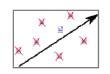
Modeling User Behavior and Interactions

Lecture 3: Improving Ranking with Behavior Data

Eugene Agichtein Emory University

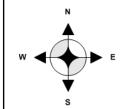
Lecture 3 Plan



1. Review: Learning to Rank

- 2. Exploiting User Behavior for Ranking:
 - Automatic relevance labels
 - Enriching feature space

- 3. Implementation and System Issues
 - Dealing with Scale
 - Dealing with data sparseness



4. New Directions

- Active learning
- Ranking for diversity

Review: Learning to Rank

- Goal: instead of **fixed** retrieval models learn them:
 - Usually: supervised learning on document/query pairs embedded in high-dimensional feature space
 - Labeled by relevance of document to query
 - Features: provided by IR methods.
- Given training instances:
 - $(x_{q,d}, y_{q,d})$ for $q = \{1..N\}, d = \{1 .. N_q\}$
- Learn a ranking function
 - $f(x_{q,1}, ..., x_{q,Nq})$

Ordinal Regression Approaches

Learn multiple thresholds:

Maintain T thresholds (b_1 , ..., b_T), $b_1 < b_2 < ... < b_T =>$ Learn parameters + (b_1 , ..., b_T) **Chu & Keerthi**, New Approaches to Support Vector Ordinal Regression ICML 05

• Learn multiple classifiers:

Use T different training sets, train classifiers $C_1..C_T =>$ Sum **T. Qin et al**., "Ranking with Multiple Hyperplanes." SIGIR 2007

• Optimize pairwise preferences:

RankNet: Burges et al., Learning to Rank Using Gradient Descent, ICML 05

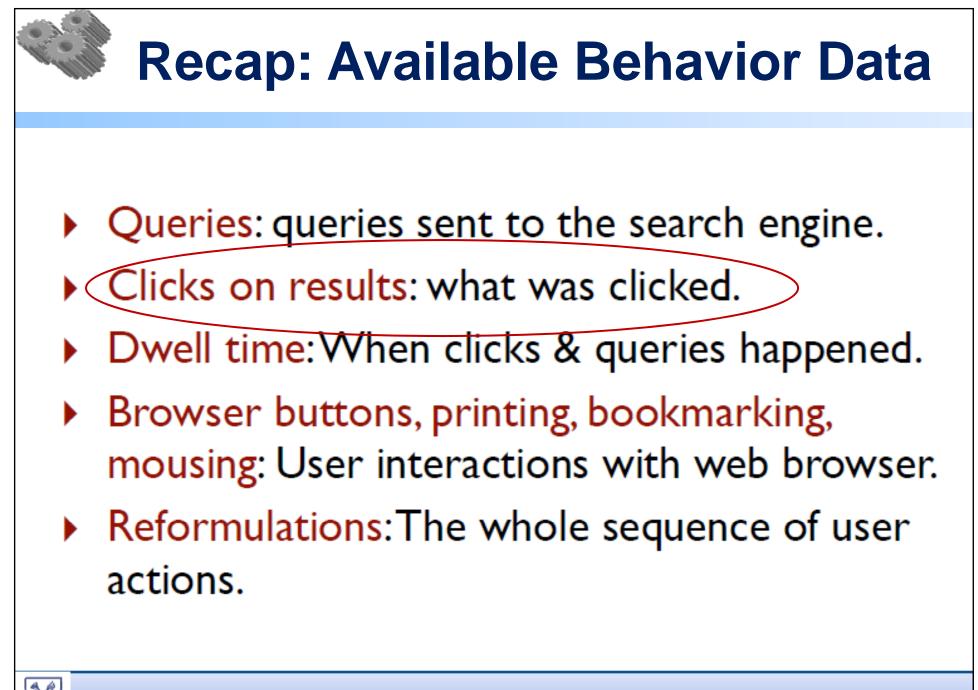
• Optimize Rank-based Measures:

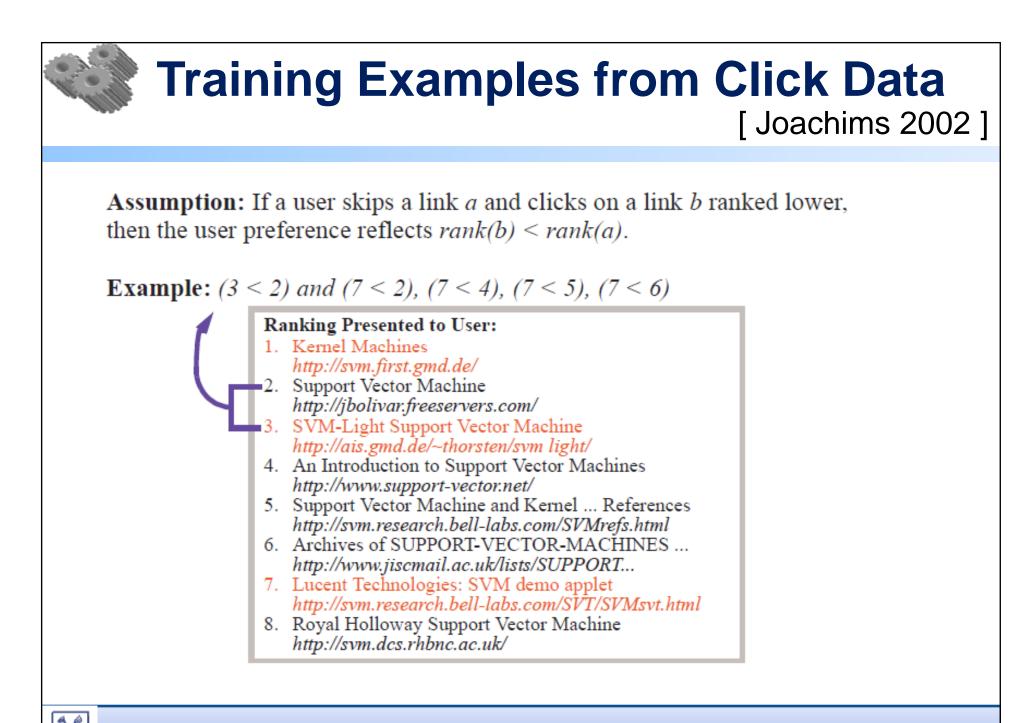
Directly optimize (n)DCG via local approximation of gradient LambdaRank: C. Burges, et al., "Learning to Rank with Non-Smooth Cost Functions." NIPS 2006

Learning to Rank Summary

- Many learning algorithms available to choose from
- Require training data (feature vectors + labels)
- Where does training data come from?
 - "Expert" human judges (TREC, editors, ...)
 - Users: logs of user behavior
- Rest of this lecture:
 - Learning formulation and setup, to train and use learning to rank algorithms







Loss Function

[Joachims 2002]

For two orderings r_a and r_b , a pair $d_i \neq d_j$ is

- *concordant*, if r_a and r_b agree in their ordering P = number of concordant pairs
- *discordant*, if r_a and r_b disagree in their ordering Q = number of discordant pairs

Loss function: [Kemeny & Snell, 62], [Wong et al, 88], [Cohen et al, 1999], [Crammer & Singer, 01], [Herbrich et al., 98] ...

$$l(r_a, r_b) = Q$$

Example:

$$r_a = (a, c, d, b, e, f, g, h)$$

 $r_b = (a, b, c, d, e, f, g, h)$

=> discordant pairs (c,b), (d,b) => $l(r_a, r_b) = 2$

Learned Retrieval Function

[Joachims 2002]

Sort documents d_i by their "retrieval status value" $rsv(q,d_i)$ with query q [Fuhr, 89]:

$$\operatorname{rsv}(q,d_i) = \underset{\substack{w_1 \\ w_2 \\ w_2 \\ w_2 \\ w_2 \\ w_1 \\ w_2 \\ w_2 \\ w_1 \\ (d_i q_i q_i) \\ w_1 \\ w_2 \\ w_2 \\ w_1 \\ (d_i d_i) \\ w_1 \\ (d_i d_j) \\ w_2 \\ (d_i d_j) \\ w_1 \\ (d_i d_j) \\ w_2 \\ (d_i d_j) \\ w_3 \\ (d_i$$

Features

[Joachims 2002]

Query/Content Match:

- cosine between URL-words and query
- cosine between title-words and query
- query contains domain-name

Popularity-Attributes:

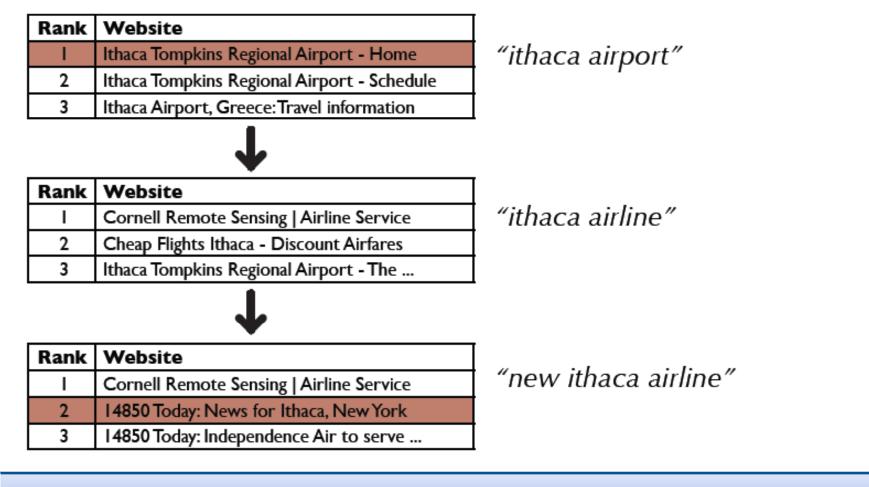
- length of URL in characters
- country code of URL
- domain of URL
- word "home" appears in title
- URL contains "tilde"
- URL as an atom

	Results	[Joachims 2002]
weight	feature	
0.60	cosine between query and abstract	
0.48	ranked in top 10 from Google	
0.24	cosine between query and the words in the	URL
0.24	document was ranked at rank 1 by exactly o	one of the 5 search engines
0.17	country code of URL is ".de"	
0.16	ranked top 1 by HotBot	
-0.15	country code of URL is ".fi"	
-0.17	length of URL in characters	
-0.32	not ranked in top 10 by any of the 5 search	engines
-0.38	not ranked top 1 by any of the 5 search eng	gines
\bigotimes	Eugene Agichtein, Emory University, RuSSIR 2009 (Petrozavod	lsk, Russia) 12

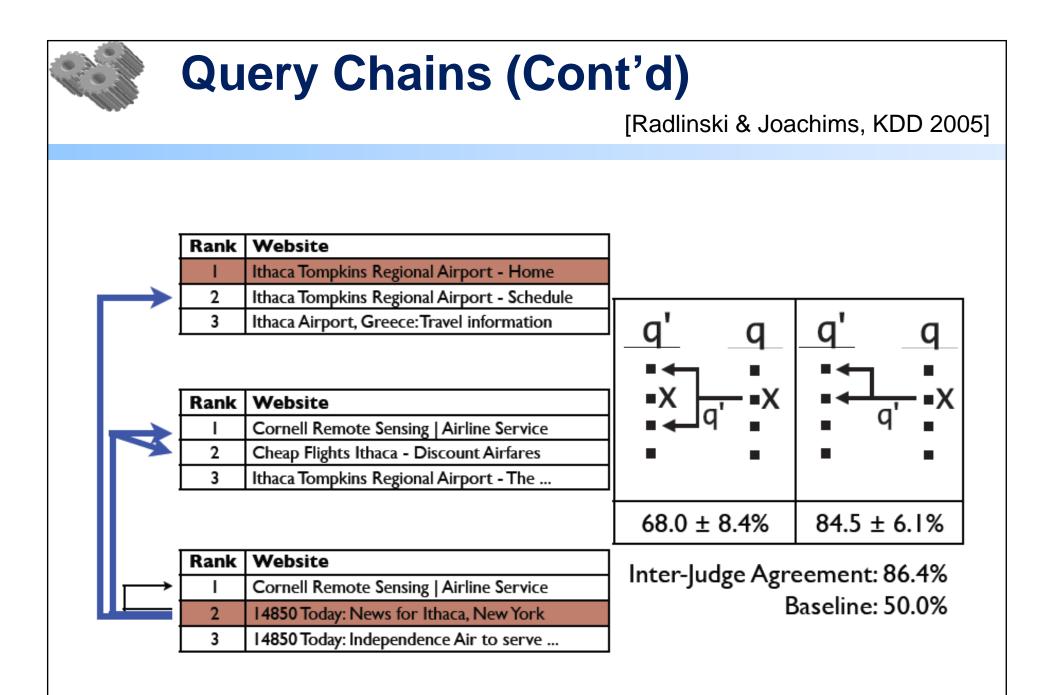
Extension: Query Chains

[Radlinski & Joachims, KDD 2005]

There is extra information in query reformulations.



