Enterprise and Desktop Search

Lecture 3: Exploratory search

Pavel Dmitriev, Pavel Serdyukov, Sergey Chernov

Yahoo! Labs, Sunnyvale, US
Delft University Of Technology The Netherlands
L3S Research Center, Hannover, Germany
Outline

• Exploratory search and ways to support it
• Faceted search:
 – Interfaces
 – Interaction styles
• Faceted search solutions:
 – with structured metadata
 – with unstructured metadata
 – without ready-made metadata
• Future challenges
Relevance in the Enterprise

Search in enterprise is hard! Initial guess is often wrong

Users want to be aware of everything in the Enterprise

Users demand more **control** over search!

They want to **explore**!
Search is a look-up?

Is that all?
Certainly not in enterprises
Search is a journey!

- Exploratory search involves:
 - browsing the result
 - analyzing returned documents
 - coming back to the initial ranking again and again

http://www.flickr.com/photos/morville
Search is a journey!

- Exploratory search involves:
 - Querying the last returned result set
 - Looking for similar documents (relevance feedback)

http://www.flickr.com/photos/morville
Search is a journey!

• Exploratory search is also about...
 – Query reformulation, same information need:
 • Specialization: mp3 players => ipod
 • Generalization: ipod => mp3 players

http://www.flickr.com/photos/morville
Search is a journey!

- Exploratory search is not only playing with a search box, but also... looking for people:
 - Who know the answer
 - Who know where to find answers
 - Who know much more than just an answer
What is exploratory search

Exploratory search

Lookup

- Question answering
- Fact retrieval
- Known-item search
- Navigational search
- Lasts for seconds

Learn

- Knowledge acquisition
- Comprehension
- Comparison
- Discovery
- Serendipity

Investigate

- Incremental search
- Driven by uncertainty
- Non-linear behavior
- Result analysis
- Lasts for hours

Exploratory search: from finding to understanding.
Marchionini. Commun ACM. 2006
Support exploratory behavior

• Support learning
 – About the search topic
 – About the collection

• Support query reformulation
 – Broadening
 – Narrowing
 – Changing the focus

• Support socialization
 – Looking for experts
 – Collaborative search
What web search engines offer

Query suggestions

Snippets

Does it really help to learn?
Can we do better?

• Certainly, when we have metadata for docs!
 – So, some summarization is done for us
• Structured metadata:
 – Classic **faceted search** scenario
• Unstructured metadata
 – Tag-based analysis and navigation
• No metadata?
 – Result clustering
 – More? Let’s see...
Faceted search:
with structured metadata
What is faceted search?

You searched for:
"hedgehog"

Narrow your results by:
- **Color**
 - White Background: 27
 - Colored Background: 10
 - Brown: 4
 - Gray: 2
 - White: 2

- Composition
- Concept
- Ethnicity
- Gender
 - Boys: 13
 - Girls: 8
 - One Senior Woman Only: 6
 - One Woman Only: 6
 - Men: 4

- Image technique
- Location
- Number of people
- Subject
What is faceted search?

It's about Query Reformulation!
What is faceted search?

Yelp search interface for taco in Boston.
What is faceted search?

Medstory BETA

Results for depression

Information that Matters™: click below to refine your search

Drugs & Substances
- Prozac
- Celexa
- Paxil
- Zoloft
- Effexor

Conditions
- Depression
- Anxiety
- Bipolar Disorder
- Suicidal Behavior
- Psychological Stress

Procedures
- Psychotherapy
- Cognitive Behavioral Therapy
- Personality Assessment
- Electroconvulsive Therapy
- Body Mass Index

In Clinical Studies
- Escitalopram
- Duloxetine
- Desvenlafaxine
- Hypericum
- Milestone

Complementary Medicine
- St. John’s Wort
- Meditation
- Yoga
- Relaxation Techniques
- Omega-3 Fatty Acids

Personal Health
- Self-Esteem
- Caregivers
- Sleep Disorders
- Smoking
- Aging

Nutrition
- Polysaturated Fat
- Essential Fatty Acids
- Fish Oil
- Chocolate
- Soybean

People
- Monitor, Medical
- Anand, Amit
- Shelton, Richard C
- Stewart, Jonathan W
- Fava, Maurizio

The Web

1. **Depression: MedlinePlus**
 - Also called: Clinical depression, Dysthymic disorder, Major depressive disorder, Unipolar depression

2. **NIMH - Depression**
 - Depression is a serious medical illness; it's not something that you have made up in your head.
What is faceted search?
What is faceted search?

