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Community structure

Communities: sets of
tightly connected nodes

e People with common interests

* Scholars working on the same
field

* Proteins with equal/similar
functions

e Papers on the same/related
topics




Community detection

Theoretical reasons
e Organization

e Node features

e Node classification
* Missing links




Community detection

Practical reasons: recommendation systems
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Practical reasons: unknown protein functions
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Difficult problem!
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Communities in biological networks
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Communities in Information networks
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Overlapping communities
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Communities in bipartite networks
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Elements of community detection

Warnings:

1) Null hypothesis: communities are inferred just from
structural information, relationship with actual groups
is unclear!

2) The number m of edges of the graph is of the order of
the number of verticesn, m ~ n

Topics:
1) Computational complexity

2) Communities
3) Partitions



Computational complexity

Definition: the computational complexity of an algorithm
is the amount of resources required by the algorithm to
perform a task

Resources: number of computation steps and memory units

Notation: O(namﬁ ), polynomial complexity (class P)

Exact complexity often unknown: worst-case complexity!



Communities: local definitions

Principle: look at the subgraph, forget the rest of the graph

Clique or complete graph

Problems

1) Condition is too strict!

2) All vertices are symmetric, whereas in real
communities they usually have different roles

3) Cliques are hard to find: NP-complete problem.
Bron-Kerbosch method has a complexity growing
exponentially with the graph size (Bron & Kerbosch,
1973)



Communities: local definitions

Principle: comparison between internal and external
cohesion of a subgraph

LS-set or strong community:
subgraph such that the internal
degree of each vertex is greater than @

its external degree (Luccio & Sami,
1969)

Problem: condition too strong, unrealistic in practical
cases!

Weak community: subgraph such that the internal
degree of the subgraph is greater than its external
degree (Radicchi et al., 2004)



Communities: local definitions

Variant of concepts of strong and weak community (Hu et
al., 2008)

Strong community: subgraph such that the internal
degree of each vertex is greater than its internal degree in
any of the other communities of the partition

Weak community: subgraph such that the internal degree
of the subgraph is greater than its external degree in each
of the other communities

Link with planted /-partition model (Condon & Karp,
1999)



Warning

Communities are usually implicitly defined by the
specific algorithm adopted, without an explicit
definition!

The practical definition may depend on the specific
system/application



Partitions: basics

A partition is a division of a graph into clusters, such that
each vertex is assigned to one and only one cluster!

If vertices can belong to two or
more clusters simultaneously,
one speaks of covers

G. Palla, I. Derényi, I. Farkas, T. Vicsek, Nature 435, 814,
2005



Partitions: basics

The number of possible partitions in k clusters of a graph
with n vertices is the Stirling number of the second kind
S(n, k)

Total number of possible partitions: Bell number
B, = Z S(n, k)
k=1

Large-n limit 1
B, ~ _[)\(n>]n—|—1/26>\(n)—n—1

NG

)\(n) — W) — n/W(n), W(n) Lambert function



Hierarchy

Clusters may be included in other clusters, etc. (hierarchical
order!)

Clauset, Moore & Newman, LNCS 4503, 1, 2007



Dendrograms
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Partitions: quality functions

Whatis a “good” clustering ?

i ?
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Partitions: quality functions

A quality function assigns a score to each partition/cover of

a graph

High-score partitions are “good”, low-score partitions are

“bad”
Additivity Q(P)= > 4q(C)

cePpP

Examples of quality functions
1) Performance:

NI ()

2) Coverage:

cFE,Ci =053 +10,5) € E,C # G}
nin—1)/2

{(i,j) € E,C; = Cj}

m

C(P) =




Partitions: modularity

Newman & Girvan, 2004

Principle: random graphs have no community structure!

