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Annotation

Greedy function approximation and boosting algorithms are well
suited for solving practical machine learning tasks. We will describe
well-known boosting algorithms and their modifications used for
solving learning to rank problems.
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Search engine ranking

Main goal: to rank documents according to their quality of
conformance to the search query.

How to evaluate ranking?
Prerequisites:

e Set of search queries Q@ = {q1, .., qn}-

e Set of documents corresponding to each query ¢ € Q .

q— {dl, dg, }

o Relevance judgments for each pair (query, document)
(In our model real numbers rel(q,d) € [0,1])



Evaluation measures

Evaluation mark for ranking will be an average value of evaluation
measure over the set of search queries Q:

> EvMeas(ranking for query q)
qe@

n
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Example of evaluation measure EvMeas:

e Precision-10 - percent of documents with relevance
Jjudgments greater than 0 in top-10



Evaluation measures

e MAP - mean average precision

—_

k
MAP(ranking for query q) = — Z

k - number of documents with positive relevance judgments
corresponding to query ¢, n,(i) - position of the i-th
document with relevance judgment greater than 0.



Evaluation measures

e DCG - discounted cumulative gain
N, l
rel;
DCG(ranking for quer = — )
( g for query q) ;logﬂJrl
Ny - total number of documents in ranked list, rel; - relevance
judgment for document on position j.

¢ normalized DCG(nDCGQG)

DCG(ranking for query q)

nDCG(...) = DCG(ideal ranking for query q)



Feature based ranking model

e Each pair (query, document) is described by the vector of
features.

(Q7d) - (fl(qv d)? fZ(Q7d)7 )



Feature based ranking model

e Each pair (query, document) is described by the vector of
features.

(Q7d) - (fl(Q7 d)7 f2(Qa d)v )

e Search ranking is the sorting by the value of "relevance
function". Relevance function is a combination of features:

fria,d) = 3.14 - logy(fo(q, d)) + /o@D 4 ..



Optimization problems

How to get a good relevance function?

Get learning set of examples P, - set of pairs (¢, d) with relevance
judgments rel(q, d).

Use learning to rank methods to obtain fr.



Optimization problems (listwise approach)

e Solve direct optimization problem:

Y>> EvMeas(ranking for query q with fr)

q€Q
arg max =
frer n

F - set of possible ranking functions. Q; - set of different
queries in learning set P

Difficulty in solving: most of evaluation measures are
non-continuous functions.



Optimization problems (pointwise approach)

e Simplify optimization task to regression problem and minimize
sum of loss functions:

> L(fr(g,d),rel(q,d))

(Q7d)€Pl

- _
arg min +(fr) -

L(fr(q,d),rel(q,d)) - loss function, F' - set of possible
ranking functions. Examples of loss functions:

o L(fr,rel) = (fr —rel)?
o L(fr,rel) = |fr — rel|



Optimization problem (pairwise approach)

e Try to use well-known machine learning algorithms to solve the
following classification problem:

e an ordered pair of documents (dy, d3)(corresponding to query
q) belongs to first class iff rel(q, d1) > rel(q,ds)

e an ordered pair of documents (d;, dz)(corresponding to query
q) belongs to second class iff rel(q,dy) < rel(q, dz)



Boosting algorithms and greedy function approximation

We will solve regression problem:

>, L(fr(q,d),rel(q,d))

. (Q:d)EPZ
arg 1min
frer n




Boosting algorithms and greedy function approximation

We will solve regression problem:

>, L(fr(q,d),rel(q,d))

. (q,d)EPl
arg 1min
frer n

We will search relevance function in the following form:

M
fr((b d) = Z akhk(qa d)
k=1

Relevance function will be a linear combination of functions hy(q,d),
functions hy(q, d) belong to simple family H (weak learners family) .



Boosting algorithms and greedy function approximation

We will construct final function by iterations. On each iteration we
will add an additional term ahy(q,d) to our relevance function:

fri(e,d) = fri—1(q, d) + arhi(q, d)



Boosting algorithms and greedy function approximation

We will construct final function by iterations. On each iteration we
will add an additional term ahy(q,d) to our relevance function:

fri(e,d) = fri—1(q, d) + arhi(q, d)

Values of parameter oy, and weak learner h (g, d) can be a solution
of natural optimization task:

> L(fri-1(q,d) + ah(q,d),rel(q,d))

. (q7d)epl
arg min
a,h(g,d) n

This problem can be solved directly for quadratic loss function and
simple classes H, but it can be very difficult to solve for other loss
functions.



Boosting algorithms and greedy function approximation

We will construct additional term ayhi(q,d) in three steps :

¢ Gradient approximation. Consider relevance function fr like
vector of values indexed by learning examples. Get gradient
vector g = {g(q.d)} (g,a)cp, for error function :

- [2m)]
Yad) = 1 5Fr(q, d) fr=fres



Boosting algorithms and greedy function approximation

We will construct additional term ayhi(q,d) in three steps :

¢ Gradient approximation. Consider relevance function fr like
vector of values indexed by learning examples. Get gradient
vector g = {g(q.d)} (g,a)cp, for error function :

- [2m)]
Yad) = 1 5Fr(q, d) fr=fres

¢ Weak learner selection(up to a constant). Find most highly
correlated with g function hy(g,d) by solving the following
optimization task:

g min S (g0 — Ohla, )’

B,h(q,d)eH (q.d)EP,



Boosting algorithms and greedy function approximation

e Selection of «ay. Find the value of «y from one-parameter
optimization problem:

Z L(frk—l(Qa d) + ahk (qv d)’ Tel(Q? d))
(q,d)eP,

arg min
« n

Iterate... |terate... Iterate...