FacetLens (Microsoft Research)
What is not faceted search?
Too many facets?
Too many facet values?

Information overload

Mobile interfaces
Facet selection: interface-based approach

http://mspace.fm

You are currently browsing an online newfilm archive

/ Animal Science / Environmental Issue (1 result)

Environmental Issue: All aspects of protection, damage, and condition of the ecosystem of the planet earth and its surroundings.

First On 5: New Breed of Super Rat
Growing fat on junk food, a new breed of rat is said to be on its way to our cities from Britain's countryside. The vermin carry lethal diseases, and experts say they could pose serious risks to health.
Redundancy-based facet selection

• Favor facets with high coverage in the result
 – Plenty of data formats in the enterprise
 – Metadata is not unified
 – There is no one classification scheme
 – **Select most frequent facets!**

• Avoid presenting highly correlating facets*
 – So, either **language** or **nationality**

• Consolidate similar facets:
 – author, editor, contributor => **people**

Beyond Basic Faceted Search. Ben-Yitzhak et. al. WSDM 2008
Interestingness-based facet selection

- Measure surprisingness of values distribution
- Favor facets with high-entropy distribution

\[
Entropy = \sum_{i=1}^{n} P(w_i \mid R) \log P(w_i \mid R)
\]

- Favor facets with query-specific distribution

\[
Divergence = \sum_{i=1}^{n} (P(w_i \mid C) - P(w_i \mid R)) \log \frac{P(w_i \mid R)}{P(w_i \mid C)}
\]
Facet values ranking

• Measure **Relevance** of facet value!
• Rank by frequency in result set
 – Most popular approach
• Rank by
 \[
 \frac{P(f = v_i \mid R)}{P(f = v_i \mid C)}
 \]
• Rank by aggregated document relevance:
 – Sum scores of all documents with value \(v_i \)

\[
\text{Relevance} (v_i) = \sum_{\text{Doc} \in \text{Result} \ , \ \text{Doc} (f) = v_i} \text{Score} (\text{Doc})
\]
Collaborative facet values ranking (I)

• Suppose we have long history of interactions
 – Queries + returned documents
 – Maybe even clicks
 – Maybe even documents judged as relevant
• So, let’s build a user model!
• User preferences over all ever issued queries:

\[\sum_{R \in \text{User}_k} P\left(f = v_i \mid R \right) \]

for result sets of all issued queries

\[\frac{P\left(f = v_i \mid C \right) \cdot |\text{User}_k|}{\text{Number of queries}} \]
Collaborative facet values ranking (II)

- Utilize collaborative filtering techniques*:
 \[
 \alpha \frac{\sum_{R \in \text{User}_k} P(f = v_i | R)}{P(f = v_i | C) \cdot |\text{User}_k|} + (1 - \alpha) \frac{\sum_{R \in \text{User}_j} P(f = v_i | R)}{P(f = v_i | C) \cdot |\text{Users}|}
 \]

- Consider only users with similar tastes:
 \[
 \alpha \frac{\sum_{R \in \text{User}_k} P(f = v_i | R)}{P(f = v_i | C) \cdot |\text{User}_k|} + (1 - \alpha) \frac{\sum_{\text{User}_j \in \text{Users}} \text{sim}(\text{User}_k, \text{User}_j) \sum_{R \in \text{User}_j} P(f = v_i | R)}{P(f = v_i | C) \cdot |\text{Users}|}
 \]

For example, cosine similarity or divergence of distributions

*Personalized Interactive Faceted Search. Koren et. al. WWW 2008
Summary

• Faceted search is must
 – When metadata is structured

• Interfaces are crucially important to satisfy the user and help to learn
 – Need to be simple, but customizable
 – Allow to navigate the result

• Summarization should be
 – Result-set oriented
 – Giving answers right away

• Facets/values should be selectively presented!
Faceted search with unstructured metadata: Tags!
Tagging

• Make the way to annotate as easy as possible

• Get metadata for free
Tagging

• Disadvantages:
 – Nor ranked by relevance to the tagged resource
 – Not organized
 – Not categorized

• But still plenty of ways to summarize!
 – Find “relevant” tags
 – Demonstrate their importance to the user
 – Guess the tag purpose
 – Guess the tag meaning
Tag cloud

http://www.wordle.net/
Tag space

http://taggalaxy.de/
How to measure tag size?

$$ \text{fontsize}_i = \frac{\text{fontsize}_{\text{max}} \ (\text{tfidf}_i - \text{tfidf}_{\text{min}})}{ (\text{tfidf}_{\text{max}} - \text{tfidf}_{\text{min}}) }$$

- tf — tag frequency in the result set
- idf — inverted tag frequency in the collection
- tfidf — non-normalized tag importance
Cloud or clouds?