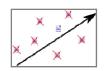
 \bigotimes



	Query	Chain		ults) ki & Joachims, K	(DD 2005]
Qu	ery Chains ad	d slight in	nproveme	nt over cli	cks
ſ	Evaluation Mode	Chains	User Prefers Other	Indifferent	

Table 3: Results on Cornell Library search engine. rel_0 is the original retrieval function, rel_{QC} is that trained using query chains, and rel_{NC} is that trained without using query chains.

Lecture 3 Plan



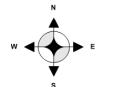
Review: Learning to Rank

Exploiting User Behavior for Ranking:

- Automatic relevance labels
- Enriching the ranking feature space

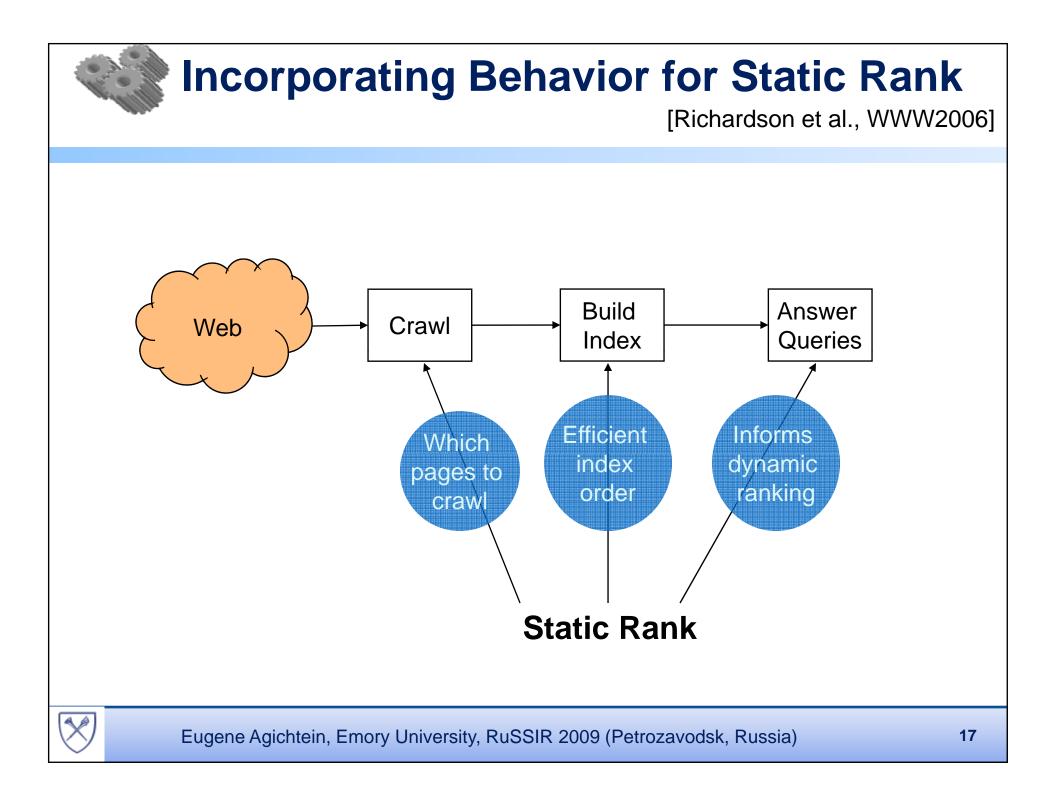
1. Implementation and System Issues

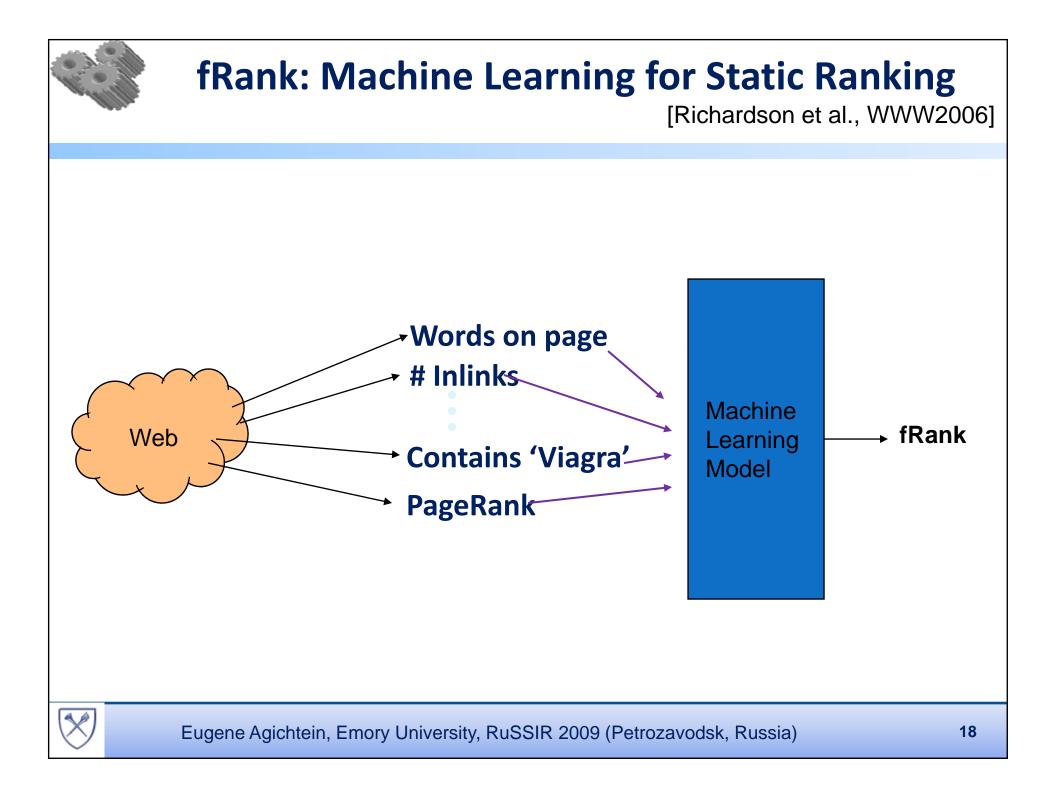
- Dealing with Scale
- Dealing with data sparseness



2. New Directions

- Active learning
- Ranking for diversity
- Fun and games





Features: Summary

[Richardson et al., WWW2006]

Popularity

- Anchor text and inlinks
- Page
- Domain
- PageRank

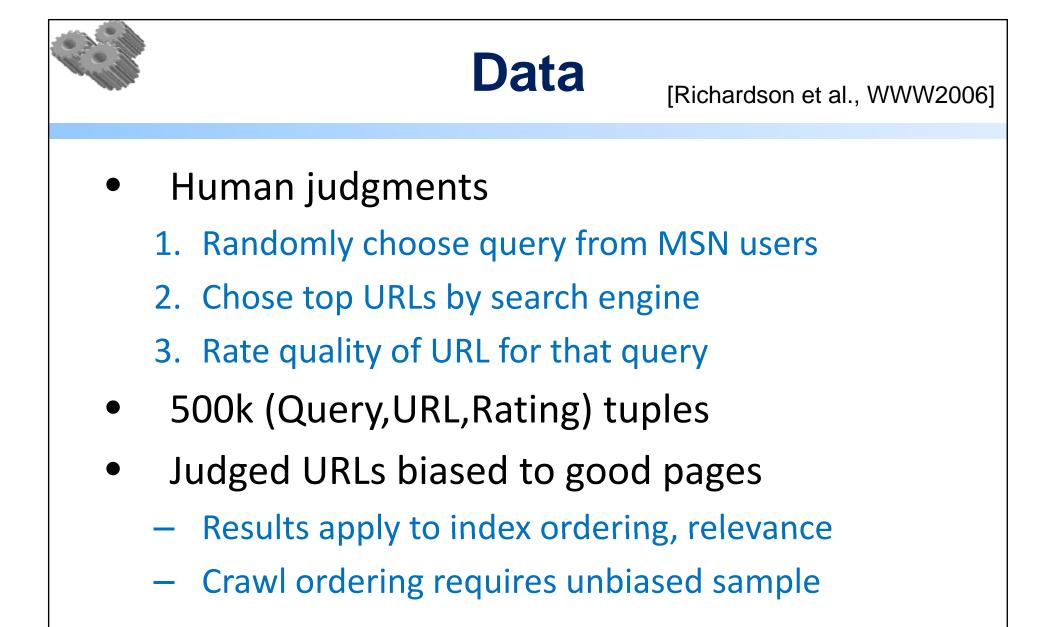
Features: Popularity

[Richardson et al., WWW2006]

- Data from MSN Toolbar
- Smoothed

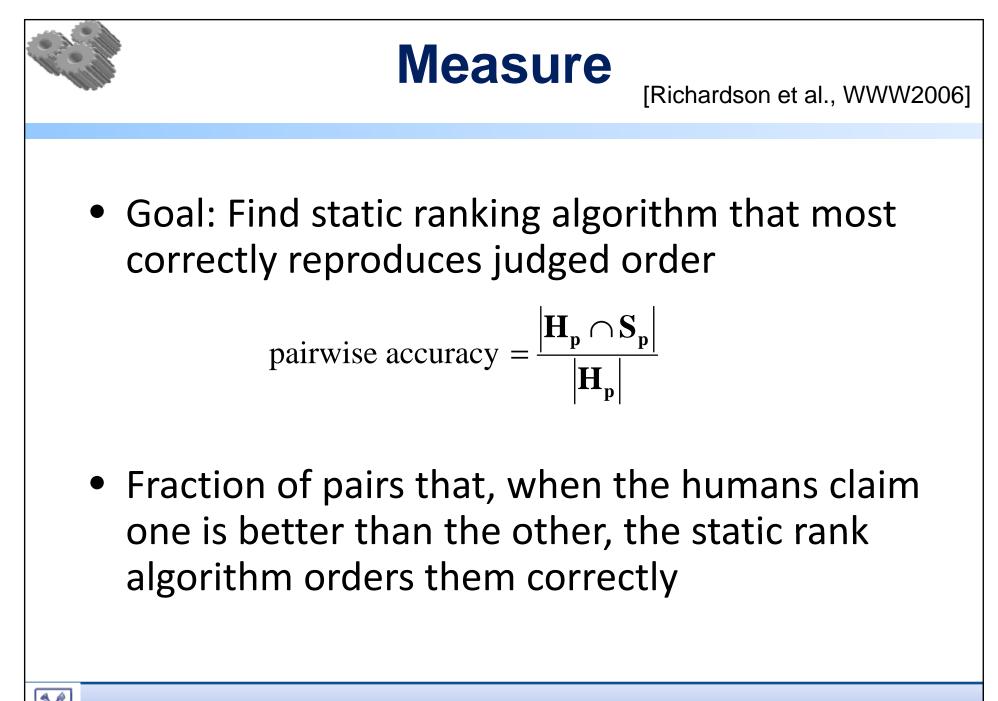
Function	Example	
Exact URL	cnn.com/2005/tech/wikipedia.html?v=mobile	
No Params	cnn.com/2005/tech/wikipedia.html	
Page	wikipedia.html	
URL-1	cnn.com/2005/tech	
URL-2	cnn.com/2005	
Domain	cnn.com	
Domain+1	cnn.com/2005	
Eu	igene Agichtein, Emory University, RuSSIR 2009 (Petrozavodsk, Russia)	20

