

Internet and the Web Today

- Between 1 and 2.5 billion people connected
 5 billion estimated for 2015
- 1.8 billion mobile phones today
 500 million expected to have mobile broadband during 2010
- · Internet traffic has increased 20 times in the last 5 years
- · Today there are more than 170 million Web servers
- The Web is in practice unbounded
 - Dynamic pages are unbounded
 - Static pages over 20 billion?
- An introduction to Web Mining, RuSSIR 2010, Voronezh

13

What for? \mathbf{V}

- The Web as an object
- User-driven Web design
- Improving Web applications
- Social mining

•

12

Explore Flickr through tags architecture art australia beach birthday blue by California canada

architecture all t australia Deact i birthday blue by California canada Canon china christmas city concert england europe family festival flower flowers food france friends fun germany green italy japan london music nature new newyork night Nikon nyc paris park party people portrait red sanfrancisco sky snow spain street summer sunset telwan travel trip uk usa vacation water Wedding white winter

An introduction to Web Mining, RuSSIR 2010, Voroneza

Heavy tail of user interests

- Many queries, each asked very few times, make up a large fraction of all queries
- Applies to word usage, web page access ...
- We are all partially eclectic

The Big Challenge for Search

Meet the diverse user needs given their poorly made queries and the size and heterogeneity of the Web corpus

28

30

An introduction to Web Mining, RuSSIR 2010, Voronezh

 + On-line casinos + Free movies + Cheap software + Buy a MBA diploma + Prescription - free drugs + V!-4-gra + Get rich now now now!!!

Spam is an Economic Activity Depending on the goal and the data spam is easier to generate Depending on the type & target data spam is easier to fight Disincentives for spammers? Social Economical Exploit the power of social networks and their work

An introduction to Web Mining, RuSSIR 2010, Voronezh

Current challenges (1)

Scraper spam

- Copies good content from other sites, adds monetization (most often Google AdSense)
- Hard to identify at the page level (indistinguishable from original source), monetization not reliable clue (there is actually good content on the web that uses AdSense/YPN!)
- Synthetic text
 - Boilerplate text, randomized, built around key phrases
 - Avoids duplicate detection
- Query-targeted spam
 - Each page targets a single tail query (anchortext, title, body, URL). Often in large auto-constructed hosts, host-level analysis most helpful
- DNS spam

An introduction to Web Mining, RuSSIR 2010, Voronezh

Current challenges (2)

• Blog spam

- Continued trend toward blog "ownership" rather than comment spam
- Orthogonal to other categories (scrapers, synthesizers). Just a hosting technique, plus exploiting blog interest

32

- Example:
 - 68,000 blogspot.com hosts all generated by the same spammer
 - 1) nursingschoolresources.blogspot.com
 2) transplantresources.blogspot.com
 - 67,798) beachesresourcesforyou.blogspot.com 67,799) startrekresourcesforyou.blogspot.com

	contextual	ads		
FOR INTERNET	STLOUIS POS	ST-DISPATCH D Subse	onbe to the St. Louis Post-Dispatch AUTOS REALESTATE AZ 200 3a1 STORY ENDER	Thursday, April 29, 2004
MEMORATING WEATHER SOAY FOREAST IN SUBJECTIVE ST. CHARLES ST. CHAR	News > Nation > Story Bush policies endanger n say By Benard Millee Pasb Digatch Washington Bureau 04/25/2004	ights, protesters SHINOTON - Armed In bold placards and phe-colored banners, ordon-rights Souria and Southern nois marched in step Introngs or Other Herders Sunday to rail anst what They see as shown of	YESTERBAY'S MOST E-MALED STORES Mowit' Out Fereivents massic at theater Dear Kent: Da Bears need you Seldem are heard discouraging words, "yon'te fired" Washington U, newspaper publishes images of firat pathy have balled for stopping care thet, believe say -vienting vestore capital	Postcards from inog
An introduction to Web Mi	ining, RuSSIR 2010, Voronez	h		37

Click spam

- Rival click fraud: Rival of advertising company employs clickers for clicking through ads to exhaust budget
- Publisher click fraud: Publisher employs clickers to reap per click revenue from add shown by search firm
- Bidder click fraud: Keyword bidders employ clickers to raise rate used in (click-thru-rate * bid) ranking used to allocate ad space in search engines (or to pay less!)