• Group tags by topic!
• Cluster them*!
• Similarity function?
• Tags as vectors of objects
 – But tagging can be non-collaborative
• Tags as vectors of users
 – But co-occurrence less meaningful

*Personalization in folksonomies based on tag clustering. Gemmel et. al. AAAI 2008
Flickr example
Tag classification for faceted search

• Clusters are nice, but...
 – Random
 – Not always of high quality
• We need some knowledge-based classification
 – To discover more meaningful structure
 – To represent tags as values of facets (classes)
 – To provide the feeling of control for users
• Who knows everything about a word (tag)?
 – Lexical databases: *Wordnet*
 – Encyclopedias: *Wikipedia*
Tag classification with Wordnet

• Contains various semantic relations between word senses
 – guitar is a type of instrument
 – string is part of guitar
 – java is a type of island OR coffee OR language
• About 150 000 senses
 – of 120 00 nouns
• Match tags to nouns
• Disambiguate!
 – Find senses with minimum distance to each other in this graph
Tag classification with Wikipedia (I)

- Wordnet has nice selection of classes (facets)
- ... but no so many entities (facet values)
- Let’s use larger knowledge repository... Wikipedia - more than 3 million articles!
- But it has too many classes (categories)
 - ~ 400,000, their hierarchy is very fuzzy
- Use Wikipedia just as a middle layer!
Tag classification with Wikipedia (II)

• Direct Tag => Wiki matches may be too imprecise:
 – So, use only anchor text or titles

• Some Wikis are direct match with Wordnet senses!
 – “Guitar” => en.wikipedia.org/wiki/Guitar
 – Use these matches as training data
 – Build classifier for each Wordnet noun class (~25 classes)

• What features should describe Wordnet classes?
 – Using terms as features would introduce too much noise
 and problems with dimensionality
 – Categories of wiki-articles are better choice!
Classified 22% of Flickr tags with Wordnet
Classified 70% of Flickr tags with Wikipedia

Classifying Tags using Open Content Resources. Overell et. al. WSDM 2008
Interaction with faceted search system

• Traditional way:
 – Typing, typing, typing...
 – For the sake of query reformulation

• Faceted search?

Mousing & Browsing
Filtering – all search tags are made equal
Tag feedback

Tag weights

- Positive tags:
 - Russia
 - Recipes
 - Food

- Related tags:
 - History
 - Photography
 - News
 - Art
 - Politics
 - Travel
 - Design
 - Photos
 - Russian
 - Blog
 - Culture
 - Funny
 - Photo
 - Video

- Quick links:
 - Russian food - traditional food in Russia and authentic Russian recipes
 - Authentic Russian Recipes, Cuisine and Cooking
 - Russian food - traditional food in Russia and authentic Russian recipes
 - Kvass: RusslandJournal.de

- Bad tags:
 - Drinking
 - San Francisco
 - Work

Negative feedback
How to incorporate feedback (I)

\[\text{Score}(Q, D) = -D(\theta_Q || \theta_D) + \beta \cdot D(\theta_N || \theta_D) \]

Relevance lang. model
- food +++russia recipes

Irrelevance lang. model
- drinking –health –work -humor

\[
\begin{align*}
P('food' \mid Q) &= \frac{1}{5} \\
P('recipes' \mid Q) &= \frac{1}{5} \\
P('russia' \mid Q) &= \frac{3}{5}
\end{align*}
\]

A study of methods for negative relevance feedback Wang et. al. SIGIR 2008
How to incorporate feedback (II)

- We have a tripartite graph
 - Many tags are related, but not used in our query
- It’s good to be close to positive tags
- It’s good to be far from negative tags
How to incorporate feedback (III)

- Express language models in graph terms:

\[
P(tag \mid Document) = \frac{\text{Distance}(tag, Document)^{-1}}{\sum_{tag \in \text{all tags}} \text{Distance}(tag, Document)^{-1}}
\]

