
Greedy function optimization in learning to rank

Àndrey Gulin, Pavel Karpovich

Petrozavodsk

2009

Annotation

Greedy function approximation and boosting algorithms are well

suited for solving practical machine learning tasks. We will describe

well-known boosting algorithms and their modi�cations used for

solving learning to rank problems.

Content

� Search engine ranking.
� Evaluation measures.
� Feature based ranking model.
� Learning to rank. Optimization problems(listwise, poitnwise,

pairwise approaches).

� Pointwise approach. Boosting algorithms and greedy function

approximation.

� Modi�cation MatrixNet.

� Listwise approach. Approximations of complex evaluation

measures(DCG, nDCG).

Search engine ranking

Main goal: to rank documents according to their quality of

conformance to the search query.

How to evaluate ranking?
Prerequisites:

� Set of search queries Q = {q1, .., qn}.
� Set of documents corresponding to each query q ∈ Q .

q → {d1, d2, ...}

� Relevance judgments for each pair (query, document)
(In our model real numbers rel(q, d) ∈ [0, 1])

Evaluation measures

Evaluation mark for ranking will be an average value of evaluation
measure over the set of search queries Q:∑

q∈Q
EvMeas(ranking for query q)

n

Example of evaluation measure EvMeas:

� Precision-10 - percent of documents with relevance

judgments greater than 0 in top-10

Evaluation measures

Evaluation mark for ranking will be an average value of evaluation
measure over the set of search queries Q:∑

q∈Q
EvMeas(ranking for query q)

n

Example of evaluation measure EvMeas:

� Precision-10 - percent of documents with relevance

judgments greater than 0 in top-10

Evaluation measures

� MAP - mean average precision

MAP (ranking for query q) =
1
k

k∑
i=1

i

nr(i)

k - number of documents with positive relevance judgments

corresponding to query q, nr(i) - position of the i-th
document with relevance judgment greater than 0.

Evaluation measures

� DCG - discounted cumulative gain

DCG(ranking for query q) =
Nq∑
j=1

relj
log2j + 1

Nq - total number of documents in ranked list, relj - relevance
judgment for document on position j.

� normalized DCG(nDCG)

nDCG(...) =
DCG(ranking for query q)

DCG(ideal ranking for query q)

Feature based ranking model

� Each pair (query, document) is described by the vector of

features.

(q, d)→ (f1(q, d), f2(q, d), ..)

� Search ranking is the sorting by the value of "relevance
function". Relevance function is a combination of features:

fr(q, d) = 3.14 · log7(f9(q, d)) + ef66(q,d) + ...

Feature based ranking model

� Each pair (query, document) is described by the vector of

features.

(q, d)→ (f1(q, d), f2(q, d), ..)

� Search ranking is the sorting by the value of "relevance
function". Relevance function is a combination of features:

fr(q, d) = 3.14 · log7(f9(q, d)) + ef66(q,d) + ...

Optimization problems

How to get a good relevance function?

Get learning set of examples Pl - set of pairs (q, d) with relevance

judgments rel(q, d).

Use learning to rank methods to obtain fr.

Optimization problems (listwise approach)

� Solve direct optimization problem:

arg max
fr∈F

=

∑
q∈Ql

EvMeas(ranking for query q with fr)

n

F - set of possible ranking functions. Ql - set of di�erent
queries in learning set Pl

Di�culty in solving: most of evaluation measures are

non-continuous functions.

Optimization problems (pointwise approach)

� Simplify optimization task to regression problem and minimize

sum of loss functions:

arg min
fr∈F

Lt(fr) =

∑
(q,d)∈Pl

L(fr(q, d), rel(q, d))

n

L(fr(q, d), rel(q, d)) - loss function, F - set of possible

ranking functions. Examples of loss functions:

� L(fr, rel) = (fr − rel)2

� L(fr, rel) = |fr − rel|

Optimization problem (pairwise approach)

� Try to use well-known machine learning algorithms to solve the

following classi�cation problem:

� an ordered pair of documents (d1, d2)(corresponding to query
q) belongs to �rst class i� rel(q, d1) > rel(q, d2)

� an ordered pair of documents (d1, d2)(corresponding to query
q) belongs to second class i� rel(q, d1) ≤ rel(q, d2)

Boosting algorithms and greedy function approximation

We will solve regression problem:

arg min
fr∈F

∑
(q,d)∈Pl

L(fr(q, d), rel(q, d))

n

We will search relevance function in the following form:

fr(q, d) =
M∑
k=1

αkhk(q, d)

Relevance function will be a linear combination of functions hk(q, d),
functions hk(q, d) belong to simple family H (weak learners family) .