Method: comparing the edge density in each cluster with
the edge density of the cluster in a randomized version of
the graph
1
<Q:§%§:V%—f%W«%Cﬂ
ij

Null model in principle arbitrary

Ex. Bernoulli random graph

Pij =p=2m/[n(n —1)]



Partitions: modularity

Problem with Bernoulli random graph: degree distribution
is binomial/Poissonian

Modularity’s null model: random graph with identical
expected degree sequence of original graph

kik:
Q= LZ (Az‘j — 5 j) 0(Ci, Cj)

2m “— m
i]
1 & d?
B o A
¢ m;{ 4m
| — Number of edges ; _ Total degree
. inside cluster c - of cluster ¢

N = Number of clusters



de probability that a stub, randomly selected, ends

2m in module ¢



d. d.  di  probability that the link
2m  2m  4m? is internal to module ¢

d; . d; expected number of
4m? 4m links in module ¢




Partifions: modularity

.

c=1
Some features:
1) @ <1
2) () = 0 for the partition in which the whole graph is one
cluster

3) Modularity can be negative (multipartite structure)

4) Modularity in general depends on graph size:
partitions of different graphs cannot be compared to
each other based on their modularity values

5) Large values of modularity not necessarily indicate
good partitions: random graphs may have high-
modularity partitions



How IS community structure
generatede

Triadic closure

G. Bianconi, R. K. Darst, J. Iacovacci, S. E., Phys. Rev. E 90, 042806 (2014)
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How IS community structure
generatede

Question: can models based on triadic closure
explain the emergence of communities?

G. Bianconi, R. K. Darst, J. Iacovacci, S. E., Phys. Rev. E 90, 042806 (2014)



How IS community structure
generatede

(a)

G. Bianconi, R. K. Darst, J. Iacovacci, S. E., Phys. Rev. E 90, 042806 (2014)



How IS community structure
generatede

# internal neighbours of cluster nodes
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Modularity optimization

A - , d? Goal: find the maximum of
Q= . Z [ © m} Q over all possible network
=1 partitions

Problem: NP-complete (Brandes et al., 2007)!

1) Greedy algorithms

2) Simulated annealing
3) Extremal optimization
4) Spectral optimization
5) Other strategies



Modularity optimization




Modifications of
modularity

Directed modularity (Arenas et al., 2007)

out 1.1n

1 out g
Qq = -~ Z (Aij — m] ) 0(C;, C5)
i]

Directed weighted modularity

Qgen =~ Z ( S ) 5(02703)




Greedy algorithms

Newman' s method (Phys. Rev. E 69, 066133, 2004)

* Start: partition with one vertex in each community
* Merge groups of vertices so to obtain the highest increase

of Q

« Continue until all vertices are in the same community
 Pick the partition with largest modularity

CPU time O(mn) [ O(n?)on a sparse graph]



Greedy algorithms

Louvain method (Blondel et al., JSTAT 10008, 2008)

Steps:

1) {oop over the vertices: each vertex is put in the
community of their neighbors that yields the largest
increase of modularity

2) Communities are replaced by supervertices, edges

between supervertices are weighted by the number of

simple edges between them

Repeat from 1 for the current weighted graph

4) Modularity is always computed with respect to the
original graph, when it cannot increase any more the
process stops

6V
S

Complexity: O(m)



Louvain method
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Limits of modularity

Question: does high modularity imply that a partition is
good?

Answer: no! Random graphs may have large values of the
modularity maximum, due to fluctuations!

Reason: modularity’s null model term is expected (average)
value, it does not consider fluctuations

Possible recipe: computing both the average maximum

modularity (@) yps and the standard deviation ag M out of a

large number of null model graphs

/-score: . Qma,aj — <Q>NM

N M
9Q




Limits of modularity

Resolution limit (Fortunato & Barthelemy, 2007)




Limits of modularity

Subgraph 1, degree k;

Subgraph 2, degree k,

Expected number of edges between the two subgraphs in
modularity’ s null model:

ki k ke k 2
m(2 - 2>: —2 if ky = ky = d, —| —¢

| 2m | 2m 2m 2m




Limits of modularity

{: k1Ko <1 — Q is higher when 1 & 2 are in the same
2m, cluster!