- How to define **distance** between nodes:
 - Length of shortest path
 - Number of shortest paths (of certain length)
 - Distance-based similarity: \(\sum_{path(tag, document) \in \text{shortest paths}} c^{-\text{length(path)}} \)

- What else to consider?
 - Downweight paths with nodes of high indegree/outdegree
Summary

- Faceted search is possible with unstructured metadata...
 - But we need to make some effort to structure it!
- Visualization is always important
 - But not enough to understand the summary
- So, it’s better to explain the result
 - By clustering tags/objects
 - By classifying tags/objects into semantic categories
- And, finally, it’s about navigation and click-based query reformulation
 - Provide ways to react for the user
 - Provide ways to give different kinds of feedback
Faceted search: No metadata!
No metadata? No panic!

• Facet-value pairs are manual classification
• Tags are basically important terms
• Why not classify automatically?
 – Categorize into known topics
 – Cluster and label clusters
• Why not automatically discover tags?
 – Extract important keywords from documents
• Well, some metadata always exists
 – Time, source....
Categorize by topic (I)
Categorize by topic (II)

• Document categorization
 – Shallow (Flat) vs. Deep (Hierarchical)

• Shallow classification: only top level
 – Makes no sense for very focused queries:
 java vs. biology

• Deep classification*:
 – Lack of training examples (labeled documents) with each next level of hierarchy
 – Documents can be assigned to too many classes

Deep Classifier: Automatically Categorizing Search Results into Large-Scale Hierarchies. Xing et. al. WSDM 2008
Categorize by topic (III)

• Solution for sparsity:
 — Suppose, we use Bayesian classification

\[P(\text{Class} \mid D) = P(\text{Class}) \prod_{w=1}^{\mid D \mid} P(w \mid \text{Class}) \]

\[P^{\text{smoothed}}(w \mid "\text{Databases}"") = \]
\[= \lambda_1 P(w \mid "\text{Databases}"") + \lambda_2 P(w \mid "\text{ComputerScience}"") + \lambda_3 P(w \mid "\text{Science}""), \sum \lambda_i = 1 \]

• Solution for “too many classes” problem
 — Many documents focus on several topics
 — Let’s care only about those that user cares about:

\[P(\text{Class} \mid D) \Rightarrow P(\text{Class} \mid D, Q) = P(\text{Class} \mid D)P(\text{Class} \mid Q) \]

Robust Classification of Rare Queries Using Web Knowledge. Broder et. Al. SIGIR 2007
Non-topical categorization

• Classification by genre
 – patent, news article, meeting report, discussion, resume, tutorial, presentation, source code, blog post?
 – Not only words are features:
 • Average sentence length, layout structure (number of tables, lists), file format, classes of words (dates, times, phone numbers), sentence types (declarative, imperative, question), number of images, links...

• Classification by reading difficulty*
 – Compare definitions of sugar:
 ▪ Sugar is something that is part of food or can be added to food. It gives a sweet taste © simple.wikipedia.org/wiki/Sugar
 ▪ Sugar is a class of edible crystalline substances, mainly sucrose, lactose, and fructose. Human taste buds interpret its flavor as sweet © wikipedia.org/wiki/Sugar

*A Language Modeling Approach to Predicting Reading Difficulty. Collins-Thompson et. al. 2004
Categorization by sentiment (I)

Tweetfeel

Pandas

![Image of a panda]

ANYONE WANNA TRADE PLUSHIE KANDY? i got a panda today... its cute and soft BUT I HATE pandas

Photo: (via intefade) I like pandas. Also sad ones

http://tumblr.com/xmo2gquec

That wasn't me. =() But I like pandas :) I sleep with one :)

"I love pandas, they're so... emo. and their breath is so minty fresh!"

Jhonen says I'm sad because I don't know how much I love pandas.

@JillianCupcake I LOVE pandas!!!

@Amber_Lily omg a panda!!! I love pandas and you know what! when I'm older I wanna be a panda :) well you know!!!