	Who are they?			
	Age	% R	epresentative interests	
	1 to 3	0.5	treats, catnips, daddy, mommy, purring, mice, plaving, napping, scratching, milk	
	13 to 15	3.5	webdesigning, Jeremy Sumpter, Chris Wilson, Emma Watson, T. V., Tom Felton, FUSE, Adam Carson, Guyz, Pac Sun, mall, going online	
	16 to 18	25.2	198(6,7,8), class of 200(4,5), dream street, drama club, band trips, 16, Brave New Girl, drum major, talkin on the phone, highschool, JROTC	
	19 to 21	32.8	198{3,5}, class of 2003, dorm life, frat parties, college life, my tattoo, pre-med	
	22 to 24	18.7	198(1,2), Dumbledore's army, Midori sours, Long island iced tea, Liquid Television, bar hopping, disco house, Sam Adams, fraternity, He-Man, She-Ra	
	25 to 27	8.4	1979, Catherine Wheel, dive bars, grad school, preacher, Garth Ennis, good beer, public radio	
	28 to 30	4.4	Hal Hartley, geocaching, Camarilla, Amtgard, Tiyo, Concrete Blonde, motherhood, SQL, TRON	
	31 to 33	2.4	my kids, parenting, my daughter, my wife, Bloom County, Doctor Who, geocaching, the prisoner, good eats, herbalism	
	34 to 36	1.5	Cross Stitch, Thelema, Tixo, parenting, cubs, role- playing games, bicycling, shamanism, Burning Man	
	37 to 45	1.6	SCA, Babylon 5, pagan, gardening, Star Trek, Hogwarts, Macintosh, Kate Bush, Zen, tarot	
	46 to 57	0.5	science fiction, wine, walking, travel, cooking, politics, history, poetry, jazz, writing, reading, hiking	
An introduction to	Web Mining, K	1551R 201	, death, cheese, photography, cats, poetry	46

- Find a sequence of page requests (*p*,*t*) that:
 - -Optimizes a function of the volume, quality and freshness of the pages
 - -Has a bounded crawling time
 - -Fulfils politeness
 - -Maximizes the use of local bandwidth

• Must be on-line: how much knowledge?

	- WODIE.
Search,	– <u>Yahoo! Mobile</u>
	Commerce:
	 Yahoo! Shopping,
er,	- <u>Yahoo! Autos</u> ,
	- <u>Yanoo! Auctions</u> ,
<u>s</u> ,	
	Small Business:
	 Yahoo! Small Business
	 Yahoo! Domains,
	 Yahoo! Web Hosting,
	 <u>Yahoo! Merchant Solutions</u>,
	 <u>Yahoo! Business Email,</u>
	 HotJobs
	A share with the sec
	Advertising: Values Cooreb Marketing
	 Tanooi Search Markenno
	Yahool Business Ema HolJobs Advertising: Yahool Search Marke

Produced data	
Yahoo's Web	homogeneous
– Ygroups	high quality,
– YCars, YHealth, Ytravel	safer, highly structured
Produced Content	
– Edited (news)	high quality,
– Purchased (news)	sparse
Direct Interaction:	Ambiguous
- Tagged Content	semantics? trust?
Object tagging (photos, pages,	?) quality?
 Social links 	"Information Games"
 Question Answering 	(eg. www.espgame.org)
An introduction to Web Mining, RuSSIR 2010, Voronezh	70

Data anonymization

- American Online (AOL) query log released in August 2006
- Objective was to contribute to IR research
- Query log rough statistics
 - 20 million queries
 - 650 K users
 - from over 3 months
- Social security numbers, credit card numbers, driver license numbers, etc.
- Possible to uniquely identify many users by combining information from queries and yellow pages, etc.
- Big media scandal, big damage to AOL and the privacy of its users

A typical query log

• Entries of the format:

<cookie, query, rank, clickURL, timeStamp, IP, country,...>

An introduction to Web Mining, RuSSIR 2010, Voronezh

Anonymizing query logs

- [Adar 2007]
- Argue that anonymization is potentially possible
- Two main techniques:
 - Eliminate infrequent queries
 - Splitting personalities
- Additionally:
 - Eliminate identifying information (SSN, credit card numbers, etc.)

An introduction to Web Mining, RuSSIR 2010, Voronezh

Anonymizing query logs Eliminate infrequent queries: Keep only queries generated by a large number of users

- Computationally possible using counters
- How to do it on-the-fly?
- · Long tail disappears!

An introduction to Web Mining, RuSSIR 2010, Voronezh

- Background: How to split a secret among n people so that every coalition of *k* persons can access the secret?
- Answer: Let the secret be the coefficients of a (k-1)degree polynomial $f(x) = a_{k-1}x^{k-1} + \ldots + a_1x + a_0$
- For the *i*-th person, select a number x_p and give to the person the pair (x_i, f(x_i))
- Any k persons can cooperate and recover the polynomial, while no k-1 persons can recover it

Online elimination of infrequent queries

- Straightforward application in eliminating infrequent queries
- A query q is decoded as a (k-1)-degree polynomial f_q
- For a person u_i who makes the query q, print (u_i, f_q (u_i))
- If k or more people type the query q, it is possible to decrypt q!