Ex. k1 ~ ks <@/ Resolution limit of

modularity
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Limits of modularity

Question: What is the origin of the resolution limit?

Answer: global null model is unrealistic!




Limits of modularity

High degeneracy of large modularity partitions (Good et al.,
2009)

0.4

Modularity, Q
o
N

e
o

-0.14

1) Problem particularly severe on graphs with hierarchical
structure

2) It explains why many heuristics give good estimates for
the modularity maximum



Spectral methods

Finding communities from spectral properties of graph
matrices: adjacency matrix, Laplacian matrix, etc.

Ex. Algorithm by Donetti & Munoz (JSTAT, P10012, 2004)

Steps:

1) %irst few eigenvectors of Laplacian are computed (say k)

2) Eigenvector components used to represent vertices as
points in k-dimensional Euclidean space

3) Hierarchical clustering used to group points

4) Modularity is used to pick best partition of resulting
dendrogram



Spectral methods:
Donettl & Munoz




Dynamic methods

* Spin models

* Synchronization

e Random walks



Dynamic methods: spin models

Potts-model method (Reichardt & Bornholdt, 2004)

H——JZAZ]5 0;i,0;) +72n8 — 1)

0]
Ferromagnetic term: favors spins al1gnment (all vertices in
the same cluster)

Antiferromagnetic term: favors (many) clusters of the same
size

Y / J resolution parameter (usually set to edge density in
applications)



Dynamic methods:
random walks

Principle: in a graph with strong community structure, a
random walker would spend a lot of time in a cluster before
leaving it

Similarity measures can be defined through random walks,
and hierarchical clustering can then be used

Examples of similarity measures:

1) Average number of edges that a random walker has to
cross to reach j from i (Zhou, 2003)

2) Probability that the walker reaches j from i1 in a fixed
number of steps (Latapy & Pons, 2005)

3) Commute-time, average first passage-time, escape
probability, etc.



Dynamic methods:
random walks

Markov Cluster Algorithm (MCL) (Van Dongen, PhD thesis,
2000)

Basic idea: diffusion flow on a network

/ Transfer matrix

Wz'j — Sz'j
Sij = Wij/s;



Dynamic methods:
random walks

Three parameters: p,«, k

Steps:

1. (Diftusion) Raise the stochastic matrix to the power p
(e.g- p=2)

2. (Inflation) Raise each resulting matrix element to the
power

3. Normalize the elements of the resulting matrix (by row)

4. Keep only the k largest elements per column

5. Repeat from 1.



Dynamic methods:
random walks

After a sufficient number of iterations the matrix converges
to a matrix with Os and 1s, with disconnected components!

Problem: the final configuration depends on the parameters
p, k and (mostly!) &

Complexity: O(nk?)

http://www.micans.org/mcl/



Dynamic methods:
synchronization

Principle: in a graph with strong community structure,
oscillators placed at the vertices synchronize first within the
clusters

ao; :
Kuramoto = w; + Z K sin(6; — 0;)
J

oscillators dt

On a graph, coupling between neighboring oscillators

Steps:

1) Initial configuration with random phases

2) For K larger than a threshold depending on the width of
the distribution of the natural frequencies w, oscillators
partially synchronize
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Methods based on
statistical inference

Bayesian inference

Two ingredients:

1) The evidence: information D that one has on the system
(adjacency matrix)

2) A statistical model with parameters {0}

Maximization of posterior probability
P({0}|D) = %P(DH@})P({@})
z— [ PO P((o}as
Problems:

1) Computing Z is a challenge
2) Choice of prior distribution P({6})



Methods based on
statistical inference

Method by Newman & Leicht (2006)

g; =group of vertex i
Ty = fraction of vertices in group r

0,.; = probability of directed edge from vertices of group r
and vertex i

Best classification corresponds to the maximum of the
average likelihood that the model, with its parameters

and {7; } fits {6,-;} the adjacency matrix of the graph



Methods based on
statistical inference

Equations of method by Newman & Leicht

Asj

m [0,
A,
Zs s Hj 98]']

