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Image matching and recognition with local features

The goal: establish correspondence between two or more
Images

—PX x'=P'x
3 X 4 matrix

X
P
X : 4-vector
X

3-vector C ok
Image points x and x’ are in correspondence Iif they are

projections of the same 3D scene point X.

Images courtesy A. Zisserman



Example I: Wide baseline matching and 3D reconstruction

Establish correspondence between two (or more) images.

[Schaffalitzky and Zisserman ECCV 2002]



Example I: Wide baseline matching and 3D reconstruction
Establish correspondence between two (or more) images.

X

[Schaffalitzky and Zisserman ECCV 2002]



[Agarwal, Snavely, Simon, Seitz, Szeliski, ICCV’'09] —
Building Rome in a Day

57,845 downloaded images, 11,868 registered images. This example: 4,619 images.




Example Il: Object recognition

Establish correspondence between the target image and
(multiple) images in the model database.

Model
database *

[D. Lowe, 1999]



Example IlI: Visual search

Given a query image, find images depicting the same place /
object in a large unordered image collection.

Find these landmarks ...In these iImages and 1M more



Establish correspondence between the query image and all
Images from the database depicting the same object / scene.

Database |mge() |



Applications

Take a picture of a product or advertisement
- find relevant information on the web

PRENEZ EN PHOTO L'AFFICHE !

Accédez a la bande annonce, a tous
les horaires et a la réservation.

Avec la participation de

TOUTLECINE.COM

[Pixee — Milpix]



Applications

Finding stolen/missing objects in a large collection




Applications

Copy detection for images and videos

Query video Search in 200h of video

B vanons'zijn achtergeble'ven.



Why is it difficult?

Want to establish correspondence despite possibly large
changes in scale, viewspoint, lighting and partial occlusion

Lighting Occlusion

.. and the image collection can be very large (e.g. 1B images)



How does it work?
Approach:

e Compute scale / affine co-variant local features

e Estimate pairwise best matches between local features

e Enforce geometric constraints between local features
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How does it work?
Approach:

e Compute scale / affine co-variant local features

e Estimate pairwise best matches between local features

e Enforce geometric constraints between local features




Why extract features?

« Motivation: panorama stitching
« We have two images — how do we combine them?

Slide: S. Lazebnik



Why extract features?

« Motivation: panorama stitching
« We have two images — how do we combine them?

Step 1: extract features
Step 2: match features

Slide: S. Lazebnik



Why extract features?

« Motivation: panorama stitching
« We have two images — how do we combine them?

Ste
Ste
Ste

0 1: extract features
0 2: match features

0 3: align images

Slide: S. Lazebnik



Characteristics of good features

* Repeatability
 The same feature can be found in several images despite geometric
and photometric transformations

Saliency
 Each feature is distinctive

Compactness and efficiency
« Many fewer features than image pixels

Locality

» A feature occupies a relatively small area of the image; robust to
clutter and occlusion

Slide: S. Lazebnik



A hard feature matching problem

NASA Mars Rover images

Slide: S. Lazebnik



Answer below (look for tiny colored squares...)

|
|
|
|
NASA Mars Rover images

with SIFT feature matches
Figure by Noah Snavely

Slide: S. Lazebnik



Corner Detection: Basic Idea

« We should easily recognize the point by
looking through a small window

 Shifting a window in any direction should
give a large change in intensity

“flat” region: “edge”: ‘corner’;
no change in no change significant
all directions along the edge change in all

direction directions

Source: A. Efros



Corner Detection: Mathematics

Change in appearance of window W for the shift [u,V]:

E(u,v)= > [1(x+u,y+Vv)—1(x,y)I

(X,y)eW

1(X, y) )

E(u, v)

Slide: S. Lazebnik



Corner Detection: Mathematics

Change in appearance of window W for the shift [u,V]:

E(u,v)= > [1(x+u,y+Vv)—1(x,y)I

(X,y)eW

1(X, y) )

i,‘-
o !

E(u, v)

Slide: S. Lazebnik



Corner Detection: Mathematics

Change in appearance of window W for the shift [u,V]:
E(u,v)= > [1(x+u,y+Vv)—I(x, )]’
(X,y)ew

We want to find out how this function behaves for
small shifts

E(u, v)

Slide: S. Lazebnik



Corner Detection: Mathematics

* First-order Taylor approximation for small
motions [u, VJ:

[ (x+u,y+v)=1(x,y)+1,u+1v+higher order terms
=~ (X, y)+Lu+lyv

—1(x,y)+[1, 1] -

* Let's plug this into
E(u,v)= > [1(x+u,y+Vv)—1(x,y)I

(X,y)eW

V

Slide: S. Lazebnik



Corner Detection: Mathematics

E(u,v)= D> [1(Xx+u,y+v)—1(xy)I

(X,y)ew

~ Y xy)+n, 1]

(X,y)eW

- [[IX )

(X,y)ew

- S ]

(X,y)ew

2
Ix

U

V

:

Xy

U

—1(x,y)I



Corner Detection: Mathematics

The quadratic approximation simplifies to

E(u,v)=[u v]M

U

V

where M iIs a second moment matrix computed from image

derivatives:

2
|

e
M = X X"y
le |12

(Xx,y)eW X"y

Slide: S. Lazebnik



Visualization of second moment matrices

Slide: S. Lazebnik



Visualization of second moment matrices
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Interpreting the eigenvalues

Classification of image points using eigenvalues
of M:

A

Ay

Slide: S. Lazebnik



Corner response function

R=det(M)—-atrace(M)* = A4, —a(d +4,)°

a. constant (0.04 to 0.06)

Slide: S. Lazebnik



Harris detector: Steps

1. Compute Gaussian derivatives at each pixel

2. Compute second moment matrix M in a
Gaussian window around each pixel

3. Compute corner response function R

Threshold R

5. Find local maxima of response function
(nonmaximum suppression)

B

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide: S. Lazebnik


http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Harris Detector: Steps

Slide: S. Lazebnik



Harris Detector: Steps

Compute corner response R

Slide: S. Lazebnik



Harris Detector: Steps
Find points with large corner response: R>threshold

Slide: S. Lazebnik



Harris Detector: Steps

Take only the points of local maxima of R

Slide: S. Lazebnik



Harris Detector: Steps

Slide: S. Lazebnik



Invariance and covariance

« We want corner locations to be invariant to photometric
transformations and covariant to geometric transformations
« Invariance: image is transformed and corner locations do not change

« Covariance: if we have two transformed versions of the same image,
features should be detected in corresponding locations

Slide: S. Lazebnik



Affine intensity change

RA

threshold

=) [ | >al+b

« Only derivatives are used =>
Invariance to intensity shiftl > 1+Db

* Intensity scaling: 1 > al

/

o~ VAVER

X (image coordinate) X (image coordinate)

Partially invariant to affine intensity change

Slide: S. Lazebnik



Image translation

Ll

™

* Derivatives and window function are shift-invariant

Corner location Is covariant w.r.t. translation

Slide: S. Lazebnik



Image rotation

e

™
—— A

Second moment ellipse rotates but its shape
(i.e. eigenvalues) remains the same

Corner location Is covariant w.r.t. rotation

Slide: S. Lazebnik



Scaling

— —
7 I
Corner
All points will
be classified
as edges

Corner location is not covariant to scaling!

Slide: S. Lazebnik






Blob detection

Slide: S. Lazebnik



Feature detection with scale selection

We want to extract features with characteristic
scale that is covariant with the image
transformation

47 mrrrryrr v T 1 1 T T T 1 T T o ULARBRR B
2.0 10.1 19. 2.0 3.89
scale

19
scale

Slide: S. Lazebnik



From feature detection to feature description

« Scaled and rotated versions of the same
neighborhood will give rise to blobs that are related
by the same transformation

« What to do if we want to compare the appearance of
these image regions?

 Normalization: transform these regions into same-
Size circles

Problem: rotational ambiguity

oy I

Slide: S. Lazebnik



Eliminating rotation ambiguity

To assign a unique orientation to circular

Image windows:

Create histogram of local gradient directions in the patch
Assign canonical orientation at peak of smoothed histogram

Slide: S. Lazebnik



SIFT features

 Detected features with characteristic scales
and orientations:

David G. Lowe. "Distinctive image features from scale-invariant
keypoints.” IJCV 60 (2), pp. 91-110, 2004.

Slide: S. Lazebnik


http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

SIFT descriptors
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SIFT descriptor is a 128-bin histogram

D(&,x) = (h1,...,hg, ho,...,h16, ..., h128) vector accumulated from 8 quantized
‘ it . gradient orientations in 16 position-

dependent cells of a region

David G. Lowe. "Distinctive image features from scale-invariant
keypoints.” IJCV 60 (2), pp. 91-110, 2004.

Slide: S. Lazebnik


http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Invariance vs. covariance

Invariance:
» features(transform(image)) = features(image)

Covariance:
« features(transform(image)) = transform(features(image))

Covariant detection => invariant description

Slide: S. Lazebnik



Software

VLFeat: Vision Library Features http://www.vlfeat.org/
(will be used in this course)

— Local image features (Harris,SIFT, MSER, ...)
— Local image descriptors (SIFT, LBP, ...)

— Feature encodig (VLAD, Fisher)

— Machine learning tools (k-means, GMM, SVM)
— Matlab and C interfaces


http://www.vlfeat.org/
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Approach

0. Pre-processing:
« Detect local features.
« Extract descriptor for each feature. Done v/

1. Matching: Establish tentative (putative) correspondences
based on local appearance of individual features (their
descriptors).

2. Verification: Verify matches based on semi-local / global
geometric relations.

Next




Example I: Two images -"Where is the Graffiti?”




Step 1. Establish tentative correspondence

Establish tentative correspondences between object model image and target
image by nearest neighbour matching on SIFT vectors

-
-
-
~
~

/S0 [T

Model (query) image 128D descriptor Target image
128 space
x; €ER x; € R

Need to solve some variant of the “nearest neighbor problem” for all feature vectors,
x; € R128 in the query image:
Vi NN(j) = argmin ||x; —x;l;

where, X; € 7?,128, are features in the target image.