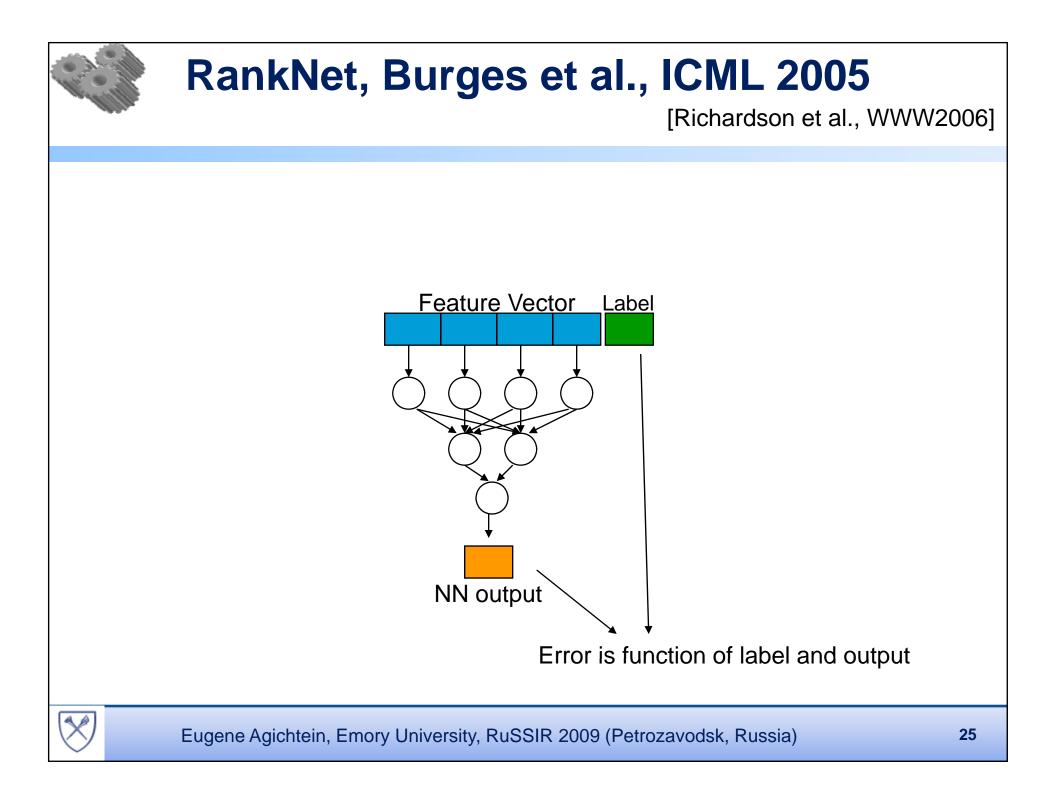
- Total amount of anchor text, unique anchor text words, number of inlinks, etc.
- Page
 - 8 Features based on page alone: Words in body, frequency of most common term, etc.
- Domain
 - Averages in domain: average #outlinks, etc.

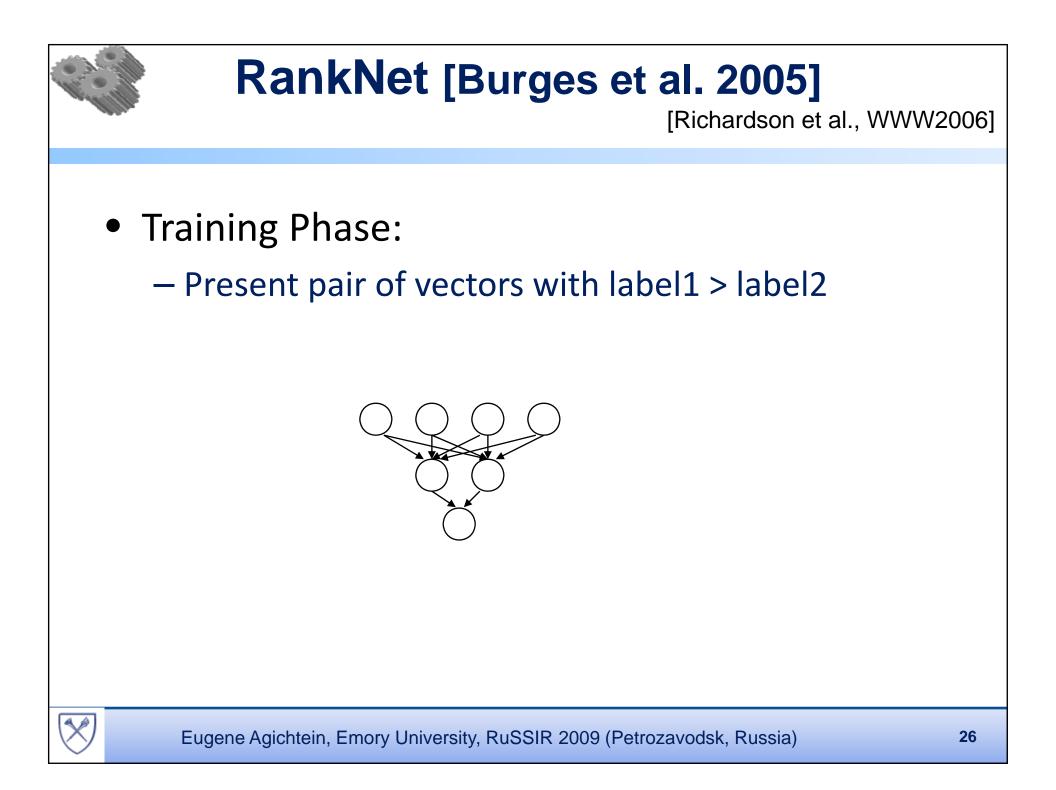


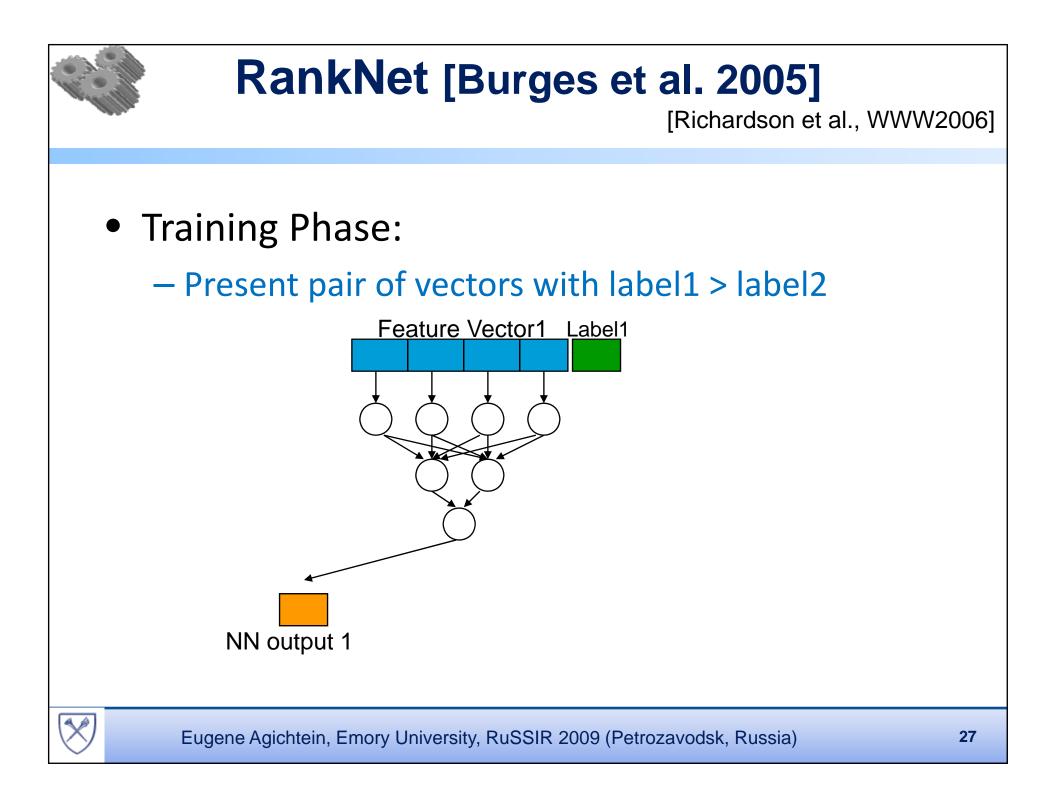
[Richardson et al., WWW2006]

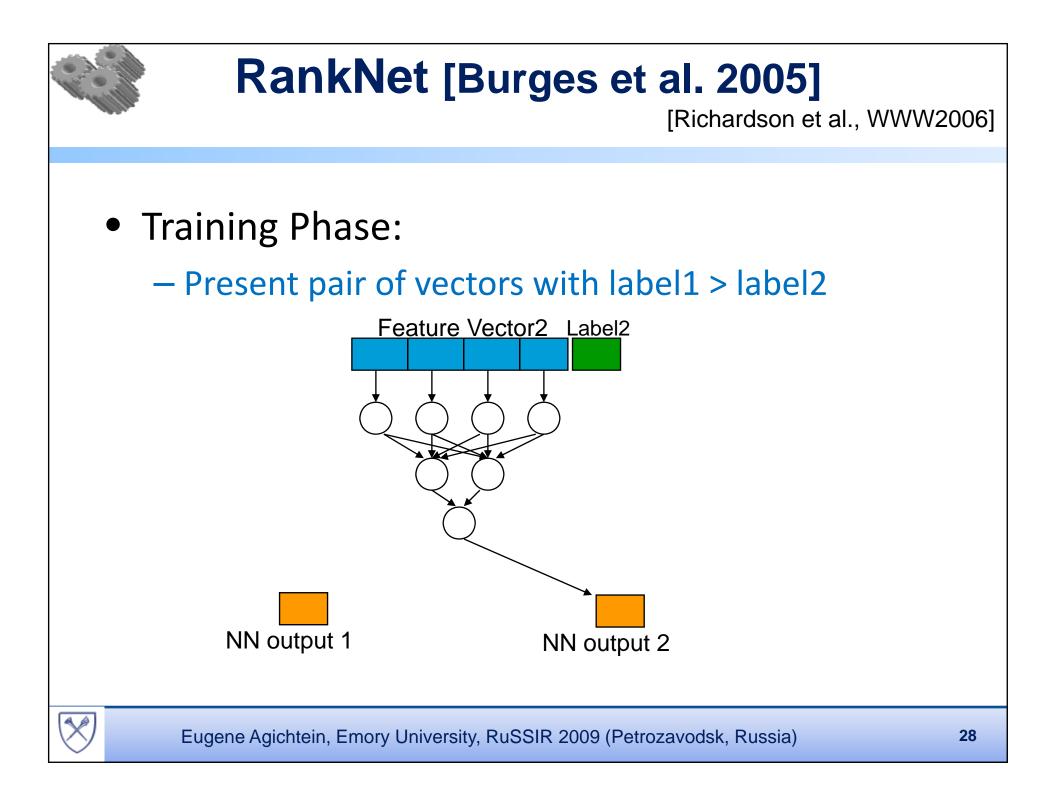
- (Query, URL, Rating) \rightarrow (URL, Rating)
- Take maximum rating for each URL
 Good page if relevant for at least one query
- Queries are common \rightarrow likely correct index order and relevance order