Ty = N Z%m er — ZZ g
i

qir = Pr(g; =r|A,m,0) =

Equations are self-consistent and can be solved by iteration
starting from suitable initial conditions



Methods based on
statistical inference

Complexity: parameter-dependent, but low (graphs with up
to 100 vertices can be studied)

Plus: no need to specity group structure to search, the
method recognizes if there is community structure,
multipartite structure or combinations of both

Minus:

1) The number of groups to find must be given as input, the
method is not able to find it on its own

2) Results strongly depend on initial conditions



Methods based on
model selection

Model selection: finding a model which is simple and good
enough for the system (ex. Curve fitting!)

No clear-cut recipe, several heuristics: Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC),
Minimum Description Length (MDL), etc.

MDL: minimizing length of description of system/clustering
for a given coding scheme



INfomap

Rosvall & Bergstrom, 2008

Idea: finding a compressed description of a random walk
taking place on the graph

Procedure:

1)Each vertex is given a coded name (Huffman code)

2)Each cluster receives a coded name

3)Names of vertices can be recycled, as long as they are not
repeated in the same cluster (just like in geographic maps)
4)The recycling procedure enables to spare the space required
by assigning a different name to each vertex

5)When a vertex passes from one cluster to another one must
indicate the name of the new cluster

6)If the graph has a strong community structure, recycling the
vertex names 1s convenient



Z @
00010
@ 0000

1111100 1100 0110 11011 10000 11011 0110 0011 10111 1001 0011
1001 0100 0111 10001 1110 0111 10001 0111 1110 0000 1110 10001
011111100111 1110 1111101 1110 0000 10100 0000 1110 10001 0111
0100 10110 11010 10111 1001 0100 1001 10111 1001 0100 1001 0100
0011 0100 0011 0110 11011 0110 0011 0100 1001 10111 0011 0100
0111 10001 1110 10001 0111 0100 10110 111111 10110 10101 11110
00011

1 1’0001 E1 o011
1@ 0001 11’000
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011 10 000 111 0001 0 111 010 100 011 00 111 00 011 00 111 00 111
110 111 110 1011 111 01 101 01 0001 0 110 111 00 011 110 111 1011
10111 000 10 000 111 0001 0 111 010 1010 010 1011 110 00 10 011

=)
=)

Best partition =» minimum description length, optimization
can be carried out with simulated annealing, greedy methods,

etc.



Methods to find
overlapping communities

Clique Percolation Method (CPM) (Palla et al., 2005)

Principle: in a graph with community structure there are
many cliques within the clusters

Cliques can be used as probes to explore the graph:
1) Two k-cliques are neighbors if they share a (k-1)-clique
2) One can travel along paths of neighboring cliques

Cliques may be trapped within clusters, which can then be
identified



Methods o find
overlapping communities

Clique Percolation Method




Methods o find
overlapping communities

Complexity: finding all k-cliques on sparse graphs can be
done quickly

Problems:

1) Results strongly depend on the density of cliques, and may
be trivial if there are too many or too few

2) Vertices with less than k-1 neighbors cannot be reached by

k-cliques and remain unclassified
3) Which value of k?



Methods o find
overlapping communities

Local Fitness Method (LFM) (Lancichinetti et al., 2009)

Principle: finding local communities about individual
vertices

A local community is built by maximizing a fitness function
(ksn + K ?)ut)a

fi =

Fitness of vertex A with respect to cluster i

sz — fz'UA — fi—A



Methods to find

overlapping communities

Steps:

1)
2)
3)
4)

5)

Take a vertex A at random

Look for community of A

Pick a vertex B at random not yet assigned to a community
Find community of B, it may overlap with the other

communities
Go on until all vertices have been assigned to at least a

community

How to build a cluster:

1)
2)

3)
4)

Start: cluster with s vertices

The neighboring vertex with largest positive fitness is
included in the cluster; fitness of all vertices is recalculated
Vertices with negative fitness are removed