Didn't play very well at gig tonight. That makes me a mad panda. Why panda? I like pandas, that's why!
Categorization by sentiment (II)

• Lexicon-based approaches:
 – Calculate ratio of negative/positive words/smiley
 – Weight contribution of every subjective term by its inverse distance to query terms

• Machine learning based approaches:
 – Build classification models for texts and terms:
 • Objective vs. Subjective
 • Positive vs. Negative
 – Better for each domain
 – Better use 2,3-grams
 • “long battery life”
 • “long execution time”
Categorization by location (I)

- Some documents, photos, videos, tweets...
 - are location agnostic and **some are not!**
Categorization by location (II)

• Some documents are geo-tagged
 – There are more than 100 millions of them at Flickr!
 – Are we done?

geo-tags: latitude, longitude

Around 96% of Flickr photos are not geo-tagged!
Categorization by location (III)
Categorization by location (IV)

St. Petersburg

Popular tags:
- Russia
- Church
- Bridge
- Cathedral
- Light
- Neva
- Peterburg
- Water
- Hermitage
- Russian
- Winter
- Baltic
- Florida
- Pier
- Sunrise
- Tampa
- St.
- Tampabay
- Vinoy Park
- Pelican
- Water
- Warped Tour
- Bird
- Petersburg
- Bay
Categorization by location (V)

- Locations – documents (L), tagsets – queries (T)
- Tags of photos are query terms (t_i)
- How likely that location L produced the image with a tagset T:
 \[
P(T | L) = \prod_{i=1}^{|T|} P(t_i | L)
 \]
 \[
P(t | L) = \frac{|L|}{|L| + \lambda} P(t | L)_{ML} + \frac{\lambda}{|L| + \lambda} P(t | G)_{ML}
 \]

- But there is much more we can do*:
 - Consider spatial ambiguity of tags?
 - Consider neighboring locations?
 - Consider that some of them are toponyms?

- Apply for place non-tagged photos? Not only photos?

*Placing Flickr Photos on a Map.
Serdyukov P., Murdock V., van Zwol R. SIGIR 2009
Metadata extraction (I)

• Tags provide intuitive description
• Allow not only summarize, but aggregate
• Natural query terms suggestions
• Let’s generate tags (topic labels)
 – For each document
 – For clusters of documents
 – For documents grouped by some (boring) facet
 • e.g. Year or Department
• Technically, we can build classification model for each tag assigned to sufficient number of docs*
 – But let’s do that in an unsupervised way

*Social Tag Prediction. Heyman et. al. SIGIR 08
Metadata extraction (II)

• Plenty of ways to extract keyphrases...
 – What to consider? Several dimensions*...

• Relevance of phrase $l = w_1 w_2 w_3$ to document:

$$\text{Score}(l, D) = \alpha \frac{P(l \mid D)}{P(l \mid C)} + (1 - \alpha) \sum_w \frac{P(w \mid D)}{P(w \mid C)}$$

• Relevance of document to phrase. **Minimize:**

$$\text{Dist}(l, D) = -\sum_w P(w \mid l) \frac{P(w \mid l)}{P(w \mid D)} \text{ Over all docs where } l \text{ occurs}$$

• Uniqueness on document level. **Maximize:**

$$\max_{l' \in \text{selected}} \text{Dist}(l, l')$$

• Uniqueness on collection level. **Maximize:**

$$\frac{1}{|C| - 1} \sum_{D' \neq D} \text{Dist}(l, D')$$

Automatic Labeling of Multinomial Topic Models. Mei et. al. KDD 2007
So far not query-driven, right?
Let’s move away from bag-of-words
Possible algorithm:
 – Cluster sentences in a document
 – Select keywords for each cluster (as shown)
 – Find cluster(s) most relevant to a query
 – Represent document by keywords from relevant cluster(s)

Just consider text windows around query terms
Summary

• No metadata?
• Categorize, categorize, categorize…
 – Semantic classes
 – Genres
 – Reading difficulty levels
 – Sentiments
 – Locations
 – What else?
• Or extract metadata from text to summarize!
 – Find tags, entities, etc…
What about the Future?
Collaborative exploratory search

- Many queries, many people, one information goal
- How to suggest and route queries?
- How to route documents for evaluation?
- How to aggregate opinions on documents?

* Algorithmic mediation for collaborative exploratory search. J. Pickens et. al. SIGIR 08
Aggregated exploratory search

- Find not only relevant facets/values, but...
- Find relevant domains (verticals)!