An introduction to Web Mining, RuSSIR 2010, Voronezh

Split personalities

- · Split the queries of the same user into sessions
- E.g., queries about food recipes, sport results, buying books, music, etc.
- Assign each of those sessions to a di erent virtual user
- Released query log can be still useful for many applications
- More difficult to identify users by combining queries
- Finding similar queries and finding query sessions is quite hard problem

An introduction to Web Mining, RuSSIR 2010, Voronezh

Anonymizing query logs: negative resuls

- [Kumar et al., 2007]
- · Anonymization via token-based hashing:
- The query is split into terms and each term is hashed to a token
- Co-occurrence analysis and frequency analysis can be used to reveal the query terms
- · Assume access to an unencrypted query log
- Query term statistics remain constant across different query logs
- Provide practical graph-matching algorithms and analysis of real guery logs

Topics

- Data statistics and data modelling
- Usage mining
- Link analysis
- Graph mining
- Finding communities

An introduction to Web Mining, RuSSIR 2010, Voronezh

Data statistics and data modeling

- Graph structures
- Degree distribution
- Community structure
- · Diameter and other properties

An introduction to Web Mining, RuSSIR 2010, Voronezh

Degree distribution

- Consider a graph G=(V,E)
- C_k the number of vertices u with degree d(u) = k
 - $C_k = c k^{-\gamma}$ with $\gamma > 1$,
 - $\log(C_k) = \log(c) \gamma \log(k)$
- So, plotting *log(C_k)* versus *log(k)* gives a straight line with slope -γ
- Heavy-tail distribution: there is a non-negligible fraction of nodes that has very high degree (hubs)
- Scale-free: no characteristic scale, average is not informative

- Intuitively a subset of vertices that are more connected to each other than to other vertices in the graph
- · A proposed measure is clustering coefficient

 $C_1 = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}}$

- Captures "transitivity of clustering"
- If *u* is connected to *v* and *v* is connected to *w*, it is also likely that *u* is connected to *w*

Small diameter

- Diameter of many real graphs is small (e.g., D = 6 is famous)
- Proposed measures:
 - Hop-plots: plot of $|N_h(u)|$, the number of neighbors of *u* at distance at most *h*, as a function of *h*
 - [M. Faloutsos, 1999] conjectured that it grows exponentially and considered hop exponent
 - Effective diameter: upper bound of the shortest path of 90% of the pairs of vertices
 - Average diameter: average of the shortest paths over all pairs of vertices
 - Characteristic path length: median of the shortest paths over all pairs of vertices

An introduction to Web Mining, RuSSIR 2010, Voronezh

Other properties

- · Degree correlations
- · Distribution of sizes of connected components
- Resilience
- Eigenvalues
- Distribution of motifs
- ... all very different than predicted for random graphs
- Properties of evolving graphs [Leskovec et al., 05]
 - Densification power law
 - Diameter is shrinking

An introduction to Web Mining, RuSSIR 2010, Voronezh

Power-I

Power-law distributions

- "A brief history of generative models for power laws and log-normal distributions" [Mitzenmacher, 04]
- A random variable X has power-law distribution, if

 $Pr[X>x] \propto cx^{-\alpha}$ for c > 0 and $\alpha > 0$

• A random variable X has Pareto distribution, if

 $Pr[X>x] = (x/k)^{-\alpha}$ for k > 0, $\alpha > 0$, and X > k

- On a log-log plot straight line with slope - α

- Preferential attachment
- The main idea is that "the rich get richer"
 - First studied by [Yule, 1925] to suggest a model of why the number of species in genera follows a power-law
 - Generalized by [Simon, 1955]
 - applications in distribution of word frequencies, population of cities, income, etc.
 - Revisited in the 90s as a basis for Web-graph models [Barabasi and Albert, 1999, Broder et al., 2000, Kleinberg et al., 1999]

Y!

Preferential attachement

- · The basic theme:
 - Start with a single vertex, with a link to itself
 - At each time step a new vertex *u* appears with outdegree 1 and gets connected to an existing vertex *v*
 - With probability $\alpha < 1$, vertex *v* is chosen uniformly at random
 - With probability $1-\alpha$, vertex v is chosen with probability proportional to its degree
 - Process leads to power law for the in-degree distribution, with exponent (2-α)/(1-α)

An introduction to Web Mining, RuSSIR 2010, Voronezh

Log-normal distribution

- Random variable X has log-normal distribution, if Y=log(X) has normal distribution
- Always finite mean and variance
- But also appears as a straight line on a log-log plot (for small values of x))
- Multiplicative processes tend to give log-normal distributions:
 - The product of two log-normally distributed independent random variables follows a log-normal distribution

An introduction to Web Mining, RuSSIR 2010, Voronezh

Power law or log-normal?

- Distribution of income
- Start with some income X_o
- At time t, with probability 1/3 double the income, with probability 2/3 cut income at half
- Then income distribution is log-normal (multiplicative process))
- But... assume a "reflective barrier":
 At X_o maintain same income with probability 2/3
- ... a power law!