Process goes on until all vertices of the group have positive
fitness and all their neighbors negative fitness






OSLOM

Basics:

« LFM with fitness expressing the statistical significance of
a cluster with respect to random fluctuations

* Statistical significance evaluated with Order Statistics

First multifunctional method:
* Link direction

* Link weight

* Overlapping clusters

* Hierarchy

A. Lancichinetti, F. Radicchi, J. J. Ramasco, S. E, PLoS One 6, 18961 (2011)



[Local optimization: OSL

Order Statistics Local
Optimization Method

™~
% s1.oM

Home
Welcome to OSLOM's Web page i
OSLOM means Order Statistics Local Optimization Method and it's a clustering algorithm Publications
jes) j fi 3
designed for networks. Taam
Download the code (beta version 2.4, last update: September, 2011) Contacts

The package contains the source code and the instructions to compile and run the program.
You will also get a simple script which we implemented to visualize the clusters found by
OSLOM. This script writes a pajek file which in tumn can be processed by pajek or gephi.

This is a nice example of how the visualzation looks like.

T

http://www.oslom.org/



Multiresolution methods
and cluster hierarchy

Question: most real networks have hierarchical structure,
but most methods find just one partition, what to do?

(Possible) Answer: introducing a tunable parameter so that
the method yields partitions at different scales

Examples:

1) Spin glass modularity by Reichardt & Bornholdt (2006)
2) Multiresolution modularity by Arenas et al. (2008)

3) LFM method by Lancichinetti et al.



Multiresolution methods
and cluster hierarchy

Method by Ronhovde & Nussinov (2009)

Potts model: rewarding edges within clusters and non-edges
between clusters

H({o}) = —5 D[4y — (1~ Ay))8(o3, 05)

i#] N

No null model!

Energy is minimized by shifting single vertices to the
clusters that yield the largest decrease of H({c})

Complexity: O(mP), p~1

Meaningful partitions: values of vy yielding most “stable”
partitions



Detection of dynamic
communities

growth contraction
t — t+ t — t+1
merging splitting
t — t+1 t — t+1
birth l: death
t — t+ t  — t+1

Problem: how to track the images of a community at various
times?

C(t) =C(t+1) 7



Detection of dynamic
communities

Analysis by Palla et al. (2007)

Datasets: mobile communication network and scientific
collaboration network

Method: CPM

Community tracking:

1) Take the graph G(t,t+ 1) , made by the union of the
graphs G(t) and G(t+ 1) attimestand t+1, find the
communities in it: they include communities of both
snapshots at time t and t+1

2) Given a community C(t) of G(t) itsimageinG(t + 1) is
the community of G(f + 1) having the largest overlap
with C(t) among those included in the community of

G(t,t + 1) including



Detection of dynamic
communities

1) Large communities are more variable, small communities

Results:;

essentially static

2) Vertices which are weakly connected to their community
have a sizeable chance to leave it

3) Vertices which are tightly connected to an external
community have a high chance to join it

4) Results 3 and 4 hold at the community level as well
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Detection of dynamic
communities

Most methods are two-stage, like that by Palla et al.

Alternative approach: evolutionary clustering (Chakrabarti
et al., 2006)

Unified framework: partition derived both from information
at time t and from information at previous times

Ingredients:

1) Snapshot quality of a partition: goodness of the partition
with respect to the graph structure at a given time t

2) History cost: measure of distance of partition at time t
from partition at time t-1

Principle: a good partition should have high snapshot quality
and low history cost



Testing algorithms

Question: how to test clustering algorithms?

Answer: checking whether they are able to recover the
known community structure of benchmark graphs

Warning: definition of community of benchmark and
methods should be consistent!