Can take a long time if many target images are considered.



Step 1. Establish tentative correspondence

Examine the distance to the 2" nearest neighbour [Lowe, IJCV 2004]

Ambiguous
\ oo
___________ e ST
T Unique o 7= -
/ S g / / / <X, /
Model (query) image 128D descriptor Target image
space

128
x; ER x; € 1128

If the 2" nearest neighbour is much further than the 15t nearest neighbour, the
match is more “unique” or discriminative.

Measure this by the ratio: r = dyy / donn

ris between O and 1
r is small the match is more unique.

Works very well in practice.



Problem with matching on local descriptors alone

* too much individual invariance
 each region can affine deform independently (by different amounts)

* locally appearance can be ambiguous

Solution: use semi-local and global spatial relations to verify matches.



Example I: Two images -"Where Is the Graffiti?”

Initial matches

Nearest-neighbor
search based on
appearance descriptors
alone.

After spatial
verification




Approach

0. Pre-processing:
« Detect local features.
« Extract descriptor for each feature.

1. Matching: Establish tentative (putative) correspondences
based on local appearance of individual features (their
descriptors).

2. Verification: Verify matches based on semi-local / global
geometric relations.




Geometric verification with global constraints

« All matches must be consistent with a global geometric
relation / transformation.

* Need to simultaneously (i) estimate the geometric
relation / transformation and (ii) the set of consistent
matches

i

f L 3 1 h — “’- | I! - ‘
mmmm'

Matches consistent with an affine
transformation

Tentative matches



Examples of global constraints

1 view and known 3D model.
e Consistency with a (known) 3D model.

2 Views
« Epipolar constraint
o 2D transformations

« Similarity transformation
« Affine transformation
* Projective transformation

N-views L
Are images consistent with a 3D model? \X\ s ai



2D transformation models

Similarity
(translation,
scale, rotation)

Affine

=

- ¥

Projective
(homography)

~

Why are 2D planar transformation important?



Recall perspective projection

X = PX

P : 3 x4 matrix
X : 4-vector
X . 3-vector

Slide credit: A. Zisserman



Plane projective transformations

Choose the world coordinate system such that
the plane of the points has zero z coordinate.
Then the 3 x 4 matrix P reduces to

X
1 [pu P12 P13 p14] ’ [pll P12 p14] X
rp | = {pzl P22 P23 p24J 0 — {pzl D22 p24J y
x3 P31 P32 P33 P34 1 P31 P32 P34 1

which is a 3 x 3 matrix representing a general
plane to plane projective transformation.

Slide credit: A. Zisserman



Projective transformations continued

A
/
! h11 hi2 hi3 ]
Ty | = ho1 hoo hos T N
3 h31 h3z hs3z | \ 23 e
or xX’ = Hx, where H is a 3 x 3 non-singular e
Op—f---- e e
homogeneous matrix. ,, 7 x )

* This is the most general transformation between the world
and image plane under imaging by a perspective camera.

* It is often only the 3 x 3 form of the matrix that is important in
establishing properties of this transformation.

* A projective transformation is also called a "homography"
and a " collineation".

* H has 8 degrees of freedom. How many points are needed to
compute H?

Slide credit: A. Zisserman



Planes in the scene induce homographies




Planes in the scene induce homographies

Points on the plane transform as x’ = H x, where x and x’
are image points (in homogeneous coordinates), and H
IS a 3x3 matrix.




Case ll: Cameras rotating about their centre

B _jtxé“ -
L -~
\\ _.-""---‘ ] KJ /
image plane 2 N X Hx
D X,
— [ ]
— \ |
- X p
— "'lx, .- \,_/"f I"., |I|
: e \
Image plane 1 e H-H__‘_%']\C
l;llll H"“HH
h T
| I. .H"'a._
L\ N ~_
| AN ~
I -
| X \ e
| . Xy
| X,
_ oX, i
» The two image planes are related by a homography H

* H depends only on the relation between the image

planes and camera centre, C, not on the 3D structure



Case II: Example of a rotating camera

Images courtesy of A. Zisserman.



Homography is often approximated well by 2D
affine geometric transformation




Homography is often approximated well by 2D
affine geometric transformation — Example II.

Two images with similar camera viewpoint

== =
E-r — ‘
‘ =i s & -
: Wy ":__‘ & Y ‘ s = I
—— = e = GRA= = i
: G : I
nmmﬁﬁm ‘

Matches consistent with an affine
transformation

Tentative matches



Example: estimating 2D affine transformation

« Simple fitting procedure (linear least squares)

« Approximates viewpoint changes for roughly planar
objects and roughly orthographic cameras

« Can be used to Initialize fitting for more complex models




Example: estimating 2D affine transformation

« Simple fitting procedure (linear least squares)

« Approximates viewpoint changes for roughly planar
objects and roughly orthographic cameras

« Can be used to Initialize fitting for more complex models




Fitting an affine transformation

Assume we know the correspondences, how do we get the
transformation?

(Xi’yi). o
(Xi,yi).