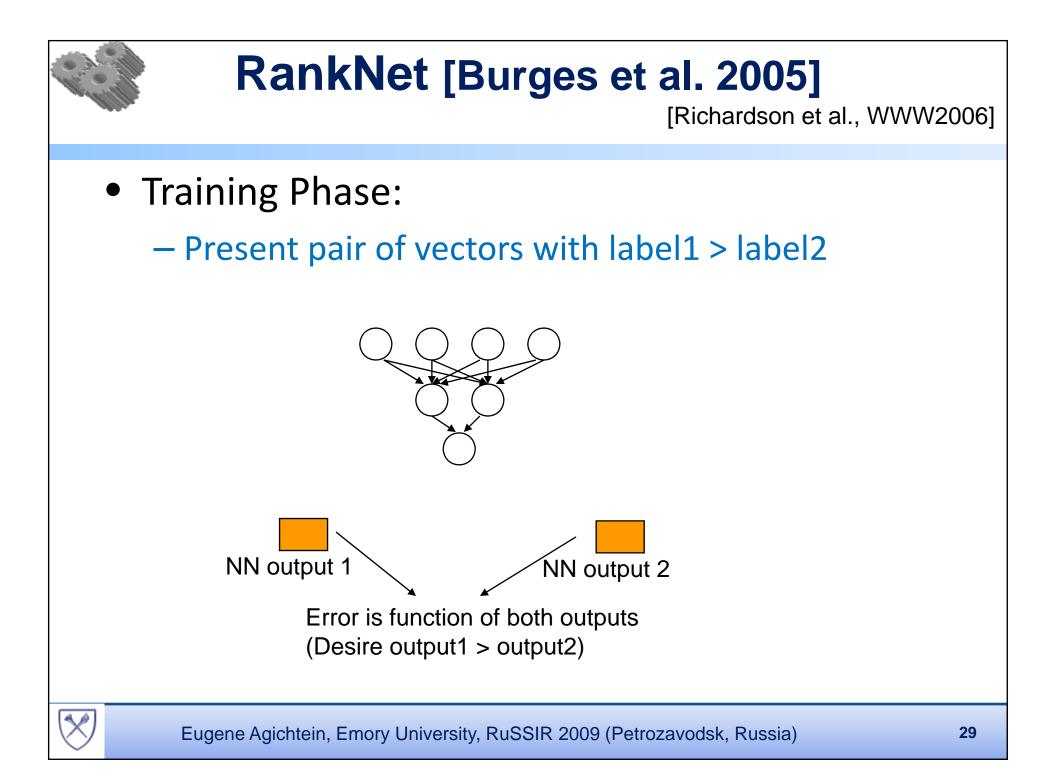


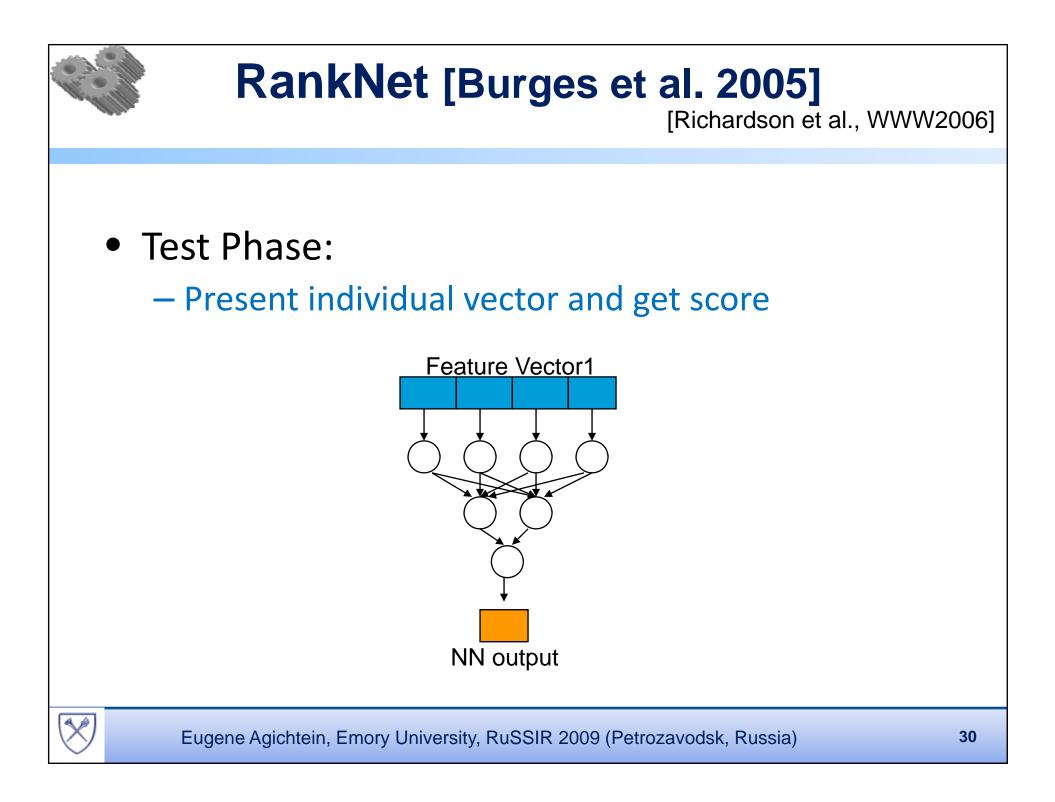


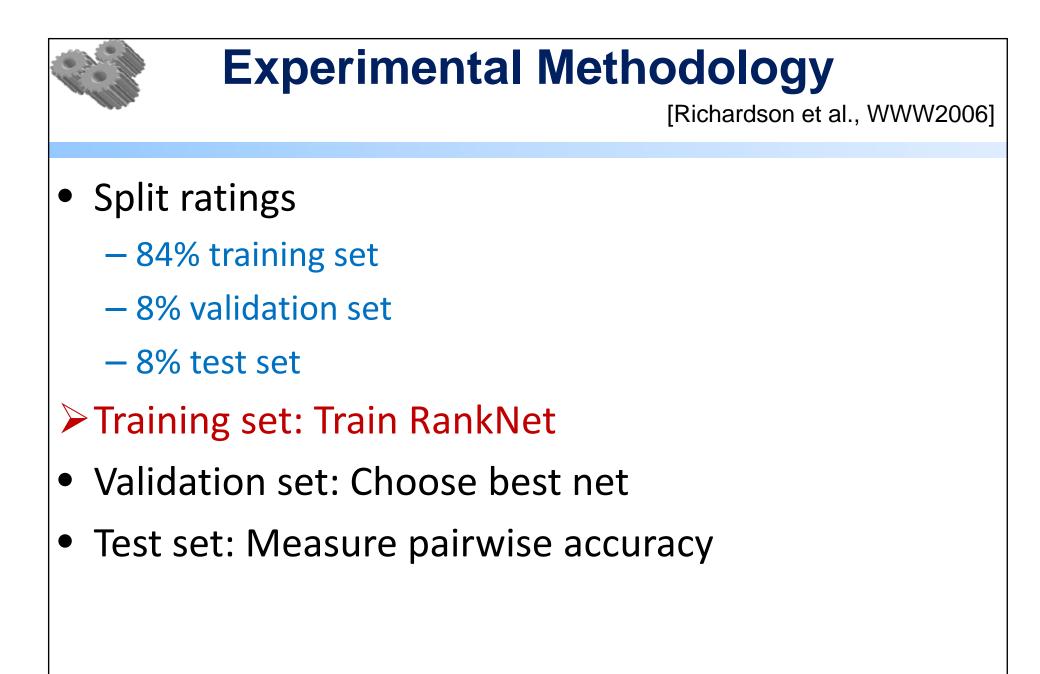


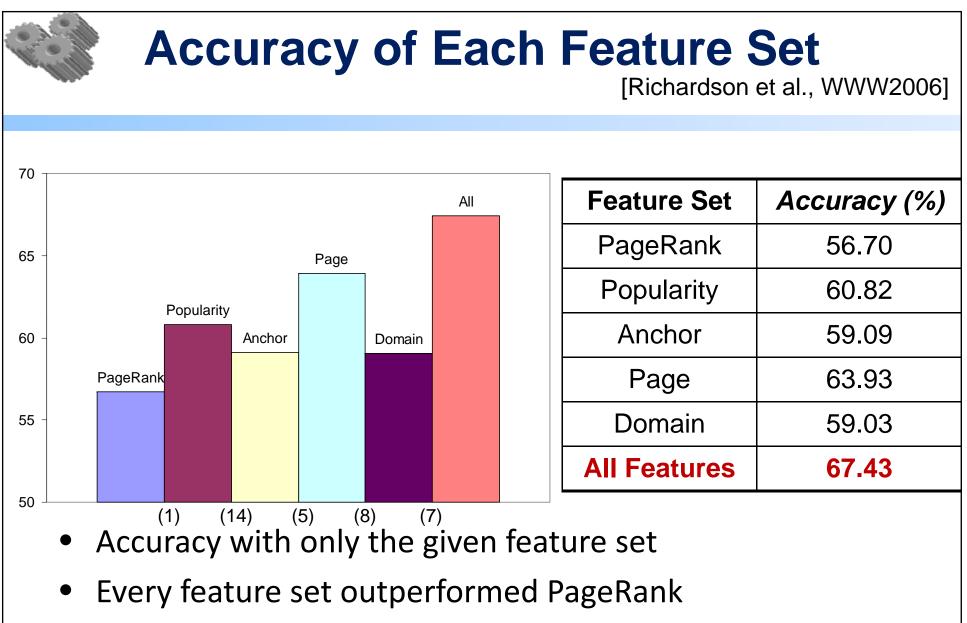












• Best feature sets contain no link information

Qualitative Evaluation

[Richardson et al., WWW2006]

 Top ten URLs for PageRank vs. fRank 			
PageRank	fRank		
google.com	google.com		
apple.com/quicktime/download	yahoo.com		
amazon.com	americanexpress.com		
yahoo.com	hp.com		
microsoft.com/windows/ie	target.com		
apple.com/quicktime	bestbuy.com		
mapquest.com	dell.com		
ebay.com	autotrader.com		
mozilla.org/products/firefox	dogpile.com		
ftc.gov	bankofamerica.com		
Technology Oriented	Consumer Oriented		

Behavior for Dynamic Ranking

[Agichtein et al., SIGIR2006]

Presentation			
ResultPosition	Position of the URL in Current ranking		
QueryTitleOverlap	Fraction of query terms in result Title		
Clickthrough			
DeliberationTime	Seconds between query and first click		
ClickFrequency	Fraction of all clicks landing on page		
ClickDeviation	Deviation from expected click frequency		
Browsing			
DwellTime	Result page dwell time		
DwellTimeDeviation	Deviation from expected dwell time for query		

Sample Behavior Features (from Lecture 2)