- Infer properties of Web entities based on their connectivity / link structure of graph structures they belong to
- Such properties can be importance of nodes or similarity between nodes
- Mostly focused on Web pages, but ideas apply to many domains: social networks, query logs, etc.
- Prestige, centrality, co-citation, PageRank, HITS

Prestige

- Consider a graph G=(V,E)
- *E*[*u*,*v*] = 1 if there is a link from *u* to *v*
- *E[u,v]* = 0 otherwise
- *p* a prestige vector: *p[u]* the prestige score of node

$$p' = E^T p$$

because

$$p[u] = \sum_{v} E[v,u] p[u] = \sum_{v} E^{T}[u,v] p[u]$$

After each iteration normalize by setting ||p|| = 1

• *p* converges to the principal eigenvector of *E^T* An introduction to Web Mining, RUSSIR 2010, Voronezh

Centrality

Importance notion based on centrality

- Used by epidimiology, social-network analysis, etc.: removing a central node disconnects the graph to a big extend
- d(u,v) the shortest-path distance between u and v
- $r(u) = max_v d(u,v)$ radius of node u
- arg min , r(u) center of the graph

· Various other notions of centrality in the literature

An introduction to Web Mining, RuSSIR 2010, Voronezh

Co-citation

- Measure of similarity between nodes
- If nodes *v* and *w* are both linked by node *u*, then they are co-cited
- If *E* is the adjacency matrix of the graph, the number of nodes that co-cite both *v* and *w* is

$$p[u] = \sum_{u} E[u,v] E[u,w] = \sum_{u} E^{T}[v,u] E[u,w] = (E^{T}E)$$
[v,w]

• Thus similarity is captured in the entries of matrix $E^{T}E$

```
An introduction to Web Mining, RuSSIR 2010, Voronezh
```

PageRank

- [Brin and Page, 1998]
- Algorithm suggested α for ranking results in web search
- An authority score is assigned to each Web page
- · Authority scores independent of the query
- Authority scores corresponds to the stationary distribution of a random walk on the graph:
 - With probability $\,\alpha\,\,$ follow a link in the graph
 - With probability 1- α go to a node chosen uniformly at random (teleportation)
- Random walk also known as random surfer model
- An introduction to Web Mining, RuSSIR 2010, Voronezh

PageRank

- Let *E* be the adjacency matrix of the graph, and *L* the row-stochastic version of *E*
- Each row of E is normalized so that it sums to 1
- Authority score defined by

$p_{(i+1)} = L^T p_{(i)}$

 problematic if the graph is not strongly connected, So:

$$p_{(i+1)} = \alpha L^T p_{(i)} + (1-\alpha)1/n 1$$

• where 1 is the matrix with all entries equal to 1

• and $\alpha \in [0, 1]$, common value $\alpha = 0.85$ An introduction to Web Mining, RuSSIR 2010, Voronezh

PageRank variants and enchancements

Personalized PageRank

- Teleportation to a set of pages defining the preferences of a particular user
- Topic-sensitive PageRank [Haveliwala 02]
 - Teleportation to a set of pages defining a particular topic
- TrustRank [Gyöngyi 04]
 - Teleportation to "trustworthy" pages
- Many papers on analyzing PageRank and numerical methods for efficient computation

An introduction to Web Mining, RuSSIR 2010, Voronezh

. нітѕ

- [Kleinberg 1998]
- Exploit the intuition that there are:
 - pages that contain high-quality information (authorities)
 - pages with good navigational properties (hubs)

Good hubs point to good authorities and good authorities are pointed by good hubs

HITS algorithm

- Given a query q
- Use a standard wen IR system to find a set of pages *R* relevant to *q* (root set)
- Expand to the set of pages connected to R (expanded set) and form the graph G=(V,E)
- a authority vector: a[u] the authority score of node
- *h* hub vector: *h[u]* the hub score of node *u*

 $a = E^T h$ h = E a

- a converges to the principal eigenvector of E^TE
- h converges to the principal eigenvector of EE^T

An introduction to Web Mining, RuSSIR 2010, Voronezh

- HITS is related to SVD on the graph matrix E
- non-principal eigenvectors provide different topics
- HITS sensitive to local-topology
- PageRank is more stable due to trandom jump step
- · Researchers attempted to make HITS more stable
 - SALSA stochastic algorithm for link analysis [Lempel and Moran, 01]:
 - A random surfer model in which the surfer follows alternatively random inlinks and outlinks
 - [Ng et al. 01] introduce a random jump step in the HITS model

An introduction to Web Mining, RuSSIR 2010, Voronezh

Y Discussion

- HITS introduces the notion of hub, which does not exist in PageRank
- HITS is query sensitive
- PageRank does not depend on the query; thus the authority scores can be pre-computed
- Nepotism, two-host nepotism, and clique attacks

Graph Mining

- · Keep an eye on efficiency
- Web graphs are huge and any computation on them should be very efficient
- Data stream algorithms for
 - Computing the clustering coefficient
 - Counting the number of triangles
 - Estimating the diameter of a graph

An introduction to Web Mining, RuSSIR 2010, Voronezh

Counting triangles

- · Brute-force algorithm is checking every triple of vertices
- · Obtain an approximation by sampling triples
- Let T be the set of all triples, and
- T, the set of triples that have i edges, i = 0, 1, 2, 3
- By Chernoff bound, to get an ε-approximation, with probability $1 - \delta$, the number of samples should be