My

3 3 3 3

SN

X m m,| X t, x. vy 0 0 1 0
— +
yi m; M, Y, L, 0 0 x vy 01

| —

~ e
N




Fitting an affine transformation

Em, U
é -y
& 48
g v 0 0 1 Opnu_axf
A U=—3 o
€0 0 x, y, 0 1§n,, &t
é . €L
e LU el

é u

el, U

Linear system with six unknowns

Each match gives us two linearly independent
equations: need at least three to solve for the
transformation parameters



Dealing with outliers

The set of putative matches may contain a high percentage
(e.g. 90%) of outliers

How do we fit a geometric transformation to a small subset
of all possible matches?

Possible strategies:
« RANSAC
* Hough transform




Example: Robust line estimation - RANSAC

Fit a line to 2D data containing outliers

There are two problems
1. aline fit which minimizes perpendicular distance

2. a classification into inliers (valid points) and outliers
Solution: use robust statistical estimation algorithm RANSAC

(RANdom Sample Consensus) [Fishler & Bolles, 1981]

Slide credit: A. Zisserman



RANSAC robust line estimation

Repeat
1. Select random sample of 2 points
2. Compute the line through these points

3. Measure support (number of points within threshold
distance of the line)

Choose the line with the largest number of inliers

« Compute least squares fit of line to inliers (regression)

Slide credit: A. Zisserman



Slide credit; O. Chum
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Slide credit; O. Chum
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Slide credit; O. Chum



Slide credit: O. Chum



Algorithm summary — RANSAC robust estimation of
2D affine transformation

Repeat
1. Select 3 point to point correspondences
2. Compute H (2x2 matrix) + t (2x1) vector for translation

3. Measure support (number of inliers within threshold

distance, i.e. d% . srer < 1)
dt?,ransfer — d(X7 H_1XI)2 _|_ d(X,7 HX)2

. T d x
— | e

image 1 image 2

Choose the (H,t) with the largest number of inliers

(Re-estimate (H,t) from all inliers)



How many samples are needed?

1. Depends on the proportion of outliers.

(1P}

2. Depends on the sample size s
« use simpler model (e.g. similarity instead of affine tnf.)

 use local information (e.g. a region to region
correspondence is equivalent to (up to) 3 point to point
correspondences).

Number of samples N

proportion of outliers €

5% 10% 20% 30% 40% 50% 90%

3 4 5 6 43
5 7 11 17 458

7 11 19 35 4603
9 17 34 72 4.6e4
12 26 57 146 4.6e5
16 37 97 293 4.6e6
20 54 163 588 4.6e7
26 /8 272 1177 4.6e8

Region to region
correspondence

0ONO Ol h WNEFLOW
ah~r B~ PoWwwWwDNDDN
O 0O ~NO O~ WM




Example: restricted affine transform

1. Test each correspondence




Example: restricted affine transform

2. Compute a (restricted) planar affine transformation (5 dof)

Need just one correspondence



Example: restricted affine transform

3. Score by number of consistent matches

Re-estimate full affine transformation (6 dof)



Summary

Finding correspondences in images is useful for
« Image matching, panorama stitching
« Object recognition
« Large scale image search: next part of the lecture

Beyond local point matching
« Semi-local relations
» Global geometric relations:

|
« Epipolar constraint x' 'Fx = ()

- 3D constraint (when 3D model is available) |X = PX

« 2D tnfs: Similarity / Affine / Homography x' = Hx
 Algorithms:

« RANSAC

« [Hough transform]
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Approach

0. Pre-processing:
* Detect local features.
« Extract descriptor for each feature. Done v

1. Matching: Establish tentative (putative) correspondences
based on local appearance of individual features (their
descriptors). Next

2. Verification: Verify matches based on semi-local / global
geometric relations.

Done v




Example II: Two Images again

1000+ descriptors per image



Match regions between frames using SIFT descriptors and
spatial consistency

Multiple regions overcome problem of partial occlusion



Approach - review

1. Establish tentative (or putative) correspondence based
on local appearance of individual features (now)

2. Verify matches based on semi-local / global geometric
relations (You have just seen this).



What about multiple images?

« So far, we have seen successful matching of a query
Image to a single target image using local features.

* How to generalize this strategy to multiple target images
with reasonable complexity?

« 10,107 103, ...,107, ... 1010, .. images?



Example: Visual search in an entire feature length movie

Visually defined query Ca Audre
ngt Hepburr)\l

Charade

“Find this bag” “Charade” [Donen, 1963]

Demo:
http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html



History of “large scale” visual search with local regions

Schmid and Mohr '97 — 1k images

Sivic and Zisserman’03 — 5k images
Nister and Stewenius’06 — 50k images (1M)
Philbin et al.’"07 — 100k images
Chum et al.’07 + Jegou et al.’07 — 1M images
Chum et al.’08 — 5M images
Jegou et al. '09 — 10M images
Jegou et al. '10 — ~100M images

All on a single machine in ~ 1 second!