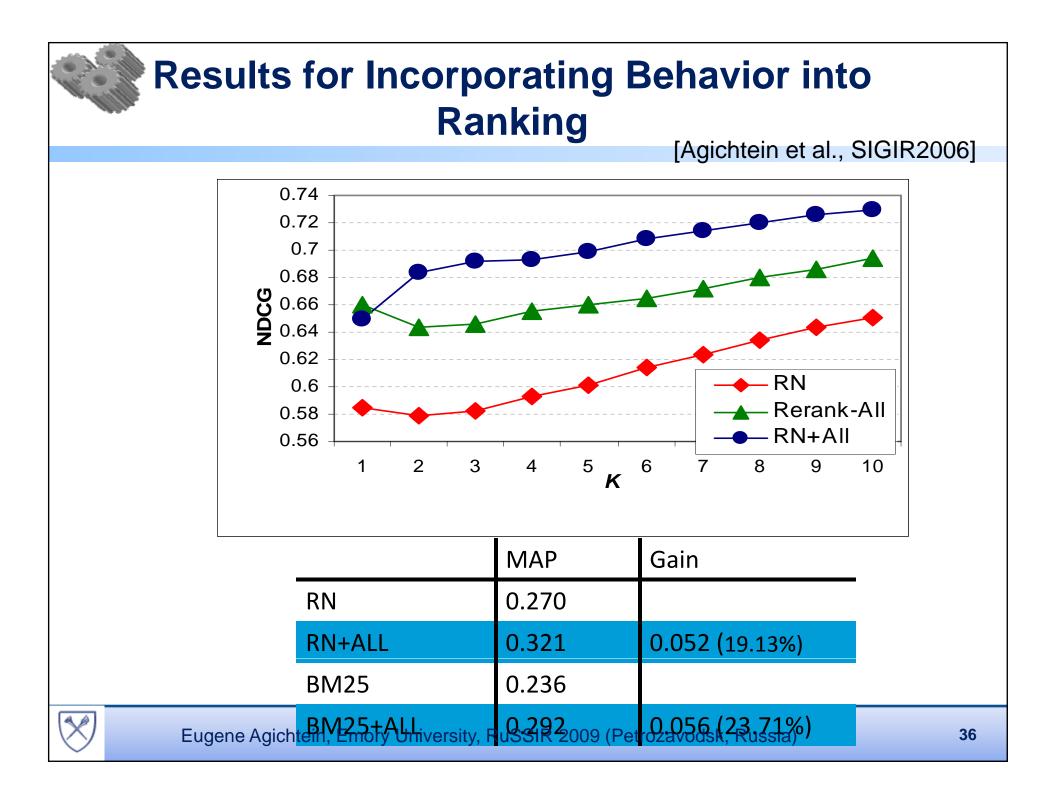
Feature Merging: Details

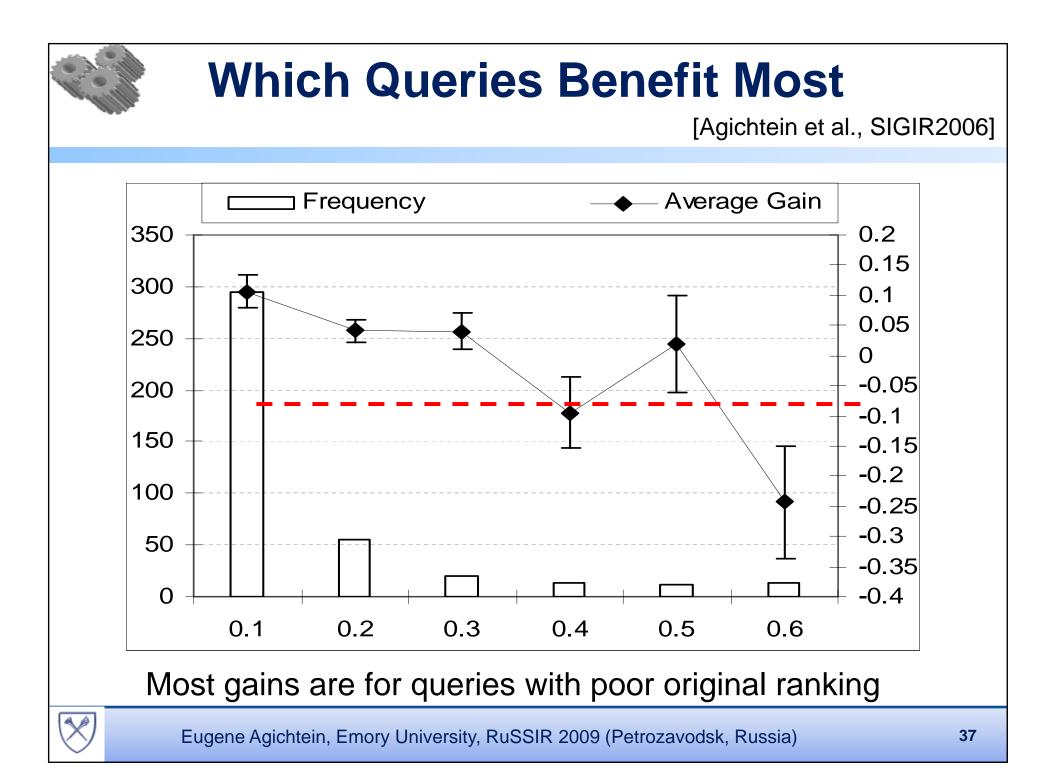
[Agichtein et al., SIGIR2006]

Query: SIGIR, fake results w/ fake feature values

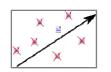
Result URL	BM25	PageRank	 Clicks	DwellTime	
sigir2007.org	2.4	0.5	 ?	?	••••
Sigir2006.org	1.4	1.1	 150	145.2	
acm.org/sigs/sigir/	1.2	2	 60	23.5	

- Value scaling:
 - Binning vs. log-linear vs. linear (e.g., μ =0, σ =1)
- Missing Values:
 - 0? (meaning for normalized feature values s.t. μ =0?)
- "real-time": significant architecture/system problems





Lecture 3 Plan



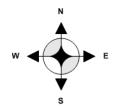
Review: Learning to Rank

Exploiting User Behavior for Ranking:

- Automatic relevance labels
- Enriching feature space

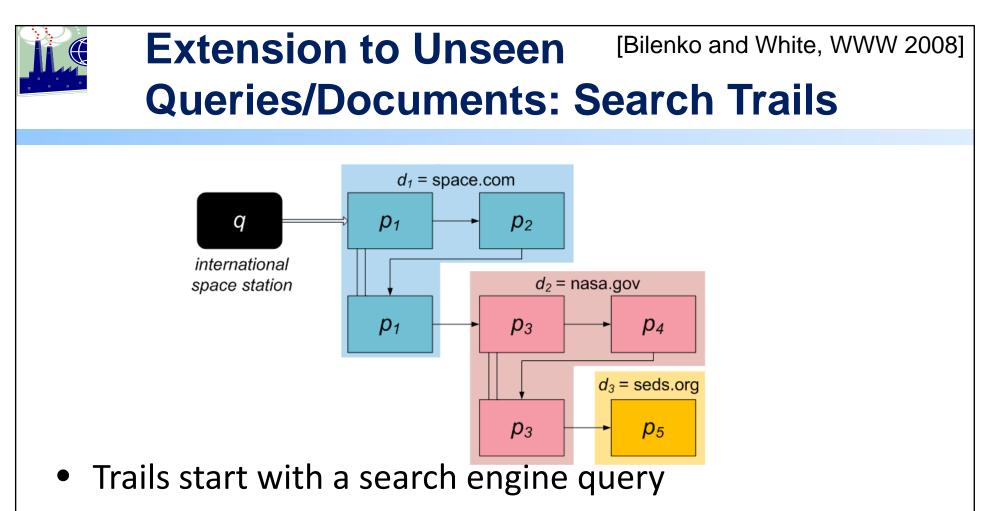
. Implementation and System Issues

- Dealing with data sparseness
- Dealing with Scale



2. New Directions

- Active learning
- Ranking for diversity
- Fun and games



- Continue until a terminating event
 - Another search
 - Visit to an unrelated site (social networks, webmail)
 - Timeout, browser homepage, browser closing

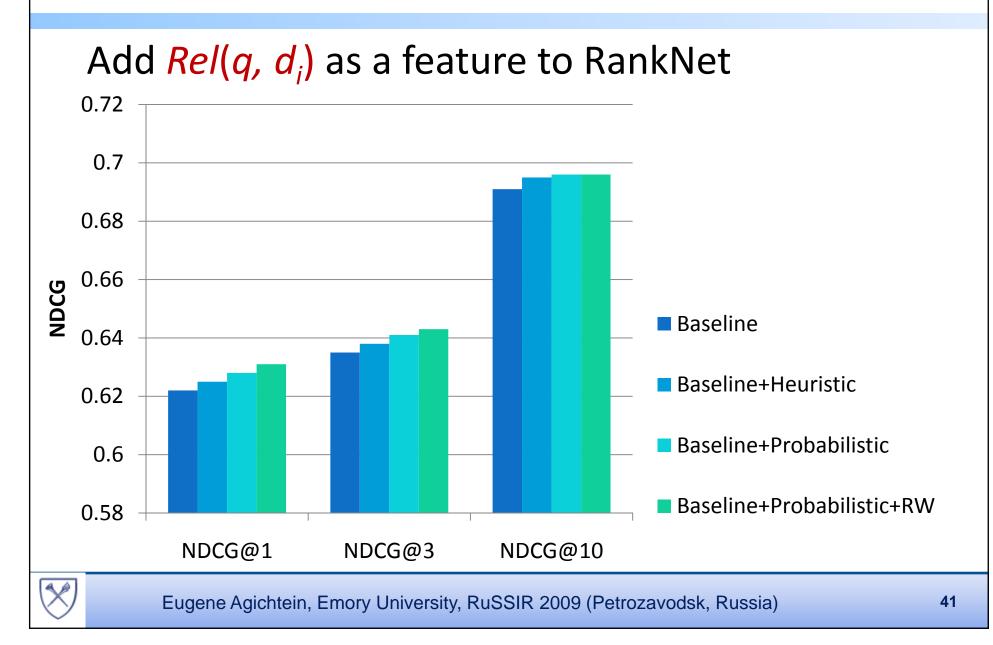
Probabilistic Model

[Bilenko and White, WWW 2008]

- IR via language modeling [Zhai-Lafferty, Lavrenko] $Rel(d_{i},q) = p(d_{i}|q) = \sum_{t_{i} \in q} p(t_{j}|q) p(d_{i}|t_{j})$
- Query-term distribution gives more mass to rare terms: $p(t_j|q) = \frac{\exp(-p(t_j))}{\sum_{t_k \in q} \exp(-p(t_k))}$
- Term-website weights combine dwell time and counts $f(d_{i}, t_{j}) = \sum_{\forall q': t_{j} \in q'; q' \rightarrow d_{i}} \log(ttme(q', d_{i})) \qquad p(d_{i}|t_{j}) = \frac{f(d_{i}, t_{j})}{\sum_{d_{k} \in D} f(d_{k}, t_{j})}$

Results: Learning to Rank

[Bilenko and White, WWW 2008]

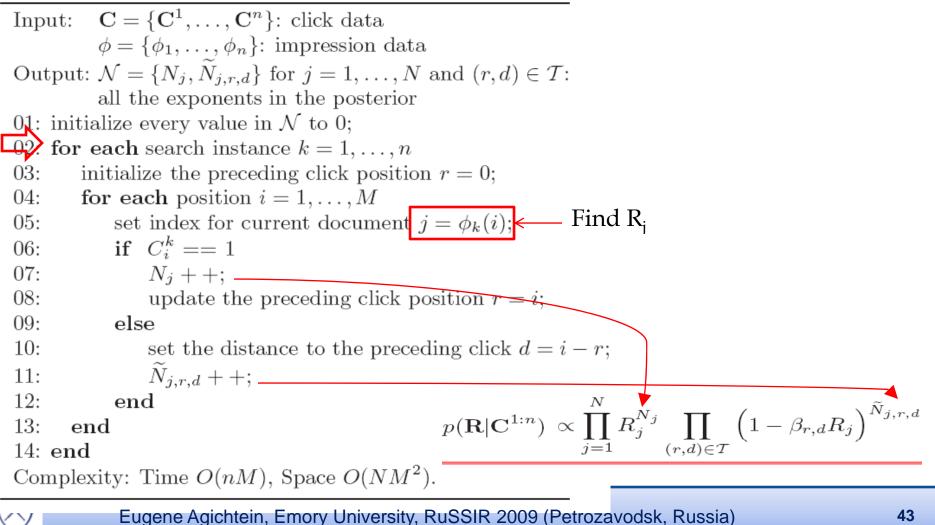




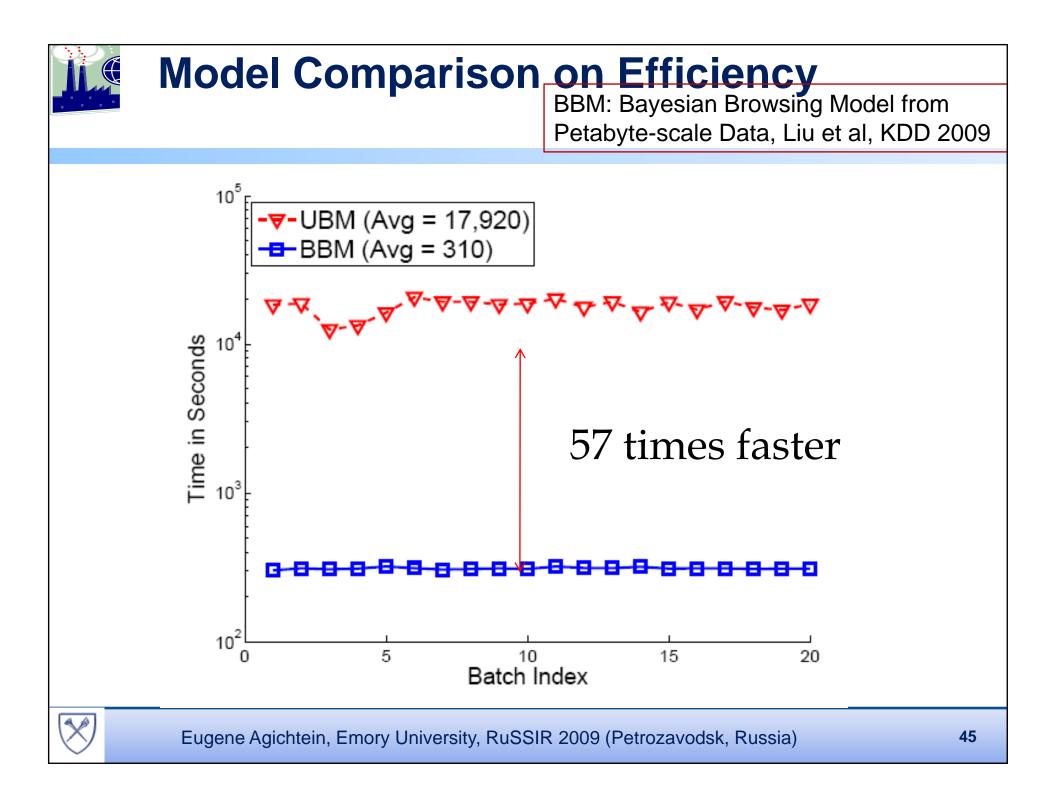
Training BBM: One-Pass Counting

BBM: Bayesian Browsing Model from Petabyte-scale Data, Liu et al, KDD 2009

Algorithm 1 : LearnBBM(C, ϕ , N)