Query “hairspray”

- Present result sets from different verticals in the order of their total relevance!
References: Exploratory search

• http://en.wikipedia.org/wiki/Exploratory_search
• http://en.wikipedia.org/wiki/Faceted_search
• **Exploratory search: Beyond the Query-Response Paradigm.** R. White and R. Roth. 2009
• **Faceted search.** D. Tunkelang. 2009
• **Search User Interfaces.** M. Hearst. 2009. free at: http://searchuserinterfaces.com/
• **Conferences:** SIGIR, ECIR, WWW, WSDM, KDD, HCIR
References: advanced exploratory search

• Collaborative search:
 – Algorithmic mediation for collaborative exploratory search. J. Pickens et. al. SIGIR 2008

• Aggregated search:
 – Integration of News Content into Web Results. F. Diaz. WSDM 2009. (Best paper award)
 – Sources of evidence for vertical selection. J. Arguello et. al. SIGIR 2009. (Best paper award)
• 4-years PhD position is open at TU Delft
• EU-project “PuppyIR” – IR for Children
 – Summarization, NLP, entity ranking, social search

60 mins
3.5 hours
40 mins
Enterprise and Desktop Search

Lecture 4: Expert finding

Pavel Dmitriev, Pavel Serdyukov, Sergey Chernov
Outline

• The need for expert finding
• State-of-the-art approaches
• Advanced techniques:
 – Mining for personal language models
 – Proximity-aware expert finding
 – Looking for additional evidence in the enterprise
 – Looking for additional evidence on the Web
• Future challenges
Search for experts

- Some knowledge is not easy to find
 - Not stored in documents
 - Not stored in databases
 - It is stored in peoples’ minds!

80% Individual Knowledge
20% Documented Knowledge

Meet People!
Search for experts

• Let’s search for documents people
• Who is relevant expert on topic X?
• Basically, a special case of **faceted search**
 – Facets “people”, “employees”
• Try some expert search right now:
Search in personal profiles

- Search for experts in retrieval
- Search only among known people
- Working in Europe
- Ever worked at Yahoo!

Gleb Skobeltsyn
Post Doc Engineer at Google
Geneva Area, Switzerland | Information Technology and Services
In Common: 29 shared connections 1 shared group

Vanessa Murdock
Researcher at Yahoo! Research Barcelona
Barcelona Area, Spain | Research
In Common: 29 shared connections

Vassilis Plachouras
Researcher in Information Retrieval
Greece | Research
In Common: 26 shared connections

Paul - Alexandru Chirita
Engineering Manager at Adobe Systems Inc.
Romania | Internet
In Common: 19 shared connections 1 shared group

Maarten Clements
Ph.D. Researcher at Delft University of Technology
The Hague Area, Netherlands | Information Technology and Services
In Common: 31 shared connections 1 shared group
Expert finding via document analysis

• Analyze self-made profiles?
 – Need some enthusiasm to maintain
 – Subjective due to over/under-estimation

• Sleuth for expertise evidence in existing documents...
Profile-based expert finding

- **1st step**: Build a personal profile for
- **2nd step**: Match it to a query as a document
Document-centric expert finding

- 1st step: Rank all documents with
- 2nd step: Aggregate document scores

\[Q \xrightarrow{\text{W}_1, \text{W}_2} \sum_{\text{MAX}} \xrightarrow{\text{W}_1, \text{W}_2, \text{W}_3} \]

- Remember facet values ranking?
Popular datasets

• TREC 2005-2006: W3C data
 – The largest part consists of mailing lists
 – About 1000 candidates provided
 – Judgments made by participants (50 queries)
 – Really many “experts” per query

• TREC 2007-2008: CSIRO data
 – www.csiro.au crawl
 – About 3500 candidates (just all persons mentioned)
 – Judgments made by the organization itself (49 queries)
 – Very few “experts” (key persons) per query

• Three measures are analyzed
 – MAP (Mean Average Precision) and P@5
 – MRR (Mean Reciprocal Rank)
Going beyond bag-of-words (I)

- **Popular Intuition:**

 Expertise is proportional to the degree of query terms and the person’s co-occurrence

- **Classic document-centric approach***:

 \[
 P(e, Q) = \sum_D P(e, Q \mid D)P(D) = \sum_D P(e \mid D)P(Q \mid D)P(D)
 \]

 \[
 \approx P(\text{Relevance} \mid D)
 \]

A language modeling framework for expert finding. Balog et. al. SIGIR 06
Going beyond bag-of-words (II)

- Full Independence is not realistic
- Persons are responsible for terms!

\[
\sum_{D} P(e, Q \mid D)P(D) = \sum_{D} P(Q \mid e)P(e \mid D)P(D)
\]

Modeling documents as mixtures of persons
for expert finding. Serdyukov and Hiemstra. ECIR 2008
Mining personal language models (I)
Mining personal language models (II)