Two strategies

1. Efficient approximate nearest neighbour search on local
feature descriptors.

2. Quantize descriptors into a “visual vocabulary” and use
efficient techniques from text retrieval.

(Bag-of-words representation)



SR o

Strategy |: Efficient approximate NN search

Local features

Invariant
descriptor
vectors

[

(NNRRRRRE
(ANRRARAN
(NRRRARRN
NRRRRRRN

Images
Invariant

descriptor
vectors

>

NRRRARAE
(ANRRRRNE
(ANRRRRNE
(NRRARAY

Compute local features in each image independently

“Label” each feature by a descriptor vector based on its intensity

Finding corresponding features is transformed to finding nearest neighbour vectors
Rank matched images by number of (tentatively) corresponding regions

Verify top ranked images based on spatial consistency



Finding nearest neighbour vectors

Establish correspondences between object model image and images in the
database by nearest neighbour matching on SIFT vectors

T o
® o Z
Y y 4
o0
4
JSo 0 /S / Z
Model image 128D descriptor Image database
space

Solve following problem for all feature vectors, x; € R8 in the guery image:
Vi NN(j) = arg miin [[x; — x|

where, X; € R128 , are features from all the database images.



Quick look at the complexity of the NN-search

N ... images
M ... regions per image (~1000)
D ... dimension of the descriptor (~128)

Exhaustive linear search: O(M NMD)

Example:

» Matching two images (N=1), each having 1000 SIFT descriptors
Nearest neighbors search: 0.4 s (2 GHz CPU, implemenation in C)
« Memory footprint: 1000 * 128 = 128kB / image

# of images CPU time Memory req.

N= 1,000 ... ~7min (~100MB)
N =10,000 ... ~th7min  (~ 1GB)

N = 107 ~115days (-~ 1TB)

All images on Facebook:
N=10%© ... ~300years (~ 1PB)




Nearest-neighbor matching

Solve following problem for all feature vectors, x;, in the query image:

Vi NN(j) = arg miin l|x; — xjH

where Xx; are features in database images.

Nearest-neighbour matching is the major computational bottleneck

« Linear search performs dn operations for n features in the
database and d dimensions

« No exact methods are faster than linear search for d>10

« Approximate methods can be much faster, but at the cost of
missing some correct matches. Failure rate gets worse for
large datasets.



Indexing local features:
approximate nearest neighbor search
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Best-Bin First (BBF), a variant of k-d
trees that uses priority queue to
examine most promising branches first
[Beis & Lowe, CVPR 1997]

Locality-Sensitive Hashing (LSH), a
randomized hashing technique using
hash functions that map similar points
to the same bin, with high probability
[Indyk & Motwani, 1998]



Comparison of approximate NN-search methods

Dataset: 100K SIFT descriptors

i —&— k-means tree - sift 100K
"""""""" - | —%—rand. kd-trees - sift 100K

__________ - | —=— ANN - sift 100K
- | —e— LSH - sift 100K

Speedup over linear search

50 60 70 80 90 100
Correct neighbors (%)

Code for all methods available online, see Muja&Lowe’09
Figure: Muja&Lowe’09



Approximate nearest neighbor search (references)

J. L. Bentley. Multidimensional binary search trees used for associative searching.
Comm. ACM, 18(9), 1975.

Freidman, J. H., Bentley, J. L., and Finkel, R. A. An algorithm for finding best matches in
logarithmic expected time. ACM Trans. Math. Softw., 3:209-226, 1977.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y. An optimal
algorithm for approximate nearest neighbor searching in fixed dimensions. Journal of
the ACM, 45:891-923, 1998.

C. Silpa-Anan and R. Hartley. Optimised KD-trees for fast image descriptor matching. In
CVPR, 2008.

M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm
configuration. In VISAPP, 20009.

P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing the curse
of dimensionality,” in Proc. of 30th ACM Symposium on Theory of Computing, 1998

G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with parameter-
sensitive hashing,” in Proc. of the IEEE International Conference on Computer Vision,
2003.

R. Salakhutdinov and G. Hinton, “Semantic Hashing,” ACM SIGIR, 2007.
Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in NIPS, 2008.



ANN - search (references continued)

O. Chum, J. Philbin, and A. Zisserman. Near duplicate image detection: min-hash and tf-
idf weighting. BMVC., 2008.

M. Raginsky and S. Lazebnik, “Locality-Sensitive Binary Codes from Shift-Invariant
Kernels,” in Proc. of Advances in neural information processing systems, 2009.

B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for scalable image
search,” Proc. of the IEEE International Conference on Computer Vision, 2009.

J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for scalable image
retrieval,” in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), 2010.

J. Wang, S. Kumar, and S.-F. Chang, “Sequential projection learning for hashing with
compact codes,” in Proceedings of the 27th International Conference on Machine
Learning, 2010.



So far ...

* Linear exhaustive search can be prohibitively expensive
for large image collections

« Answer (so far): approximate NN search methods
 Randomized KD-trees
 Locality sensitive hashing

« However, memory footprint can be still high.

Example: N = 107 images, 1019 SIFT features with 128B
per feature ——> 1TB of memory

Look how text-based search engines (Google) index
documents — inverted files.



Indexing text with inverted files

dl d3 d4
0mmaon
Document common people | sculpture common S
. sculpture
collection: sculpture common
people people
common sculpture people
people common
Inverted file: Term List of hits (occurrences in documents)

People [d1:hit hit hit], [d4:hit hit] ...
[d1:hit hit], [d3: hit], [d4: hit hit hit] ...
Sculpture  [d2:hit], [d3: hit hit hit] ...