Planted l-partition model (Condon & Karp, 1999)

Ingredients:

1) n vertices, 1 equal-sized groups with g=n/l vertices each
2) p=probability that vertices of the same cluster are joined
3) g=probability that vertices of different clusters are joined

Idea: if p>q the groups are communities



Testing algorithms

Planted 1-partition model




Testing algorithms

Special case: the benchmark by Girvan and Newman (2002)

n=128, 1=4, g=32
kin=p(g—1) ~pg kouwr =q9(l —1) Kkin + kour = 16
qu%ka% kout§12

Problems:
1) All vertices have the same degree
2) All communities have the same size



Testing algorithms

LFR benchmark (Lancichinetti et al., 2008)

Features:

1) Power law distribution of
degree (exponent t,)

2) Power law distribution of
community size (exponent T,)

3) A mixing parameter L, sets the
ratio between external and total
degree of each vertex

https://sites.google.com/site/andrealancichinetti/files/



Testing algorithms

Necessary ingredient: similarity measure between partitions

Ex. Normalized mutual information

T, Y; . community assignments
P(X =2x)=ng/n, P(Y = y) = n,/n

Z P(x)log P(x Shannon entropy
H(X|Y) = Z P(z,y) log P(z|y) Shannon conditional
- entropy
I(X,)Y)=H(X)—- H(X|Y) Mutual information
Problem: mutual information identical for all Y subpartitions
of X
T (X,Y) = 2I1(X,Y) Normalized mutual

H(X)+ H(Y) information



Testing algorithms

First analysis: Danon et al. (2005), using GN benchmark

New analysis: Lancichinetti & Fortunato (2009), using LFR
benchmark

Author Label Order
Girvan & Newman GN O(nm?)
Clauset et al. Clauset et al. O(nlog” n)
Blondel et al. Blondel et al. O(m)
Guimera et al. Sim. Ann. parameter dependent
Radicchi et al. Radicchi et al. O(m*/n?)
Palla et al. Cfinder O(exp(n))

Van Dongen MCL O(nk?), k < n parameter
Rosvall & Bergstrom Infomod parameter dependent
Rosvall & Bergstrom Infomap O(m)

Donetti & Mufioz DM O(n?)
Newman & Leicht EM parameter dependent
Ronhovde & Nussinov RN O(nP), 3~ 1
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Testing algorithms

A comparative analysis
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Testing algorithms
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Topology vs metadata

Zero-th postulate of community detection: communities
group nodes with similar properties!

Is that true? Never tested, lack of data

Zachary’s karate club?




Topology vs metadata

Name| #Nodes #Edges #Communities Description of community nature
Ifr 1000 9839 40 artificial network (lfr, 1000S, p = 0.5)
karate 34 78 2 membership after the split
football 115 615 12 team scheduling groups
polbooks 105 441 2 political alignment
polblogs 1222 16782 3 political alignment
dpd 35029 161313 580 software package categories
as-caida 46676 262953 225 countries
fb100(762-41536 166511465654 2-2597 common students’ traits
PEP 81036 190143 17824 email domains
anobii 136547 892377 25992 declared group membership
dblp 317080 1049866 13472 publication venues
amazon 366997 1231439 14-29432 product categories
flickr| 1715255 22613981 101192 declared group membership
orkut| 3072441 117185083 8730807 declared group membership
lj-backstrom| 4843953 43362750 292222 declared group membership
lj-mislove| 5189809 49151786 2183754 declared group membership

D. Hric, R. K. Darst, S. E, Phys. Rev. E 90, 062805 (2014)



Topology vs metadata
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| CD algorithms
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Mismatch between structural (detected) clusters and
ground truth clusters -> new models/methods ?

D. Hric, R. K. Darst, S. E, Phys. Rev. E 90, 062805 (2014)



Consensus clustering

= Stochastic (non-deterministic) methods yield many result
partitions: which one shall one choose?

= Optimization methods have an intrinsic criterion to pick
the “best” partition (minimization/maximization of
quality function) -> can one exploit the information of the
discarded partitions as well?