But |T| can be large compared to |T_s|

An introduction to Web Mining, RuSSIR 2010, Voronezh

An introduction to Web Mining, RuSSIR 2010, Voronezh

Counting triangles

- SampleTriangle Algorithm [Buriol et al., 2006]
- · Incidence stream model all edges incident on the same edge are consecutive on the disk
- · Three pass algorithm:
- Pass 1: Count the number of paths of length 2
- Pass 2: Choose one path (a,u,b) uniformly at random
- Pass 3: If (a,b)∈E return 1 o/w return 0

Counting triangles

- The previous idea can be also applied to:
 - Count triangles when edges are stored in arbitrary order
 - Obtain one-pass algorithm
 - Count other minors

An introduction to Web Mining, RuSSIR 2010, Voronezh

Diameter

- How to compute the diameter of a graph?
- Matrix multiplication in O(n^{2.376}) time, but O(n²) space
- BFS from a vertex takes O(n + m) time,
- but need to do it from every vertex, so O(mn)
- Resort to approximations again

An introduction to Web Mining, RuSSIR 2010, Voronezh

Diameter

- How to compute the diameter of a graph?
- Matrix multiplication in O(n^{2.376}) time, but O(n²) space
- BFS from a vertex takes O(n + m) time,
- but need to do it from every vertex, so O(mn)
- Resort to approximations again

An introduction to Web Mining, RuSSIR 2010, Voronezh

Approximating the diameter

- [Palmer et al., 2002], see also [Cohen, 1997]
- Define:
- Individual neighborhood function

 $N(u, h) = | \{v \mid d(u, v) \le h\} |$

Neighborhood function

 $N(h) = |\{(u, v) \mid d(u, v) \le h\}| = \sum_{u} N(u, h)|$

• With N(h) can obtain diameter, effective diameter,

etc.

An introduction to Web Mining, RuSSIR 2010, Voronezh

Approximating the diameter

- Define: $M(u, h) = \{v \mid d(u, v) \le h\}$, e.g., $M(u, 0) = \{u\}$
- Algorithm based on the idea that $x \in M(u, h)$ if $(u, v) \in E$ and $x \in M(v, h-1)$

ANF [Palmer et al., 2002] $M(u, 0) = \{u\}$ for all $u \in V$ for each distance h do M(u, h) = M(u, h-1) for all $u \in V$ for each edge (u, v) do $M(u, h) = M(u, h) \cup M(v, h-1)$

- Keep *M*(*u*, *h*) in memory, make a passes over the edges
- How to maintain *M(u, h)*?

```
An introduction to Web Mining, RuSSIR 2010, Voronezh
```


- ANF uses the sketching algorithm of
 - [Flajolet and Martin, 1985] with O(log n) space
 - (but other counting algorithms can be used [Bar-Yossef et al., 2002])
- What if the *M*(*u*, *h*) sketches do not fit in memory?
- Split *M*(*u*, *h*) sketches into in-memory blocks,
 - load one block at the time,
 - and process edges from that block

Finding communities

- A set of related Web pages
- A group of scientists collaborating with each other
- A set of blog posts discussing a specific topic
- A set of related queries
- Can be used for improving relevance of search, recommendations, propagating an idea, advertising a product, etc.
- · Usually formulated as a graph clustering problem

An introduction to Web Mining, RuSSIR 2010, Voronezh

Graph clustering

- Graph G = (V, E)
- Edge (u, v) denotes similarity between u and v
 - weighted edges can be used to denote degree of similarity
- We want to partition the vertices in clusters so that:
 - vertices within clusters are well connected, and
 - vertices across clusters are sparsely connected

Most graph partitioning problems are NP hard

- Partition the nodes according to the ordering induced by the Fielder vector
- · Some partitioning rules:
- Bisection: use the median value in w₂
- Cut ratio: find the partition that minimizes
- Sign: Separate positive and negative values
- Gap: Separate according to the largest gap in the values of w₂
- · Spectral partition works very well in practice
- · However, not scalable

Generic top-down algorithm

- Top down
- · Compute betweeness value of all edges
- · [Recompute betweeness vlaue of all remaining edges]
- · Remove the edge with the highest betweeness
- · Repeat until no edges left

Scaling up

- How to find communities on a large graph, say, the Web?
- Web communities are characterized by dense directed bipartite graphs [Kumar et al., 1999]
- Idea similar to hubs and authorities
- Example: Pages of sport cars (Lotus, Ferrari, Lamborghini) and enthusiastic fans
- Bipartite cores: Complete bipartite cliques contained in a community
- Support from random graph theory: If G = (U, V, E) is a dense bipartite graph, then w.h.p. there is a K_{i,j}, for some i and j

An introduction to Web Mining, RuSSIR 2010, Voronezh

Detecting communities by trawling

- Inclusion-exclusion pruning
 - · Either a core is output or a vertex is pruned
 - Computation is organized so that pruning is done with successive passes on the data

- A-priori pruning
 - · Cores satisfy monotonicity
 - If (X, Y) is a $K_{i,i}$ then every (X', Y) with $X' \subseteq X$ is a $K_{i',i}$
 - A-priori algorithm: start with (1,j), (2,j), ...
 - Most computationally demanding phase, but the graph is already heavily pruned

What is the size of the web?