Common

Need to map feature descriptors to “visual words”.



Build a visual vocabulary

128D descriptor space 128D descriptor space

Vector quantize descriptors
- Compute SIFT features from a subset of images
- K-means clustering (need to choose K)

[Sivic and Zisserman, ICCV 2003]



Visual words
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Example: each group
of patches belongs to
the same visual word

128D descriptor space



Samples of visual words (clusters on SIFT descriptors):

More specific example



Samples of visual words (clusters on SIFT descriptors):

A

"'

-

E----

fm

More specific example



Visual words

* First explored for texture and
material representations

« Texton = cluster center of
filter responses over collection
of images

» Describe textures and
materials based on distribution
of prototypical texture
elements.

Leung & Malik 1999; Varma &
Zisserman, 2002; Lazebnik,
Schmid & Ponce, 2003;

Slide: Grauman&Leibe



Visual words: gquantize descriptor space
Sivic and Zisserman, ICCV 2003

Nearest neighbour matching o
*expensiveto - Ry
do for all frames P -
SS9 S / S S0 )/
Image 1 128D descriptor Image 2

space



Visual words: gquantize descriptor space
Sivic and Zisserman, ICCV 2003

Nearest neighbour matching o
*expensiveto - Qe
do for all frames P -
S 0 /S / S o0/
Image 1 128D descriptor Image 2
space

Vector quantize descriptors

5
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S
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|mage 1 128D descriptor |mage 2

space



Visual words: gquantize descriptor space
Sivic and Zisserman, ICCV 2003

Nearest neighbour matching o
*expensiveto - Qe
do for all frames P -
S 0 /S / S o0/
Image 1 128D descriptor Image 2
space

Vector quantize descriptors

5
412 \@
S
oS o 05 S S /220
New image Image 1 128D descriptor Image 2

space



Visual words: gquantize descriptor space
Sivic and Zisserman, ICCV 2003

Nearest neighbour matching o
*expensiveto - Qe
do for all frames P -
S 0 /S / S o0/
Image 1 128D descriptor Image 2
space

Vector quantize descriptors

5
12 \ @
S
S = 05/ S /220
New image Image 1 128D descriptor Image 2

space



Vector quantize the descriptor space (SIFT)

N2y

The same visual word



Representation: bag of (visual) words

Visual words are ‘iconic’ image patches or fragments
* represent their frequency of occurrence
* but not their position

Image Colelction of visual words



Offline: Assign visual words and compute
histograms for each image

42 @5

Find nearest
cluster center

Normalize Compute SIFT
patch descriptor

Detect patches

(Y

- PORPOON

\ /
Represent image as a

sparse histogram of visual
word occurrences



Offline: create an index

Word  Posting
number list

(1)— 5.10. ...
21, 10...

frame #5 frame #10

.

* For fast search, store a “posting list” for the dataset
 This maps visual word occurrences to the images they occur in

(i.e. like the “book index”)



At run time

Word  Posting
number list

(1)— 510, ...
2| —» 10...

frame #5 frame #10

Koo ok
» User specifies a query region

« Generate a short-list of images using visual words in the region
1. Accumulate all visual words within the query region
2. Use “book index” to find other frames with these words

3. Compute similarity for images which share at least one word



At run time

Word  Posting
number list

(1)— 510, ...
2| —» 10...

frame #5 frame #10
_

« Score each image by the (weighted) number of common
visual words (tentative correspondences)

« Worst case complexity is linear in the number of images N

* In practice, it is linear in the length of the lists (<< N)



Another interpretation: the bag-of-visual-words model

For a vocabulary of size K, each image is represented by a K-vector
_ T
Vd — (tl,...,ti,...,tK)

where t; is the number of occurrences of visual word i.

Images are ranked by the normalized scalar product between the query
vector v, and all vectors in the database vy:

T
Vq A\

Ja =
[vgll2 [[vall2

Scalar product can be computed efficiently using inverted file.

T

What if vectors are binary? What is the meaning of v, vg?
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Strategy |: Efficient approximate NN search

Local features

Invariant
descriptor
vectors
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Images
Invariant

descriptor
vectors

(ANRRRRNE

NRRRARAE
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Compute local features in each image independently (offline)

“Label” each feature by a descriptor vector based on its intensity (offline)

Finding corresponding features is transformed to finding nearest neighbour vectors
Rank matched images by number of (tentatively) corresponding regions

Verify top ranked images based on spatial consistency (The first part of this lecture)



Strategy Il: Match histograms of visual words

regions invariant : Single vector
descriptor Quantize (histogram)
1 vectors
—_ = [ -
frames o
i e

Compute affine covariant regions in each frame independently (offline)

“Label” each region by a vector of descriptors based on its intensity (offline)

Build histograms of visual words by descriptor quantization (offline)

Rank retrieved frames by matching vis. word histograms using inverted files.
Verify retrieved frame based on spatial consistency (The first part of the lecture)

SR o



Visual words: discussion |.