Training BBM on MapReduce			
	BBM: Bayesian Browsing Model from Petabyte-scale Data, Liu et al, KDD 2009		
Algorithm 2 : Map(I) – Mapping a search instance Input: I: current search instance.	• Map: emit((q,u), idx)		
I.qry: returns the query, I.phi[i]: gives the URL on the <i>i</i> th positio I.clk[i]: indicates click on the <i>i</i> th position	• Reduce: construct the		
Output: $((q, u), val)$: intermediate (key, value) pai for every position	count vector		
01: $q = I.qry; r = 0;$ 02: for each position $i = 1, \dots, M$			
03: $u = I.phi(i);$ 04: if $I.clk[i] == 1$	Algorithm 3 : Reduce((q,u), valList)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Input: (q, u) : the intermediate key valList: a list of values associated with (q, u)		
08: else	Output: $((q, u), \mathbf{e})$: e is the exponent vector for (q, u)		
09: $d = i - r;$ 10: $val = r(2M - r - 1)/2 + d;$	1: $e = 0$; 2: for each well in well ist		
10: $val = r(2M - r - 1)/2 + d;$ 11: end	2: for each val in $valList$ 3: $e[val] + +$		
11: $\mathbf{Emit}((q, u), val);$	4: end		
13: end	5: return $((q, u), \mathbf{e})$		



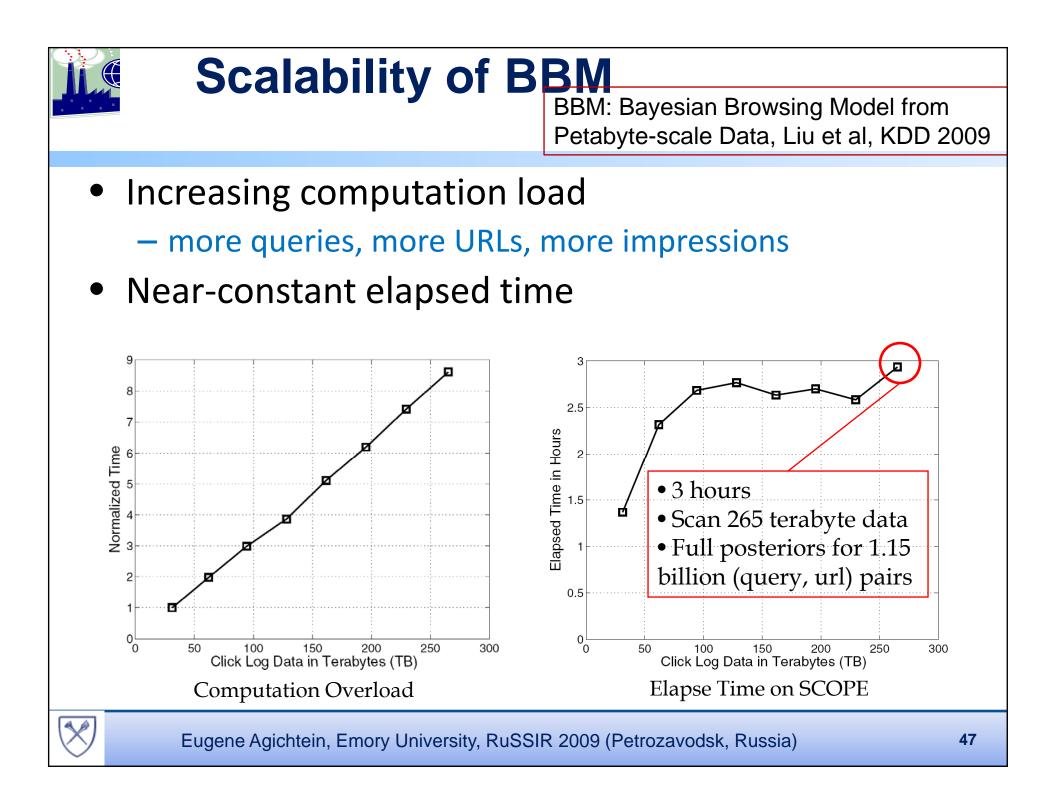
Large-Scale Experiment

BBM: Bayesian Browsing Model from Petabyte-scale Data, Liu et al, KDD 2009

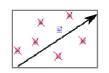
Job Index	Input Size (TB)	# Query (10 ⁶)	#Query-URL (10 ⁶)
1	31.2	16.3	169.0
2	62.1	30.7	322.9
3	94.3	42.9	454.1
4	128.1	53.9	575.0
5	161.8	63.8	686.4
6	195.5	75.4	816.6
7	229.7	86.3	954.8
8	265.2	103.0	1,155.7

- Setup:
 - 8 weeks data, 8 jobs
 - Job k takes first kweek data

- Experiment platform
 - SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets [Chaiken et al, VLDB'08]



Lecture 3 Plan

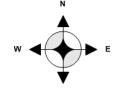


✓ Review: Learning to Rank

- Exploiting User Behavior for Ranking:
 - ✓ Automatic relevance labels
 - ✓ Enriching feature space

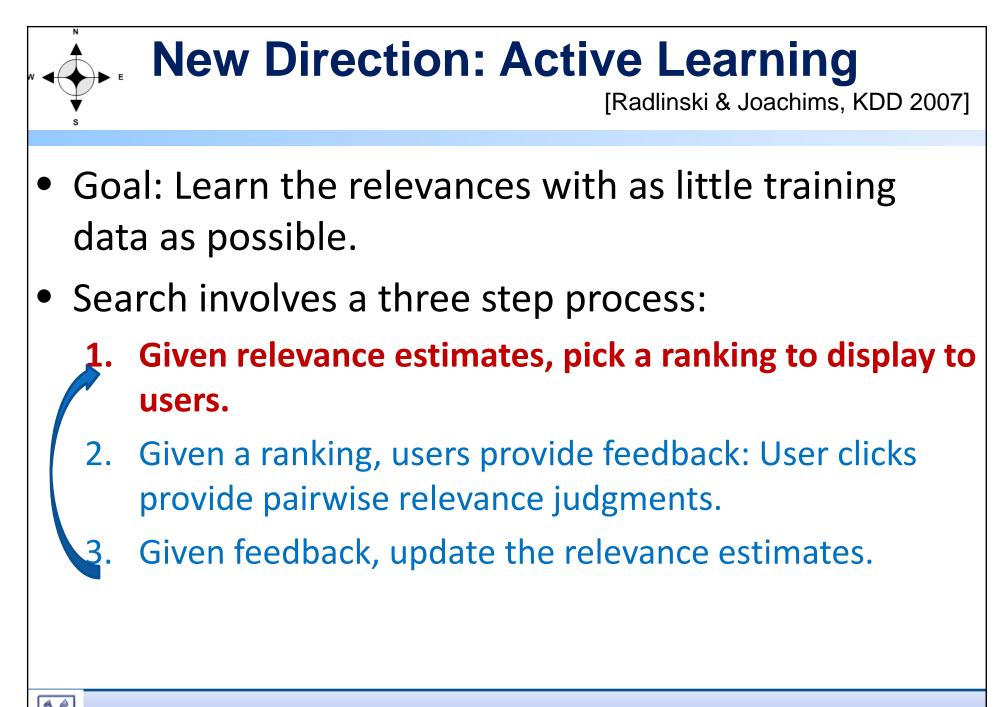
Implementation and System Issues

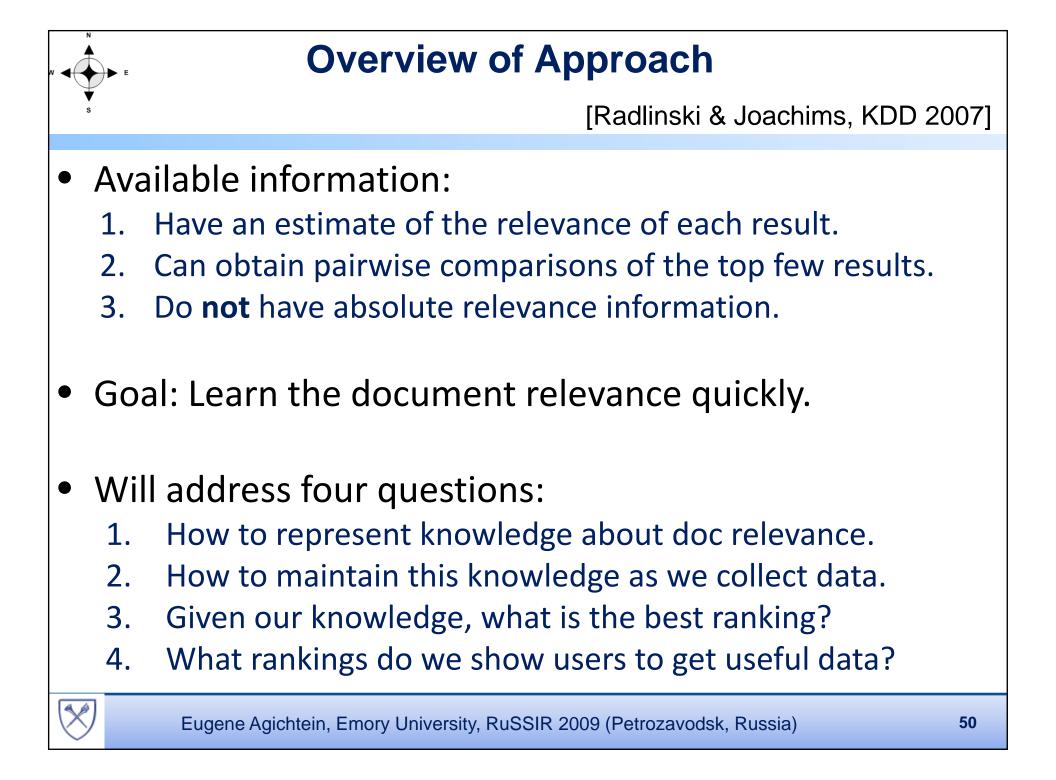
- Dealing with data sparseness
- ✓ Dealing with Scale