Issues

- The web is really infinite
 - Dynamic content, e.g., calendar
 - Soft 404: <u>www.yahoo.com/anything</u> is a valid page
- Static web contains syntactic duplication, mostly due to mirroring (~20-30%)
- Some servers are seldom connected
- Who cares?
 - Media, and consequently the user
 - Engine design
 - Engine crawl policy. Impact on recall

- The relative size of search engines
- The notion of a page being indexed is <u>still</u> reasonably well defined.
- Already there are problems
 - Document extension: e.g. Google indexes pages not yet crawled by indexing anchor-text.
- Document restriction: Some engines restrict what is indexed (first n words, only relevant words, etc.)

• The coverage of a search engine relative to another particular crawling process

- Both tasks by using the public interface SEs
- Sampling:
 - Construct a large lexicon
 - Use the lexicon to fire random queries
 - Sample a page from the results
 - (introduces query and ranking biases)
- · Checking:
 - Construct a *strong* query from the most k most distinctive terms of the page
 - (in order to deal with aliases, mirror pages, etc.)

- Total web = 11.5 B
- Union of major search engines = 9.5 B
- Common web = 2.7 B (Much higher correlation than

X Random-walk sampling

- [Bar-Yossef and Gurevich, WWW 2006]
- · Define a graph on documents and queries:
 - Edge (d,q) indicates that document d is a result of a query q
- · Random walk gives biased samples
- · Bias depends on the degree of docs and queries
- Use Monte Carlo methods to unbias the samples and obtain uniform samples
- Paper shows how to obtain estimates of the degrees and weights needed for the unbiasing

An introduction to Web Mining, RuSSIR 2010, Voronezh

Bias towards long documents

Computing exact Jaccard coefficient between all pairs of documents is expensive (quadratic)
Approximate similarities using a cleverly chosen subset of shingles from each (a sketch)
Idea based on hashing

Also known as locality-sensitive hashing (LSH)

• A family of hash functions for which items that are similar have higher probability of colliding

Study genealogy of the Web

- [Baeza-Yates et al., 2008]
- New pages copy content from existing pages
- Web genealogy study:
 - How textual content of source pages (parents) are reused to compose part of new Web pages (children)
 - Not near-duplicates, as similarities of short passages are also identified
- · How can search engines benefit?
 - By associating more relevance to a parent page?
 - By trying to decrease the bias?
- An introduction to Web Mining, RuSSIR 2010, Voronezh

- Many world-class athletes, from all sports, have the ability to get in the right state of mind and when looking for women looking for love the state of mind is most important. [..] You should have the same attitude in looking for women looking for love and we make it easy for you.
- Many world-class athletes, from all sports, have the ability to get in the right state of mind and when looking for texas boxer dog breeders the state of mind is most important. [..] You should be thinking the same when you are looking for texas boxer dog breeders and we make it easy for you.

Bookmark Home Page Home →	
SOFT SEARCH	
Top Searches:	lava soft php script top soft java script MP3
Acne Acne Meight Loss Fills Deht Consolidation Loan Domain Names Advertsing Online Pharmacy Home Loan Dedicated Server Car Rental Adipex Levitra Online Polser Work At Home Propecia Consolidate Deht Mortgage Rates Online Caps Vegas Castnos Buy Ionamin	 Top Web Results Results 1-16 containing "sports book" Place Your Bet with #1 Sports Betting Site Online Restucky Derby, NBA MLB, NHL and all other sports betting and odds. Place a full ram sportshook in North America http://www.sportsinteraction com AnteUp GamblingLinks.com - Safe Online Casines Links to safe and secure online casino gambling and sports betting including reviews, ne http://gamblingLinks.com Free Casine Bonuses. Links To the Best Casines Cet \$20.4500 in Free Chys. Most popular casino games with great graphics. Play for f rules and strategy. Links to the Best Casinos http://www.faitfreecash.net

- Let T = { (w₁, p₁), ..., (w_k, p_k) } the set of trigrams in a page, where trigram w_i has frequency p_i
- Features:
- Entropy of trigrams: $H = -\sum_{i} p_{i} \log(p_{i})$
- ✓ Independent trigram likelihood: $(1/k) \sum_i log(p_i)$
- Also, compression rate, as measured by bzip

Content-based features related to popular keywords

- F set of most frequent terms in the collection
- Q set of most frequent terms in a query log
- P set of terms in a page

An introduction to Web Mining, RuSSIR 2010, Voronezh

- Features:
- ✓ Corpus "precision" $|P \cap F| / |P|$
- \checkmark Corpus "recall" $|P \cap F| / |F|$
- ✓ Query "precision" $|P \cap Q| / |P|$
- ✓ Query "recall" $|P \cap Q| / |Q|$

An introduction to Web Mining, RuSSIR 2010, Voronezh

3.0

4.0

5.0

6.0

7.0

2.0

0.0

An introduction to Web Mining, RuSSIR 2010, Voronezh

1.0

• C4.5 decision tree with bagging and cost weighting for class imbalance

- · With content-based features achieves:
 - True positive rate: 64.9%
 - False positive rate: 3.7%
 - F-Measure: 0.683