Boosting algorithms and greedy function approximation

We will solve regression problem:

arg min
fr∈F

∑
(q,d)∈Pl

L(fr(q, d), rel(q, d))

n

We will search relevance function in the following form:

fr(q, d) =
M∑
k=1

αkhk(q, d)

Relevance function will be a linear combination of functions hk(q, d),
functions hk(q, d) belong to simple family H (weak learners family) .

Boosting algorithms and greedy function approximation

We will construct �nal function by iterations. On each iteration we

will add an additional term αkhk(q, d) to our relevance function:

frk(q, d) = frk−1(q, d) + αkhk(q, d)

Values of parameter αk and weak learner hk(q, d) can be a solution

of natural optimization task:

arg min
α,h(q,d)

∑
(q,d)∈Pl

L(frk−1(q, d) + αh(q, d), rel(q, d))

n

This problem can be solved directly for quadratic loss function and

simple classes H, but it can be very di�cult to solve for other loss

functions.

Boosting algorithms and greedy function approximation

We will construct �nal function by iterations. On each iteration we

will add an additional term αkhk(q, d) to our relevance function:

frk(q, d) = frk−1(q, d) + αkhk(q, d)

Values of parameter αk and weak learner hk(q, d) can be a solution

of natural optimization task:

arg min
α,h(q,d)

∑
(q,d)∈Pl

L(frk−1(q, d) + αh(q, d), rel(q, d))

n

This problem can be solved directly for quadratic loss function and

simple classes H, but it can be very di�cult to solve for other loss

functions.

Boosting algorithms and greedy function approximation

We will construct additional term αkhk(q, d) in three steps :

� Gradient approximation. Consider relevance function fr like
vector of values indexed by learning examples. Get gradient

vector g = {g(q,d)}(q,d)∈Pl
for error function :

g(q,d) =
[
∂Lt(fr)
∂fr(q, d)

]
fr=frk−1

� Weak learner selection(up to a constant). Find most highly

correlated with g function hk(q, d) by solving the following

optimization task:

arg min
β,h(q,d)∈H

∑
(q,d)∈Pl

(g(q,d) − βh(q, d))2

Boosting algorithms and greedy function approximation

We will construct additional term αkhk(q, d) in three steps :

� Gradient approximation. Consider relevance function fr like
vector of values indexed by learning examples. Get gradient

vector g = {g(q,d)}(q,d)∈Pl
for error function :

g(q,d) =
[
∂Lt(fr)
∂fr(q, d)

]
fr=frk−1

� Weak learner selection(up to a constant). Find most highly

correlated with g function hk(q, d) by solving the following

optimization task:

arg min
β,h(q,d)∈H

∑
(q,d)∈Pl

(g(q,d) − βh(q, d))2

Boosting algorithms and greedy function approximation

� Selection of αk. Find the value of αk from one-parameter

optimization problem:

arg min
α

∑
(q,d)∈Pl

L(frk−1(q, d) + αhk(q, d), rel(q, d))

n

Iterate... Iterate... Iterate...

Weak learner selection

Let our class of weak learners H will be a set of decision-tree

functions:

f3(q, d) > 0.5
Z
Z
Z~

�
�

�=
Yes No

res = β1 f65(q, d) > 0.78
Z
Z
Z~

�
�
�=
Yes No

res = β2 res = β3

Example of 3-region decision-tree function. The function splits

feature space on 3 regions by conditions in the form fj(q, d) > α
(fj - split feature, α - split bound). It has a constant value for

feature vectors in one region.

Weak learner selection (function values)

Our weak learners family will be 6-region(example, const-regions)

decision-tree functions. We will try to solve:

arg min
h(q,d)∈H

∑
(q,d)∈Pl

(g(q,d) − βh(q, d))2

Suppose we know tree-structure of weak learner h(q, d) - we know
split conditions and regions. We should �nd "region constant

values". Optimization problem reduces to ordinary regression

problem:

arg min
h(q,d)∈H,β

∑
(q,d)∈Pl

(g(q,d) − ββind(q,d))2

ind(q, d) - number of region, which contains features vector for

pair (q, d) (ind(q, d) ∈ {1, .., 6}).