New Directions

- Active learning
- Ranking for diversity



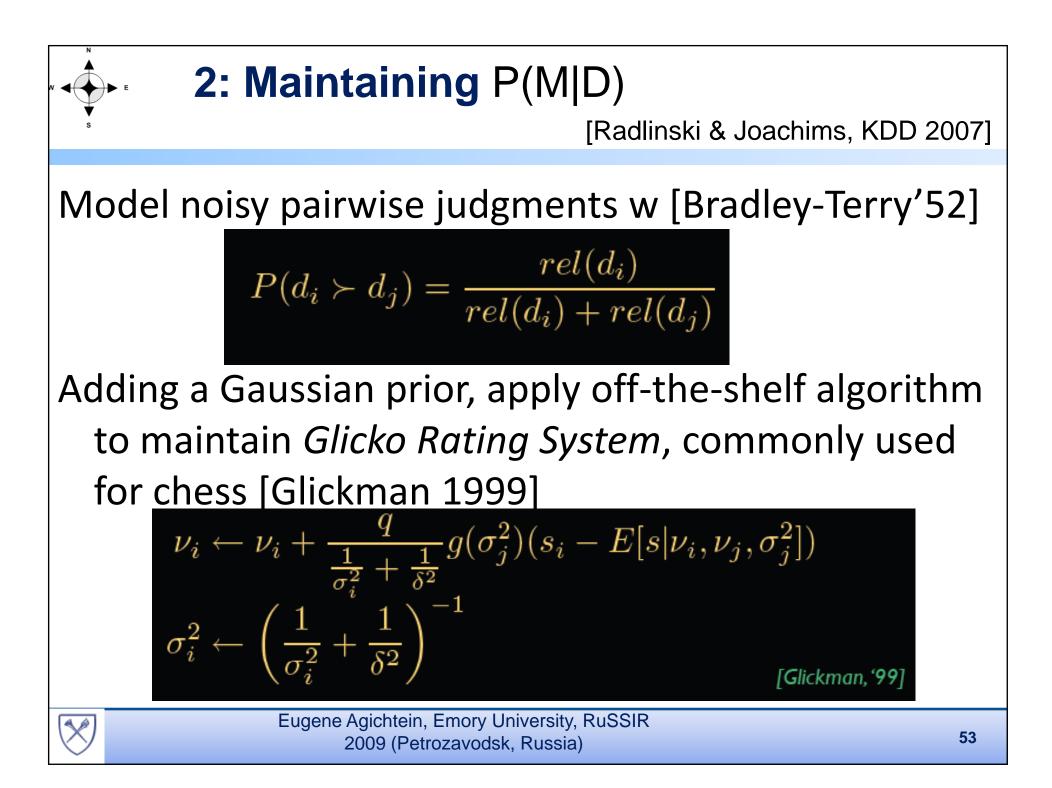


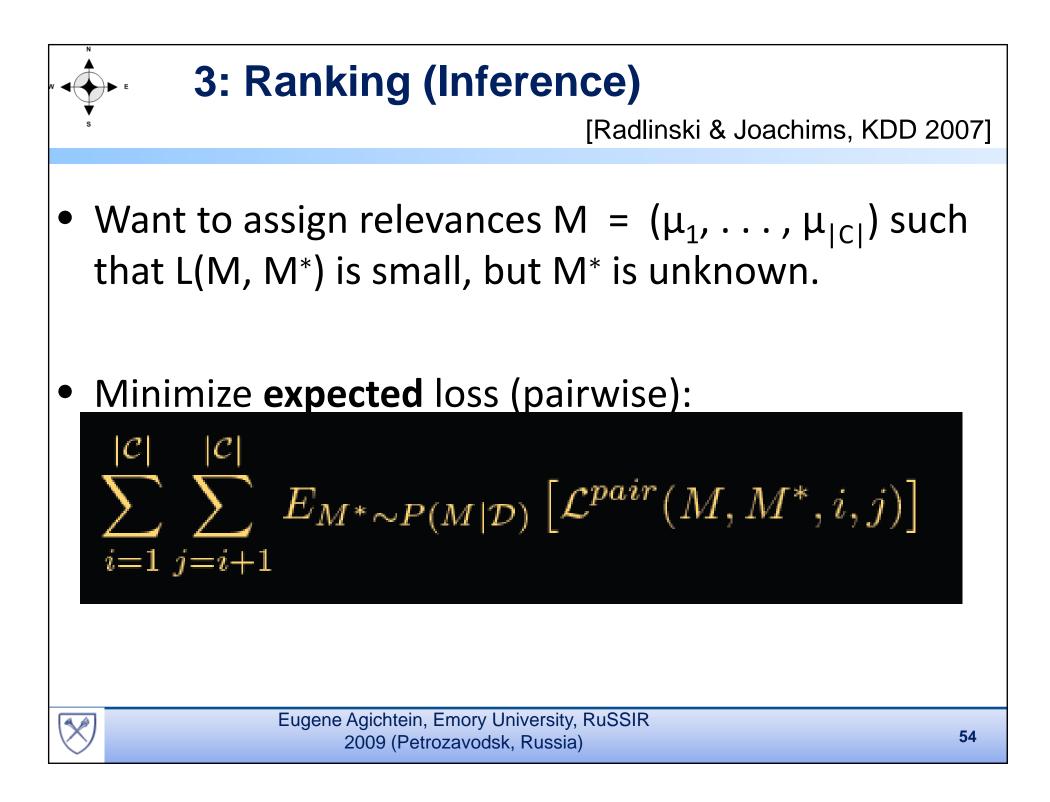


1: Representing Document Relevance [Radlinski & Joachims, KDD 2007] Given a fixed query, maintain knowledge about relevance as clicks are observed. This tells us which documents we are sure about, and which ones need more data.

Relevance

Relevance





4: Getting Useful Data

[Radlinski & Joachims, KDD 2007]

- **Problem**: could present the ranking based on **current** best estimate of relevance.
 - Then the data we get would always be about the documents already ranked highly.
- Instead, optimize ranking shown users:
 1. Pick top two docs to minimize future loss
 2. Append current best estimate ranking.

4: Exploration Strategies

[Radlinski & Joachims, KDD 2007]

Expected Loss:

 $\sum_{i=1}^{|\mathcal{C}|} \sum_{j=i+1}^{|\mathcal{C}|} E_{M^* \sim P(M|\mathcal{D})} \left[\mathcal{L}^{pair}(M, M^*, i, j) \right]$

Strategies:

Passive: Present the mode ranking. Random: Pick top two randomly.

Largest Expected Loss: Select pair with largest contribution to the loss.

One Step Lookahead: Select pair with largest expectation reduction in \mathcal{L}^{pair}

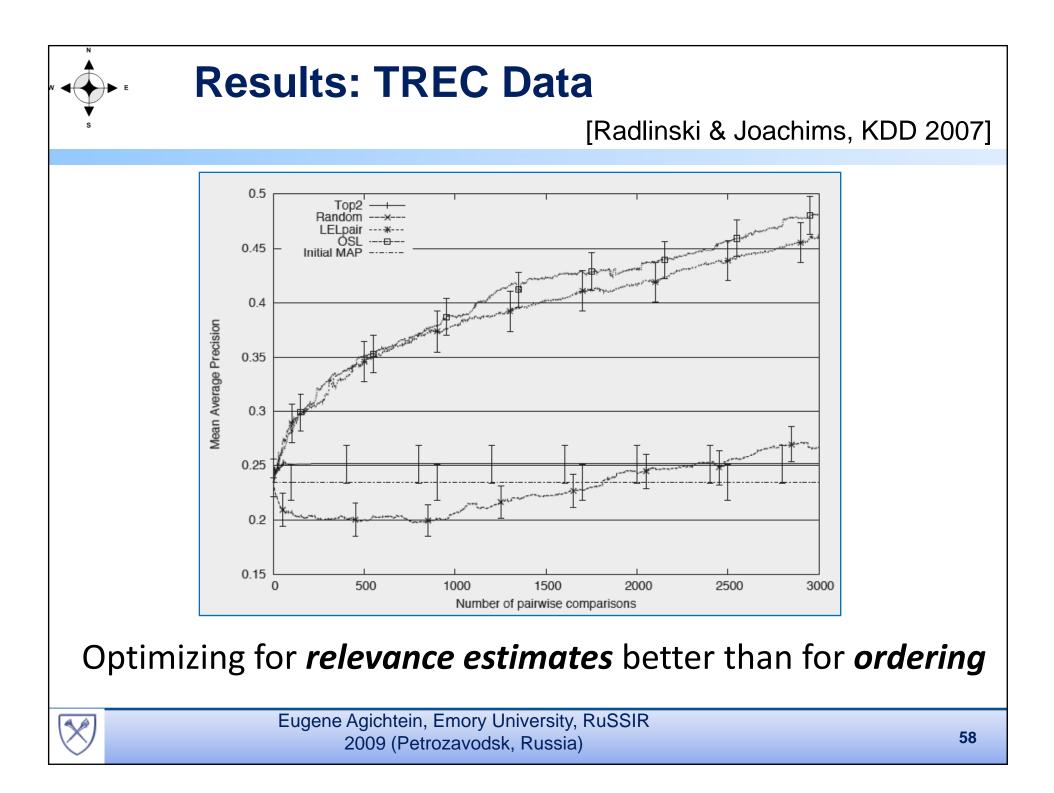
4: Loss Functions

[Radlinski & Joachims, KDD 2007]

What loss function do we want to optimize for?

- The loss for ranking a less relevant document above a more relevant document should be larger if the documents are presented higher.
- 2. The loss should be larger if error in relative relevance is larger.

$$\mathcal{L}^{pair} = \underbrace{e^{-r_{ij}}}_{(1)} \underbrace{\left((\mu_i - \mu_j) - (\mu_i^* - \mu_j^*) \right)^2}_{(2)} \underbrace{\mathbf{1}_{misordered}}_{(hinge; 1)}$$



Need for Diversity (in IR) [Predicting Diverse Subsets Using Structural SVMs, Y. Yue and Joachims, ICML 2008]

- Ambiguous Queries
 - Users with different information needs issuing the same textual query ("Jaguar")
- Informational (Exploratory) Queries:
 - User interested in "a specific detail or entire breadth of knowledge available" [Swaminathan et al., 2008]
 - Want results with high information diversity

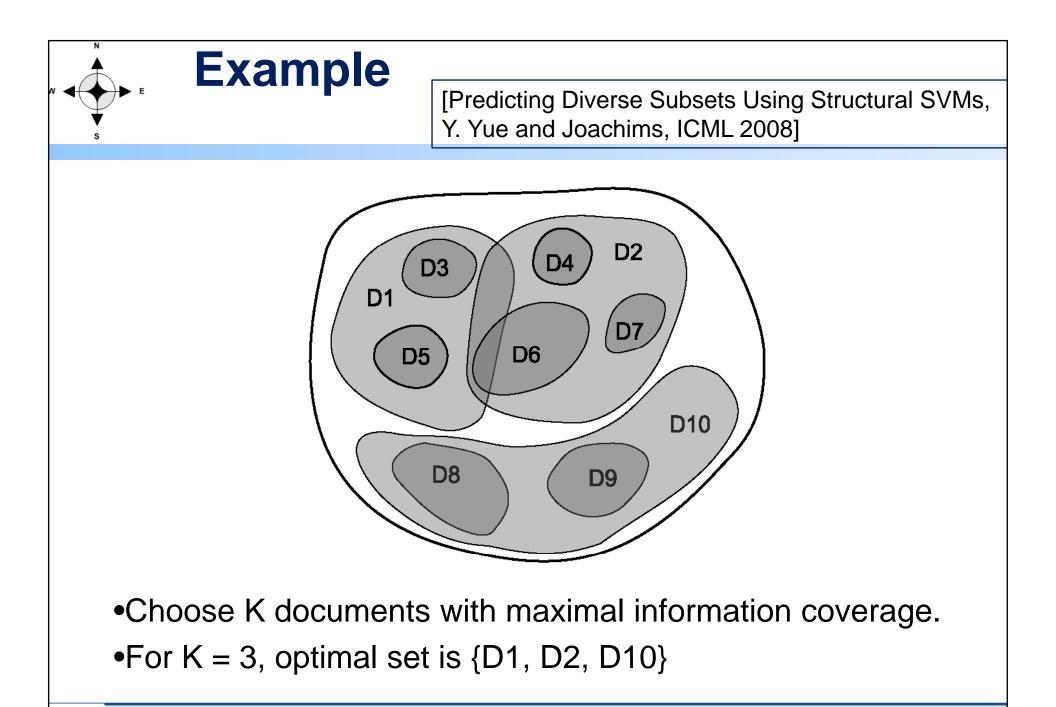
Optimizing for Diversity [Predicting Diverse Subsets Using Structural SVMs, Y. Yue and Joachims, ICML 2008] Long interest in IR community Requires inter-document dependencies \rightarrow Impossible given current learning to rank methods Problem: no consensus on how to measure diversity. \rightarrow Formulate as predicting diverse subsets