An introduction to Web Mining, RuSSIR 2010, Voronezh

Link-based spam detection

- Link farms used by spammers to raise popularity of spam pages
- Link farms and other spam strategies leave traces on the structure of the web graph
- Dependencies between neighbouring nodes of the web graph are created
- Naturally, spammers try to remove traces and dependencies

The classifier Combining features					
C4.5 decision tree with class imbalance	bagging a	and cost w	eighting for		
features:	Content	Link	Both		
True positive rate: False positive rate: F-Measure:	64.9% 3.7% 0.683	79.4% 9.0% 0.659	78.7% 5.7% 0.723		
An introduction to Web Mining, RuSSIR 2010, Voronez	'n				

Exploiting dependencies Propagation

- Perform a random walk on thegraph
- With probability α follow a link
- With prob 1- α jump to a random node labeled spam
- Relabel as spam every node whose stationary distribution component is higher than a threshold

Improvement:

	Baseline	Propagation (backwds)
True positive rate:	78.7%	75.0%
False positive rate:	5.7%	4.3%
F-Measure:	0.723	0.733

An introduction to Web Mining, RuSSIR 2010, Voronezh

200

Exploiting dependencies Stacked learning

- Meta-learning scheme [Cohen and Kou, 2006]
- · Derive initial predictions
- Generate an additional attribute for each object by combining predictions on neighbors in the graph
- · Append additional attribute in the data and retrain
- Let *p*(*h*) be the prediction of a classification algorithm for *h*
- Let N(h) be the set of pages related to h
- Compute:

$f(h) = \sum_{g \in N(h)} p(g) / |N(h)|$

• Add f(h) as an extra feature for instance h and retrain

An introduction to Web Mining, RuSSIR 2010, Voronezh

201

199

Exploiting Stacked le	g depen earning	dencies	S	
First pass:				
	Baseline	in	out	both
True positive rate:	78.7%	84.4%	78.3%	85.2%
False positive rate:	5.7%	6.7%	4.8%	6.1%
F-Measure:	0.723	0.733	0.742	0.750
Second pass:				
	Baseline	1 st pass	2 nd pass	
True positive rate:	78.7%	85.2%	88.2%	
False positive rate:	5.7%	6.1%	6.3%	
F-Measure:	0.723	0.750	0.763	
An introduction to Web Mining, RuSSIR 2010, V	oronezh			202

		Quest	ion qu	ality
		High I	Medium	Low
_	High	41%	15%	8%
Answer	Medium	53%	76%	74%
quality	Low	6%	9%	18%
		100%	100%	100%

	Precision	Recall	AUC
N-grams (N)	65%	48%	0.52
N+text analysis	76%	65%	0.65
N + clicks	68%	57%	0.58
N + relations	74%	65%	0.66
All	79%	77%	0.76

- Relevant content is available in social media, but the variance of the quality is very high
- Classifying questions/answers is different than document classification
- Combine many orthogonal features and heterogeneous information

•Cultural and educational diversity

Short queries & impatient interaction

• few queries posed & few answers seen

Smaller & different vocabulary

- •Different user goals [Broder, 2000]:
- Information need
- Navigational need
- Transactional need
- •Refined by Rose & Levinson, WWW 2004

Relevance of the Context

There is no information without context
Context and hence, content, will be implicit
Balancing act: information vs. form
Brown & Diguid: The social life of information (2000)

Current trend: less information, more context

News highlights are similar to Web queries

E.g.: Spell Unchecked (Indian Express, July 24, 2005)

An introduction to Web Mining, RuSSIR 2010, Voronezh

Context

- Who you are: age, gender, profession, etc.
- Where you are and when: time, location, speed and direction, etc.
- What you are doing: interaction history, task in hand, searching device, etc.
- Issues: privacy, intrusion, will to do it, etc.
- Other sources: Web, CV, usage logs, computing environment, ...
- Goals: personalization, localization, better ranking in general, etc.

An introduction to Web Mining, RuSSIR 2010, Voronezh

238

- Session: (q, (URL, t)*)*
- Who you are: age, gender, profession (IP), etc.
- Where you are and when: time, location (IP), speed and direction, etc.
- What you are doing: interaction history, task in hand, etc.
- What you are using: searching device (operating system, browser, ...)

