
driver. ATRANS is used to
express a transfer of an
abstract relationship, in this
case the possession of
money.

[Schank 1975]
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Example
 The doctors did not do anything to save a baby they

knew was in critical trouble. Despite knowing the
childbirth was in crisis, the doctors didn't do anything
for more than an hour. The effects were brain damage
to the baby which result in the baby having cerebral
palsy, spastic quadriplegia and a seizure disorder.
The child is now more than five years old, but can't
walk, talk, sit or stand.

Medical
malpractice
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Example
 “The company experiences the leave of its

product manager, and too many emplyees are
allocated in the R&D section. ... For several of
its projects software products are independently
developed. Subsidiairies apply Western-centric
approaches exclusively to local markets...“

Enterprise at
risk

misalignments of staffing
organizational changes

business conflict ?

lack of interoperability
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Extraction of complex concepts
 Semantic annotation performed by humans stretches

beyond the recognition of factoids and the
identification of topic distributions

 Humans understand media by labeling them with
abstract scenarios, concepts or issues

 Very important for retrieval, mining and abstractive
summarization of information, reasoning (e.g., Case
Based Reasoning)

 But, is this possible for a computer?
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Fact or Fiction
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Problem
 The complex semantic concepts: are

 not always literally present in a text
 when present, how do we know that such a concept

summarizes a whole passage/document?
 Given the multitude of semantic labels and the variety of

natural language:
 How can the machine learn to assign the labels with

only few hand-annotated examples?
 And still obtain good accuracy of the classification?
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Solutions ?
 Complex semantic concepts:

 Often hierarchically structured:  composed of
intermediary concepts and more simple concepts

 Cf. model of text generation by Panini
 Exploit the hierarchical structure to:

 Increase accuracy ?
 Reduce number of training data ?
 Cf. current work in computer vision

[Fei-Fei & Perona IEEE CVPR 2005] [Sudderth et al. IEEE ICCV 2005]
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[Fan et al. SIGIR 2004]
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Solutions ?
 Naive model: annotate texts and components with all kinds

of semantic labels and train:
 Probably few examples/ semantic category + variety of

natural language  => low accuracy

 Train with structured examples annotated with specific,
intermediate and complex concepts
 Some tolerance for incomplete patterns =>

• possibly increased accuracy
• still many annotations
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Solutions ?
 Cascaded /network approach:

 Learning intermediate models: the output of one type of
semantic labeling forms the input of more complex tasks
of classification (cf. FASTUS, cf. inverse of Panini model)

• Possibly different or smaller feature sets can be used
for models => less training examples needed

• Reuse of component models possible
• Natural integration of external knowledge resources

 Several aggregation possibilities: features in feature
vectors, Bayesian network, ...

 But, errors propagate: keeping few best hypotheses ?
[Finke, Manning & Ng 2006] [Moens 2006]
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Solutions ?
 Extensions of the probabilistic topic models:

 Advantages of previous cascaded/network model
 Unsupervised and different levels of supervision

possible
 Scalability?
 Do the unlabeled examples:

• learn us completely new patterns or only
variations of existing patterns ?

• cause learning incorrect patterns?
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