- Likelihood of Top K retrieved documents

$$\prod_{D} \prod_{w \in D} ((1 - \lambda_G)(\sum_{i=1}^{m} P(w \mid e_i)P(e_i \mid D)) + \lambda_G P(w \mid G))^{c(w,D)}$$

- $c(w, D)$ - count of terms w in document D
- λ_G - probability of term generation from the Global LM

$P(e \mid D)$? Previously, was inferred from:
- Importance of a document’s field
- Number of candidates in a document
Mining personal language models (III)

• Steps for EM iterations:

E–step:

\[P(e \mid w, D) = \frac{(1 - \lambda_G)P(e \mid D)P(w \mid e)}{(1 - \lambda_G)(\sum_{i=1}^{m} P(e_i \mid D)P(w \mid e_i)) + \lambda_G P(w \mid G)} \]

M–step:

\[P(w \mid e) = \frac{\sum_{D \in \text{TopK}} c(w, D)P(e \mid w, D)}{\sum_w \sum_{D \in \text{TopK}} c(w, D)P(e \mid w, D)} \]

\[P(e \mid D) = \frac{1 + \sum_{w \in D} c(w, D)P(e \mid w, D)}{m + \sum_{i=1}^{m} \sum_{w \in D} c(w, D)P(e_i \mid w, D)} \]
Going beyond “personal” documents

• Look at the classic approach again:

\[\text{Expertise}(e) = \sum_{D \in \text{TopK}} P(e \mid D) P(Q \mid D) P(D) \]

1. User selects a document from the top

2. User selects a person from the document

3. Finished? Well, not in exploratory mood

• Expertise evidence is never propagated further than to mentioned persons
Exploratory search for experts

1. Reads a document
2. Meets a person
3. Reads another document
4. Reads a document linked
5. Meets a person
6. Reads a document
7. Meets a person

Diagram showing the process of exploratory search for experts, involving reading documents and meeting people to find experts.
Expertise graph

Consider links among documents?
Consider departments as nodes?
Consider social relationships?
Multi-step relevance propagation

- How to model this walk for expertise?
 - Although, considering that experts should be close to relevant documents
- How to propagate expertise evidence (relevance) further after the first step?
- **Answer:** Multi-step relevance propagation with random walk models
 - Finite-random walk (FRW)
 - Infinite random walk (IRW)
 - Absorbing random walk (ARW)

Finite random walk

• Model the user as a lazy seeker:
 - So, who is the most probable expert to end up with after some \(K \) number of steps?

• How to model laziness in a smart way?

\[
P_0(D) = P(Q \mid D), P_0(e) = 0
P_i(D) = P(Q \mid D)P_{i-1}(D) + \sum_{e \to D} P(D \mid e)P_{i-1}(e),
P_i(e) = \sum_{D \to e} (1 - P(Q \mid D)) P(e \mid D)P_{i-1}(D)
\]

\(\text{Prob. to stay at } D \) \(\text{Prob. to move on from } D \)

\(\text{Expertise}(e) = P_K(e) \)
Infinite random walk

• Model the user as a tireless seeker:
 – So, who is the most probable expert to end up with after \textit{infinite number of steps}?

• How to model tirelessness smartly?

\[
P_i(e) = \sum_{D \rightarrow e} P(e \mid D) P_{i-1}(D)
\]

\[
P_i(D) = \lambda P(Q \mid D) + (1 - \lambda) \sum_{e \rightarrow D} P(D \mid e) P_{i-1}(e),
\]

\text{Prob. of walk restart from D}

\[
Expertise(e) = P_\infty(e)
\]
Absorbing random walk

• Absorbing walk:

\[P_0(D) = P(Q \mid D), \ P_0(e) = 0 \]
\[P_i(D) = \sum_{e \to D} P(D \mid e)P_{i-1}(e), \]
\[P_i(e) = \sum_{D \to e} P(e \mid D)P_{i-1}(D) + P_{i-1}(e)P^{self}(e \mid e) \]

• What is the generalization of the classic one-step propagation:

\[\text{Expertise}(e) = \sum_{D \in \text{TopK}} P^{\text{mult}}(e \mid D)P(Q \mid D)P(D) \]

Looking for better expertise evidence

• So far considered:
 – Documents are black boxes (black bags of words)
 – There is no world outside the enterprise

• Can we do better? Look at two extremes...