An introduction to Web Mining, RuSSIR 2010, Voronezh

240

237

GOAL GOAL	DESCRIPTION	EXAMPLES
1. Navigational	My goal is to go to specific known website that I already have in mind. The only reason I'm searching is that it's more convenient than typing the URL, or perhaps I don't know the URL.	aloha airlines duke university hospital kelly blue book
2. Informational	My goal is to learn something by reading or viewing web pages	Home page
2.1 Directed	I want to learn something in particular about my topic	
2.1.1 Closed	I want to get an answer to a question that has a single, unambiguous answer.	what is a supercharger 2004 election dates
2.1.2 Open	I want to get an answer to an open-ended question, or one with unconstrained depth.	baseball death and injury why are metals shiny
2.2 Undirected	I want to learn anything/everything about my topic. A query for topic X might be interpreted as "tell me about X."	color blindness jfk jr
2.3 Advice	I want to get advice, ideas, suggestions, or instructions.	help quitting smoking walking with weights
2.4 Locate	My goal is to find out whether/where some real world service or product can be obtained	pella windows phone card
2.5 List	My goal is to get a list of plausible suggested web sites (I.e. the search result list itself), each of which might be candidates for helping me achieve some underlying, unspecified goal	travel amsterdam universities florida newspapers
3. Resource	My goal is to obtain a resource (not information) available on web pages	nuo page
3.1 Download	My goal is to download a resource that must be on my computer or other device to be useful	kazaa lite Dago with
3.2 Entertainment	My goal is to be entertained simply by viewing items available on the result page	xxx porto movie free live camera in l.a.
3.3 Interact	My goal is to interact with a resource using another program/service available on the web site I find	measure converter
Rose & Levinson 3.4 Obtain	N2004 is to obtain a resource that does not require a computer to use. I may print it out, but I can also just look at it on the screen. I'm not obtaining it to learn some information, but because I want to use the resource itself.	free jack o lantern pattern ellis island lesson plans house document no. 587

Clusters Examples

Q	Cluster Rank	ISim	ESim	Queries in Cluster	Descriptive keywords
q_1	252	0,447	0,007	car sales,	cars $(49, 4\%)$,
)	cars Iquique,	used $(14, 2\%)$,
				cars used,	stock $(3, 8\%)$,
				diesel,	pickup truck $(3, 7\%)$,
				new cars,	jeep (1, 6%)
q_2	497	0,313	0,009	stamp,	print $(11, 4\%)$,
				serigraph inputs,	ink $(7, 3\%)$,
				ink reload,	stamping $(3, 8\%)$,
				cartridge	inkjet (3,6%)
q_3	84	0,697	0,015	office rental,	office $(11, 6\%)$,
				rentals in Santiago,	building $(7, 5\%)$,
				real state,	real state $(5, 9\%)$,
				apartment rental	real state agents $(4, 2\%)$

• F $\operatorname{Rank}(q) = \gamma \times \operatorname{Sup}(q, q_{ini}) + (1 - \gamma) \times \operatorname{Clos}(q)$

255

An introduction to Web Mining, RuSSIR 2010, Voronezh

Query Recommendation

Query	Popularity	Support	Closedness	Rank
rentals apartments viña del mar	2	0,133	0,403	0,268
owners				
rentals apartments viña del mar	10	0,2	0,259	0,229
viel properties	4	0,1	0,315	0,207
rental house viña del mar	2	0,166	0,121	0,143
house leasing rancagua	8	0,166	0,0385	0,102
quintero	2	0,166	0,024	0,095
rentals apartments cheap vina del	3	0,033	0,153	0,093
mar				
subsidize renovation urban	5	0,133	0,001	0,067
houses being sold in pucon	10	0	0,114	0,057
apartments selling pucon villarrica	2	0,066	0,015	0,040
portal sell properties	3	0,033	0,023	0,028
sell house	2	0,033	0,017	0,025
sell lots pirque	2	0,033	0,0014	0,017
canete hotels	1	0	0,011	0,005

Strength Medium	Sparsity	Noise
Medium	TT' 1	
	High	Polysemy
Medium	High	Physical sessions
High	Medium	Multitopic pages Click spam
Weak	Medium	Link spam
Medium	Low	Term spam
	High Weak Medium RuSSIR 2010, Voronezh	High Medium Weak Medium Medium Low RuSSIR 2010, Voronezh

• The graph can be built efficiently:

An introduction to Web Mining, RuSSIR 2010, Voronezh

- Consider the tuples (query, clicked url)
- Sort by the second component
- Each block with the same URL *u* gives the edges induced by *u*
- Complexity: O(max {M*|E|, n log n}) where M is the maximum number of URLs between two queries, and n is the number of nodes

Evaluation: ODP Similarity

- A simple measure of similarity among queries using ODP categories
 - Define the similarity between two categories as the length of the longest shared path over the length of the longest path
 - Let c_1,.., c_k and c'_1,.., c'_k be the top k categories for two queries. Define the similarity (@k) between the two queries as max{sim(c_i,c'_j) | i,j=1,..,K}

An introduction to Web Mining, RuSSIR 2010, Voronezh

ODP Similarity

- Suppose you submit the queries "Spain" and "Barcelona" to ODP.
- The first category matches you get are:
 - Regional/ Europe/ Spain
 - Regional/ Europe/ Spain/ Autonomous Communities/ Catalonia/ Barcelona
- Similarity @1 is 1/2 because the longest shared path is "Regional/ Europe/ Spain" and the length of the longest is 6

Overall summary

Many open problems and challenges:

- Manage and integrate highly heterogeneous information:
- Content, links, social links, tags, feedback, usage logs, wisdom of crowds, etc.
- Model and benefit from evolution
- Battle adversarial attempts and collusions

An introduction to Web Mining, RuSSIR 2010, Voronezh