Weak learner selection

Let our class of weak learners H will be a set of decision-tree
functions:

fa(g,d) > 0.5
Yes No
res = 3 fes(gq,d) > 0.78
Yes o
res = B2 res = f33

Example of 3-region decision-tree function. The function splits
feature space on 3 regions by conditions in the form f;(¢,d) > «
(f; - split feature, « - split bound). It has a constant value for
feature vectors in one region.



Weak learner selection (function values)

Our weak learners family will be 6-region(example, const-regions)
decision-tree functions. We will try to solve:

arg min Z ( 9(q,d) — Bh(q, ))

h(g,d)eH
( ) (qu)epl



Weak learner selection (function values)

Our weak learners family will be 6-region(example, const-regions)
decision-tree functions. We will try to solve:

arg min > (gga) — Bhlg,d))
h(q,d)eH (g e,

Suppose we know tree-structure of weak learner h(q,d) - we know
split conditions and regions. We should find "region constant
values". Optimization problem reduces to ordinary regression
problem:

arg min Z (9(¢.0) = BBind(ad))’

h(g,d)eH,3 ()P,

ind(q,d) - number of region, which contains features vector for
pair (q,d) (ind(q,d) € {1, ..,6}).



Weak learner selection (tree structure)

Greedy tree selection:

e bestTree = constant function (1-region tree).



Weak learner selection (tree structure)

Greedy tree selection:

e bestTree = constant function (1-region tree).

o Greedy split. Try to split regions of bestTree and find the

best split.
f3( d) > 0.5

Yes o

q/{>'? fe q7/)\

Suppose we have constant set of possible split bounds.
Number of possible splits is bounded by the value:

#{regions} - #{ features} - #{split bounds}



Weak learner selection (tree structure)

Greedy tree selection:

e bestTree = constant function (1-region tree).

o Greedy split. Try to split regions of bestTree and find the

best split.
f3( ,d) > 0.5

Yes o

frla Q> frla d) >

Suppose we have constant set of possible split bounds.
Number of possible splits is bounded by the value:

#{regions} - #{ features} - #{split bounds}

e Repeat previous step.



MatrixNet

Weak learners set- full decision trees with depth k& and 2% regions.

o Constant number of layers (constant depth).

e The same split conditions for one layer.

fs(g,d) > 0.5
Yes No
fs6(q,d) > 034 fs6(q,d) > 0.34
Yes o Yes o
B B2 B3 Ba

We don’t need complex structure: depth is the main thing.



MatrixNet

Internet Mathematics 2009
Anpexc

Leaderboard

The table shows both final contest results (May 18, 2009) and new results. Read more about the contest task and evall
it 2009 Datasets section

Datagets Team Last upload time Number of trials Last result Final resuft
on {public evaluation)
ity Joker 05.08.2008 (05:07 GMT+13) 2 4283317 4157528
# N Euclid 24.08.2008 (09:12 GMT+13) 30 4280853 4949605
d Conditions
alexeigor 07.05.2008 (17:02 GMT+13) 118 4280676 4141230
MysteriousGuest 24.08.2008 (12:33 GMT+13) 1 4279174 4143886
E / Mobeaa 17.03.2009 (16:25 GMT+I3) = 4.276001 4139854
Matrixet =7
ACGT 15.05.2003 (14:03 GMT+13) 21 4 274666 4728807
WoodWebh 22.04.2008 (23:08 GMT+H13) 12 4267894 £927512
Mordic 15.06 2009 (23:37 GMT+3) 4 4 266904 3857102
stahastic 15.05.2008 (23:43 GMT+03) 176 1266712 4118830
Test 15.05.2003 (23:45 GMT+13) 58 4264024 3850052
IENIT 15.05 2009 (23:20 GMT+I3) 206 4259964 £ 917877

Euclid 08.05.2003 (21:46 GMT+13) 40 4257802 4122558



Approximation of complex evaluation measures (DCG)

Change ranking to "probability ranking". Approximation of
DCG for query ¢, set of documents {dy, ..,d,}, and ranking
function fr(q,d):

aprDCG = Z P(fr,r)DCG(r)

reall permutations of docs

P(fr,r) - probability to get ranking 7 in Luce-Plackett model.

DCG(r) - DCG score for permuation r.



Luce-Plackett model

We have set of documents {dy,..,d,} and set of relevances
{fr(q,d1),.., fr(q,d,)} corresponding them.

Process of ranking selection in Luce-Plackett model:

o Select document for first position. Probability of selection of
document d; is equal to M. Suppose we select
'Zl fra,ds)
document d,.

e Select document for second position from the rest. Probability

of selection of document d; is equal to ——J"(%:%)
Z friadi)—fr(a.ds)

For each selection, if two documents d; and d; take part in it, ratio
between their selection probabilities should be equeal to the value
fr(g,d;)

frg,dj)




Luce-Plackett model

{d\,..,d,} - some permutation of {dy,..,dy}



The end. Thank you.
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