Similar problem: clustering in dynamic networks
* Many methods use individual snapshots, ideally one
should combine the information of different snapshots



Consensus clustering

Goal
= Searching for the partition which is most similar, on

average, to the input partitions (median or consensus partition)

Similarity measurable with, e.g., Normalized Mutual
Information (NMI)

Problem: difficult combinatorial optimization task

Greedy solution: consensus matrix

A. Lancichinetti, S. Fortunato, Sci. Rep. 2, 336 (2012)



Consensus clustering

Definition
* Matrix D whose entry D;; is the frequency that vertices i
and j were in the same cluster in the input partitions

Idea

* Finding the clusters of D by applying the same method
used to find the input partitions

= The resulting partitions are combined in a new consensus
matrix D’

= The procedure is iterated until the consensus matrix is
composed of disconnected cliques



Consensus clustering

The algorithm

Starting point: network G with n vertices, clustering method A.

= Apply A on G np times -> np partitions

* Compute the consensus matrix D: D; is the number of
partitions in which vertices i and j of G are assigned to the
same cluster, divided by np

= All entries of D below a chosen threshold t are set to zero

= Apply A on D n; times -> n, partitions

= Jf the partitions are all equal, stop (the consensus matrix
would be block-diagonal). Otherwise go back to 2.



Consensus clus’rering

Original Graph ~  Consensus Matrix

IJ

At
Pt
MAm



Consensus clustering

Setting the number of inputs
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Consensus clustering

Setting the threshold
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Normalized Mutual Information

Consensus clustering

Results on the LFR benchmarks
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Consensus clustering
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Consensus clustering

Stability: APS citation network
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Consensus clustering

Fidelity: C. elegans
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Consensus clustering

Fidelity: APS citation network
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Consensus clustering

Dynamic networks

Succession of snapshots, corresponding to m overlapping
time windows of size At: [t,, t,+At], [t+1, t;t1+A¢L], [t -At, t ]
Consensus partition from subsets of r consecutive
snapshots, with r suitably chosen.

One starts by combining the first r snapshots, then those
from 2 to r+1, and so on until the interval spanned by the
last r snapshots.

Our calculations: At=5 (years), r = 2.

D;; = number of times vertices i and j are clustered together,
divided by the number of partitions corresponding to
snapshots including both vertices



Consensus clustering

Dynamic networks

Ct — Ct_|_1 ?

Problem: A cluster may fragment, and thus there would be
many “‘children” clusters at time t + 1 for the same cluster at
time t.

Our strategy: computing the Jaccard index of C, with all
clusters of partition at time t + 1, and pick the cluster with the
highest value

ANB
AUB

J(A, B) =




Consensus clustering

Dynamic networks

In the same way we find the “father” of cluster C,;

Important: if cluster A at time t is the best match of cluster B at
time t + 1, the latter may not be the best match of A

Criterion:

= if clusters A and B are each other’s best match, A “survives”
to time t +1

= [f clusters A and B are not each other’s best match, A “dies”
at time t and B is considered as a new cluster



1960 - 1965

Consensus clustering

Tracking dynamic clusters: the APS citation network
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Consensus clustering

Tracking dynamic clusters: the APS citation network
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Summary

1) What is a community? No unique answer! Definition is
system- and problem-dependent

2) Magic method? No such thing! Domain dependent
methods?

3) Triadic closure naturally yields community structure

4) Global optimization methods have important limits: local
optimization looks more natural and promising

5) Attention on validation
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Community detection in graphs

Volume 486, Issues 3-5, February 2010, Pages 75-174
Fortunato, S.

The modern science of networks has brought significant advances to our understanding of complex systems.
One of the most relevant features of graphs representing real systems is community structure, or clustering,
i.e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and
comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be
considered as fairly independent compartments of a graph, playing a similar role like, e.g., the tissues or the
organs in the human body. Detecting communities is of great importance in sociology, biology and computer
science, disciplines where systems are often represented as graphs. This problem is very hard and not yet
satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it
over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main
elements of the problem, to the presentation of most methods developed, with a special focus on techniques
designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and
how methods should be tested and compared against each other, to the description of applications to real
networks. © 2009 Elsevier B.V.