• Go deeper into the document on a word-level

• Escape the enterprise.... in search for better evidence
Proximity-aware expert finding (I)

• Remember document-centric model?

\[
P(e, Q) = \sum_D P(e \mid D)P(Q \mid D)P(D)
\]

• Why consider independence?

\[
P(Q \mid D) \Rightarrow P(Q \mid e, D) = \prod_{q \in Q} P(q \mid e, D)
\]

For every occurrence of a query term and an expert mention

\[
P(q \mid e, D) = \frac{\sum_{q \in D} \sum_{e \in D} k(q, e)}{Z}
\]

Normalization constant

Proximity function

Normalization constant
Proximity-aware expert finding (II)

- Linear function:
 \[k(q,e) = 1 - |pos(q) - pos(e)| \]

- Gaussian function:
 \[k(q,e) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(pos(q) - pos(e))^2}{2\sigma^2}\right] \]

- Step function:
 \[k(q,e) = \alpha_j, \text{if } |pos(q) - pos(e)| \in \text{Interval}_j \]

Proximity-based document representation for named entity retrieval. Petkova et. al. CIKM 2007
Going beyond the enterprise

• Why to search only in the enterprise?
Acquiring data via Search APIs

• Retrieve all pages with person name?
 – But APIs return at most 1000 results

• Build a query consisting of:

 “tj.higgins” genetics csiro -inurl:csirol

 - person’s name
 - topic
 - organization

 but search globally

• The number of returned results is a rough estimate of expertise

Where to start?

• Issue 3500 queries to APIs for each topic?
 • Takes about 30 minutes
• Some pre-selection stage for candidates?
 • Experts should be within some Top-K
• We are making Enterprise run anyway
 • And it is very fast
• We have full access to the Enterprise data
 • It should be the primary evidence
We need precise estimates for the number of results:

- Estimates of “total results” are very imprecise
- Their precision depends on starting position

Google API returns only 32 search items

- And its estimates are less reliable
News evidence

• Good experts are often news-makers
 – Make discoveries
 – Receive awards

• Every engine has a News Search API!
 – But all of them allow to search only in the news from the past month
 – Google News Archives allows to search even in 19th century news, but has no API

• But, let’s simulate it
 – By adding \texttt{inurl:news} clause
Blog evidence

• Blogs are knowledge marketplaces
• Even most corporate blogs are public
• Quoting is a social recommendation

 Kevin Rose writes that Digg is launching a recommendation engine that "uses your past digging activity to identify what we call Diggers"
 Amit Singhal, the head of the Core Ranking team at Google has a post on Google's philosophy of ranking.

 John Langford just posted a list of seven ICML '08 papers that he found interesting. I appreciate his taste in papers, and I particularly

• Two blog search engines have the best coverage:
 – Technorati API: almost not supported
 – Google Blog Search API: returns only 8 results
Academic search evidence

• Strong academic record is a must
 – Especially for R&D companies

• Big academic search engines have no API
 – Live Search Academic
 – Google Scholar (recommends experts itself!)

 Results 1 - 2 of about 528,000 for web retrieval.
 Key authors: G. Salton - D. Hawking - N. Craswell - P. Bailey - W. Grosky

• But Google Book Search API is available!
 – It’s like a crippled Google Scholar with only books indexed
Combining evidences

- Why we need so many sources?
- Good expert is not only a local winner
 - Should be “omnipresent”
- Normalization of absolute values is hard
 - Vary a lot over queries and search engines
- Rank aggregation is a convenient solution

\[
\text{Expertise}(e) = \sum_{\text{Rankings}} - \text{Rank}(e)
\]
Considering URL quality

- What about result set quality?
 - Considering only its **size** is too naive
- We should measure the quality of each result item (URL, Title, Summary):

 $$Expertise\ (e) = \sum_{Item \in WebResultSet} Quality(Item)$$

- Two types of quality measures:
 - Query-independent
 - Query-dependent
Future challenges for expert finding

• Modeling dependencies within a document
 – More complex topic models?

• Relevance propagation
 – Introduce new entities? Relevance sources? Search for organizational units?

• Utilize more web sources
References: expert finding

• Expert finding in industry:
 – **Expert finding systems. Survey.** M. Maybury. 2006
 free at: http://www.mitre.org/work/tech_papers/tech_papers_06/

• Expert finding in academia:
 – **People Search in the Enterprise.**

 – **The Voting Model for People Search.**

 – **Search for expertise: going beyond direct evidence.**