Weak learner selection (function values)

Our weak learners family will be 6-region(example, const-regions)

decision-tree functions. We will try to solve:

arg min
h(q,d)∈H

∑
(q,d)∈Pl

(g(q,d) − βh(q, d))2

Suppose we know tree-structure of weak learner h(q, d) - we know
split conditions and regions. We should �nd "region constant

values". Optimization problem reduces to ordinary regression

problem:

arg min
h(q,d)∈H,β

∑
(q,d)∈Pl

(g(q,d) − ββind(q,d))2

ind(q, d) - number of region, which contains features vector for

pair (q, d) (ind(q, d) ∈ {1, .., 6}).

Weak learner selection (tree structure)

Greedy tree selection:

� bestTree = constant function (1-region tree).

� Greedy split. Try to split regions of bestTree and �nd the

best split.
f3(q, d) > 0.5

Z
Z
Z~

�
�

�=
Yes No

f?(q, d) >? f?(q, d) >?
Z�Z�

?

Suppose we have constant set of possible split bounds.

Number of possible splits is bounded by the value:

#{regions} ·#{features} ·#{split bounds}

� Repeat previous step.

Weak learner selection (tree structure)

Greedy tree selection:

� bestTree = constant function (1-region tree).

� Greedy split. Try to split regions of bestTree and �nd the

best split.
f3(q, d) > 0.5

Z
Z
Z~

�
�

�=
Yes No

f?(q, d) >? f?(q, d) >?
Z�Z�

?

Suppose we have constant set of possible split bounds.

Number of possible splits is bounded by the value:

#{regions} ·#{features} ·#{split bounds}

� Repeat previous step.

Weak learner selection (tree structure)

Greedy tree selection:

� bestTree = constant function (1-region tree).

� Greedy split. Try to split regions of bestTree and �nd the

best split.
f3(q, d) > 0.5

Z
Z
Z~

�
�

�=
Yes No

f?(q, d) >? f?(q, d) >?
Z�Z�

?

Suppose we have constant set of possible split bounds.

Number of possible splits is bounded by the value:

#{regions} ·#{features} ·#{split bounds}

� Repeat previous step.

MatrixNet

Weak learners set- full decision trees with depth k and 2k regions.

� Constant number of layers (constant depth).

� The same split conditions for one layer.

f3(q, d) > 0.5
Z
Z
Z~

�
�

�=
Yes No

f56(q, d) > 0.34 f56(q, d) > 0.34
Z
Z
Z~

�
�
�=

Z
Z
Z~

�
�

�=
Yes NoYes No

β1 β2 β3 β4

We don't need complex structure: depth is the main thing.

MatrixNet

Approximation of complex evaluation measures (DCG)

Change ranking to "probability ranking". Approximation of

DCG for query q, set of documents {d1, .., dn}, and ranking

function fr(q, d):

apxDCG =
∑

r∈all permutations of docs
P (fr, r)DCG(r)

P (fr, r) - probability to get ranking r in Luce-Plackett model.

DCG(r) - DCG score for permuation r.

Luce-Plackett model

We have set of documents {d1, .., dn} and set of relevances

{fr(q, d1), .., fr(q, dn)} corresponding them.

Process of ranking selection in Luce-Plackett model:

� Select document for �rst position. Probability of selection of

document di is equal to
fr(q,di)

n∑
i=1

fr(q,di)
. Suppose we select

document dx.

� Select document for second position from the rest. Probability

of selection of document di is equal to
fr(q,di)

n∑
i=1

fr(q,di)−fr(q,dx)

� ...

For each selection, if two documents di and dj take part in it, ratio

between their selection probabilities should be equeal to the value
fr(q,di)
fr(q,dj)

Luce-Plackett model

{d́1, .., d́n} - some permutation of {d1, .., dn}

P (fr, {d́1, .., d́n}) =
n∏
j=1

fr(q, d́j)
n∑
k=j

fr(q, d́k)

The end. Thank you.

Tie-Yan Liu. Learning to Rank for Information Retrieval.

Tutorial on WWW2008.

Friedman, J. H. (2001). Greedy function approximation: A

gradient boosting machine. Annals of Statistics, 29(5),

1189-1232.

Friedman, J. H. (1999). Stochastic gradient boosting (Tech.

Rep.). Palo. Alto, CA: Stanford University, Statistics

Department.

Plackett, R. L. (1975). The analysis of permutations. Applied

Statistics, 24, 193-202