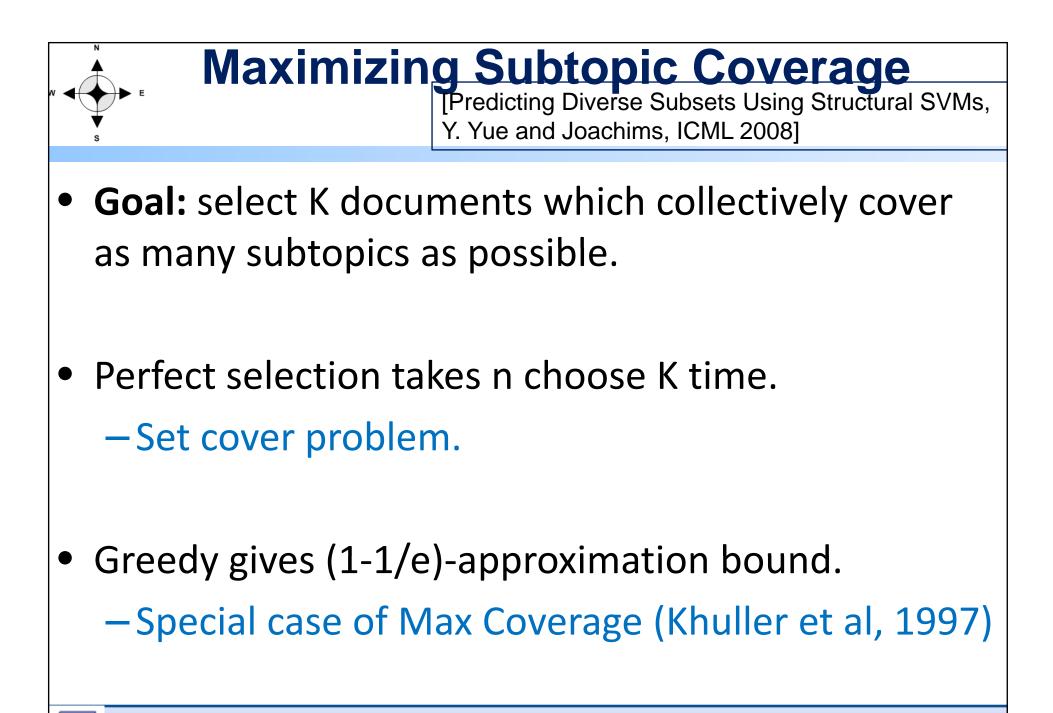
- Experiment:
 - Use training data with explicitly labeled subtopics (TREC 6-8 Interactive Track)
 - Use loss function to encode subtopic loss
 - Train using structural SVMs [Tsochantaridis et al., 2005]

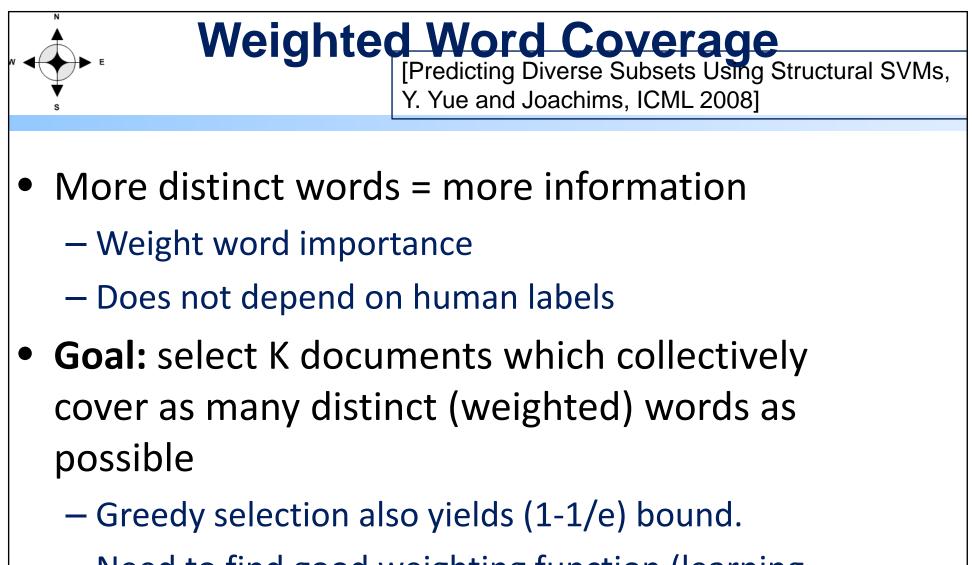
Representing Diverse Subsets Using Structural SVMs,

Y. Yue and Joachims, ICML 2008]

- Existing datasets with manual subtopic labels
 - E.g., "Use of robots in the world today"
 - Nanorobots
 - Space mission robots
 - Underwater robots
 - Manual partitioning of the total information regarding a query
 - Relatively reliable







Need to find good weighting function (learning problem).

[Predicting Diverse Subsets Using Structural SVMs, Y. Yue and Joachims, ICML 2008]

Document Word Counts

	V1	V2	V3	V4	V5
D1			Х	Х	Х
D2		Х		Х	Х
D3	Х	Х	Х	Х	

Word	Benefit
V1	1
V2	2
V3	3
V4	4
V5	5

Marginal Benefit

	D1	D2	D3	Best
Iter 1	12	11	10	D1
Iter 2				

[Predicting Diverse Subsets Using Structural SVMs Y. Yue and Joachims, ICML 2008]

Document Word Counts

	V1	V2	V3	V4	V5
D1			Х	Х	Х
D2		Х		Х	Х
D3	X	X	Х	Х	

Word	Benefit
V1	1
V2	2
V3	3
V4	4
V5	5

Marginal Benefit

	D1	D2	D3	Best
Iter 1	12	11	10	D1
Iter 2		2	3	D3

Results: TREC data

[Predicting Diverse Subsets Using Structural SVMs Y. Yue and Joachims, ICML 2008]

- 12/4/1 train/valid/test split
 - Approx 500 documents in training set
- Permuted until all 17 queries were tested once
- Set K=5 (some queries have very few documents)
- SVM-div uses term frequency thresholds to define importance levels
- SVM-div2 in addition uses TFIDF thresholds

Results: TREC data

[Predicting Diverse Subsets Using Structural SVMs Y. Yue and Joachims, ICML 2008]

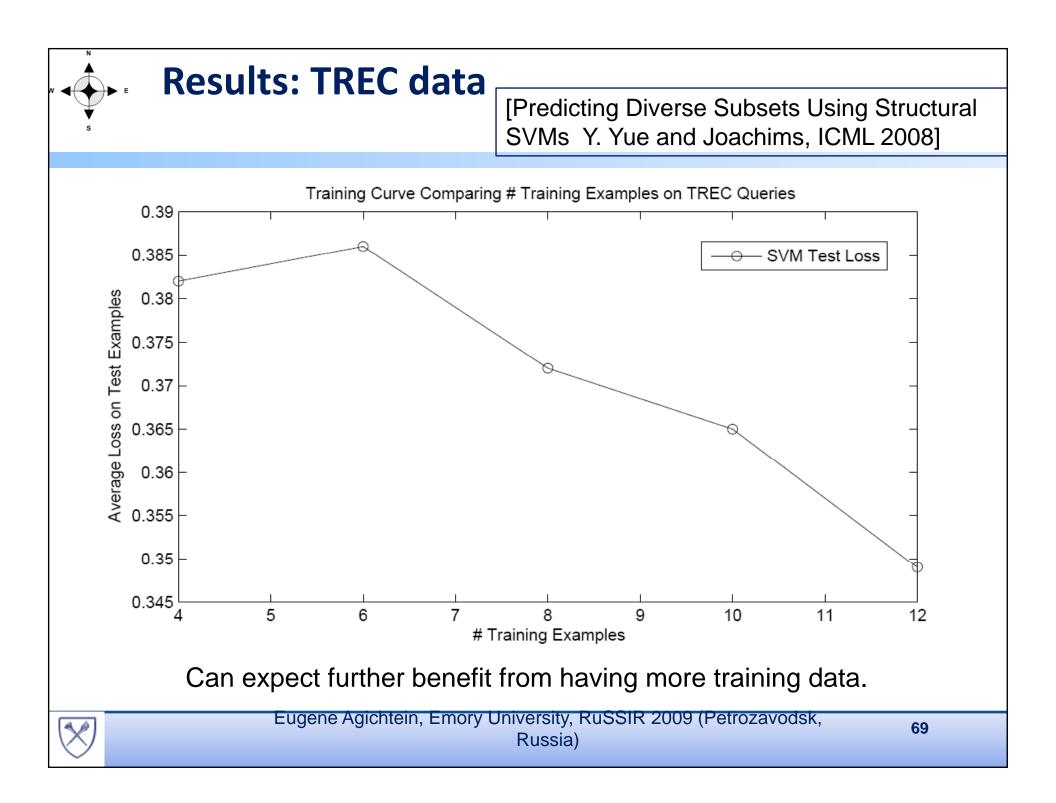
W/T/L

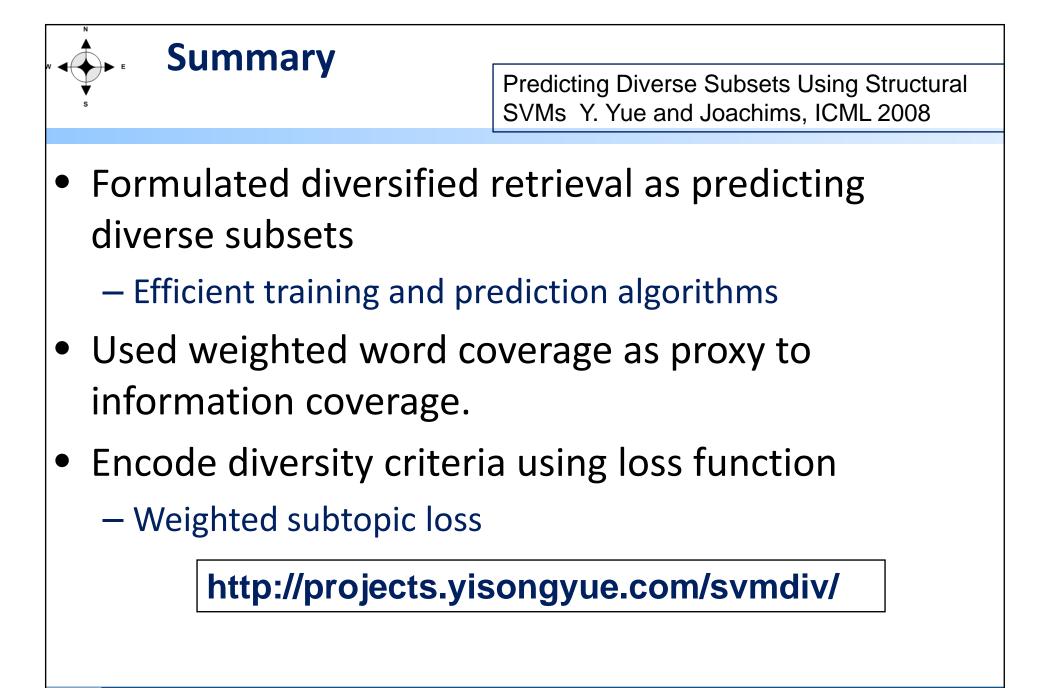
13/0/4

9/6/2

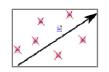
14/0/3**

Method	Loss		
Random	0.469	Methods	
Okapi	0.472	SVM-div vs Ess. Pages	
Unweighted Model	0.471	SVM-div2 vs	
Essential Pages	0.434	Ess. Pages	
SVM-div	0.349	SVM-div vs SVM-div2	
SVM-div2	0.382		





Lecture 3 Summary

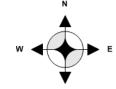


✓ Review: Learning to Rank

- **Exploiting User Behavior for Ranking:**
 - ✓ Automatic relevance labels
 - Enriching feature space

Implementation and System Issues

- Dealing with data sparseness
- ✓ Dealing with Scale



New Directions

- Active learning
- Ranking for diversity

Key References and Further Reading

Joachims, T. 2002. *Optimizing search engines using clickthrough data*, KDD 2002

- **Agichtein**, E., Brill, E., Dumais, S. *Improving web search ranking by incorporating user behavior information*, SIGIR 2006
- Radlinski, F. and Joachims, T. Query chains: learning to rank from implicit feedback, KDD 2005
- Radlinski, F. and Joachims, T. Active exploration for learning rankings from clickthrough data, KDD 2007
- **Bilenko**, M and White, R, *Mining the search trails of surfing crowds: identifying relevant websites from user activity.*, WWW 2008
- Yue, Y and Joachims, Predicting Diverse Subsets Using Structural SVMs, ICML 2008