Efficiency — cost of quantization

* Need to still assign each local descriptor to one of the
cluster centers. Could be prohibitive for large vocabularies
(K=1M)

» Approximate NN-search still needed
 e.g. randomized k-d trees

 True also for building the vocabulary
« approximate k-means [Philbin et al. 2007]



Visual words: discussion II.

Generalization

e |Is vocabulary/quantization learned on one dataset good
for searching another dataset?

« Experimentally observe a loss in performance.

But, see also a recent work by Jegou et al.:

Hamming Embedding and Weak Geometry Consistency for
Large Scale Image Search, ECCV'2008

http://lear.inrialpes.fr/pubs/2008/JDS08a/



Visual words: discussion Ill.

What about quantization effects?
* Visual word assignment can change due to e.qg.
noise in region detection,
descriptor computation or
non-modeled image variation (3D effects, lighting)

See also:
Jegou et al., ECCV’2008, http://lear.inrialpes.fr/pubs/2008/JDS08a/
Philbin et al. CVPR’08, http://www.robots.ox.ac.uk/~vgag/publications/html/philbin08-bibtex.html
Mikulik et al., ECCV’10, http://cmp.felk.cvut.cz/~chum/papers/mikulik eccv10.pdf

Philbin et al., ECCV’10, http://www.di.ens.fr/~josef/publications/philbin10b.pdf



http://lear.inrialpes.fr/pubs/2008/JDS08a/
http://www.robots.ox.ac.uk/~vgg/publications/html/philbin08-bibtex.html
http://cmp.felk.cvut.cz/~chum/papers/mikulik_eccv10.pdf
http://www.di.ens.fr/~josef/publications/philbin10b.pdf

Visual words: discussion V.

* Need to determine the size of the vocabulary, K.

 Other algorithms for building vocabularies, e.g.

agglomerative clustering / mean-shift, but typically more
expensive.

« Supervised quantization?

Also give examples of images / descriptors which should
and should not match.

E.Q.
Philbin et al. ECCV’10, http://www.robots.ox.ac.uk/~vgg/publications/html/philbin10b-bibtex.html



Visual search using local regions (references)

C. Schmid, R. Mohr, Local Greyvalue Invariants for Image Retrieval, PAMI, 1997
J. Sivic, A. Zisserman, Text retrieval approach to object matching in videos, ICCV, 2003
D. Nister, H. Stewenius, Scalable Recognition with a Vocabulary Tree, CVPR, 2006.

J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zisserman, Object retrieval with large
vocabularies and fast spatial matching, CVPR, 2007

O. Chum, J. Philbin, M. Isard, J. Sivic, A. Zisserman, Total Recall: Automatic Query
Expansion with a Generative Feature Model for Object Retrieval, ICCV, 2007

H. Jegou, M. Douze, C. Schmid, Hamming embedding and weak geometric consistency
for large scale image search, ECCV’2008

O. Chum, M. Perdoch, J. Matas: Geometric min-Hashing: Finding a (Thick) Needle in a
Haystack, CVPR 2009

H. Jégou, M. Douze and C. Schmid, On the burstiness of visual elements, CVPR, 2009

H. Jégou, M. Douze, C. Schmid and P. Pérez, Aggregating local descriptors into a
compact image representation, CVPR’2010



Efficient visual search for objects and places

Oxford Buildings Search - demo

http://www.robots.ox.ac.uk/~vgag/research/oxbuildings/index.html



http://www.robots.ox.ac.uk/~vgg/research/oxbuildings/index.html

Example




Search results 1 to 20 of 104844

I0: oxcl1_hertford_000011

Score: 1816.000000

Putative: 2325

Inliers: 1816

Hypothesis: 1.000000 0.000000 0.000015 0.000000 1.000000 0.000031
Detail

ID: oxc1_all_souls_000075

Score: 352.000000

Putative: &45

Inliers: 352

Hypothesis: 1.162245 0.041211 -70.41445% -0.012913 1. 146417 91.2760%3
Detail

ID: oxc1_hertford_000064

Score: 278.000000

Putative: 527

Inliers: 278

Hypothesis: 0.928686 0.026134 169.954620 -0.041703 0.937558 97.%62112
Detail




ID: oxc1_oxford_001612

Score: 252.000000

Putative: 451

Inbiers: 252

Hypothesis: 1.046026 0.069416 51.576881 -0.044%49 1.046938 76.264442
Detail

ID: oxc1_hertford_000123

Score: 225.000000

Putative: 446

Inbiers: 225

Hypothesis: 1.361741 0.090413 -34.673317 -0.084659 1.301689 -
32.281090

ID: oxc1_oxford_001085

Score: 224.000000

Putative: 389

Inliers: 224

Hypothesis: 0.848997 0.000000 195.707611 -0.031077 0.895546
114.583961

ID: oxc1_hertford_000077

Score: 195.000000

Putative: 386

Inliers: 195

Hypothesis: 1.465144 0.069286 -108.473091 -0.097598 1.461877 -
30.2051%91




Oxford buildings dataset

. Automatically crawled from flickr

. Consists of:

Dataset | Resolution | # images # features | Descriptor size
i 1024 x 768 5,062 16,334,970 1.9 GB

ii 1024 x 768 99,782 277,770,833 33.1 GB

iii 500 x 333 | 1,040,801 | 1,186,469,709 141.4 GB
Total 1,145,645 | 1,480,575,512 176.4 GB




Oxford buildings dataset

« Landmarks plus gueries used for evaluation

Bridge of I} 5
Sighs

Keble

Magdalen &

Bodleian University ‘

Museum
Thom

Radcliffe
Camera

. Ground truth obtained for 11 landmarks

. Evaluate performance by mean Average Precision



Measuring retrieval performance: Precision - Recall

* Precision: % of returned images that
are relevant

» Recall: % of relevant images that are

Ole ole

returned

‘_ﬂ/{\ relevant returned
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Average Precision

precision

« A good AP score requires both
high recall and high precision

« Application-independent

0 0.2 0.4 0.6 0.8 1
recall

Performance measured by mean Average Precision (mAP)
over 55 queries on 100K or 1.1M image datasets



Query: ChristChurch3

' [—Before rle—ranking
— After re-ranking
0.81
S 0.6r
8
O
o
o 0.4r
0.2
0 I 1 I I
0 0.2 0.4 0.6 0.8

Recall



vocab bag of spatial

Size words

50K 0.473 0.599
100K 0.535 0.597
250K 0.598 0.633
500K 0.606 0.642
750K 0.609 0.630

1M 0.618 0.645
1.25M 0.602 0.625

Mean Average Precision variation with vocabulary size

-+-Bag of words
——Spatial

2

4 6 8 10 12
Vocabulary Size % 10°



. e
Query Images Broc HL T

* high precision at low recall (like google)

e variation in performance over query

 none retrieve all instances



Why aren’t all objects retrieved?

guery image
[Lowe04, Mikolajczyk07]

Hessian-Affine regions +
SIFT descriptors

,//
n
i
|

|

Set of SIFT
descriptors

[Sivic03, Philbin07]
Clustered and

visual words

sparse frequency vector

H— quantized to ——>I B -

Obtaining visual words is like a sensor measuring the image

“noise” in the measurement process means that some visual
words are missing or incorrect, e.g. due to

e Missed detections

« Changes beyond built in invariance

* Quantization effects

1. Query expansion
2. Better quantization

Consequence: Visual word in query is missing in target image




Query Expansion in text

In text :
* Reissue top n responses as queries
« Pseudo/blind relevance feedback
« Danger of topic drift

In vision:
* Reissue spatially verified image regions as queries



Query Expansion: Text

Original query: Hubble Telescope Achievements

Query expansion: Select top 20 terms from top 20 documents according to tf-idf

Added terms: Telescope, hubble, space, nasa,
ultraviolet, shuttle, mirror, telescopes,
earth, discovery, orbit, flaw, scientists,
launch, stars, universe, mirrors, light,
optical, species

Example from: Jimmy Lin, University of Maryland



Automatic query expansion

Visual word representations of two images of the same
object may differ (due to e.g. detection/quantization noise)
resulting in missed returns

Initial returns may be used to add new relevant visual words
to the query

Strong spatial model prevents ‘drift’ by discarding false
positives

[Chum, Philbin, Sivic, Isard, Zisserman, ICCV'07;
Chum, Mikulik, Perdoch, Matas, CVPR’'11]



Visual query expansion - overview

1. Original query

4. New enhanced query




Query Expansion

Query Image Originally retrieved image Originally not retrieved



Query Expansion




Query Expansion




Query Expansion




Query Expansion

Query Image Spatially verified retrievals with matching regions overlaid
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New expanded query

New expanded query is formed as
* the average of visual word vectors of spatially verified returns
* only inliers are considered

* regions are back-projected to the original query image



Demo



Query Expansion

Query image Originally retrieved Retrieved only




Original results (good)
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What objects/scenes local regions do not work on?




What objects/scenes local regions do not work on?

E.g. texture-less objects, objects defined by shape, deformable
objects, wiry objects.



What next?

Visual search for texture-less, wiry, deformable and 3D
objects..




Example:
Smooth object retrieval using a bag of boundaries
by Arandjelovic and Zisserman, ICCV 2011

Query

Retrieved
matches




Category-level visual search [See next lecture]

See also e.qg. [Torresani et al. ECCV 2010]



What next?

Match objects across large changes of appearance
Examples: non-photographic depictions, degradation
over time, change of season, ...
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Useful practical exercise (Matlab)

http://www.di.ens.fr/willow/teaching/recvis14/assignmentl/

Assignment 1: Instance-level recognition
(Adapted from A. Vedaldi and A. Zisserman)

Goal

The goal of instance-level recognition is to match (recognize) a specific object or scene. Examples include recognizing a specific
building, such as Notre Dame, or a specific painting, such as "Starry Night’ by Van Gogh. The object is recognized despite
changes in scale, camera viewpoint, illumination conditions and partial occlusion. An important application is image retrieval -
starting from an image of an object of interest (the query), search through an image dataset to obtain (or retrieve) those
images that contain the target object.

The goal of this assignment is to experiment and get basic practical experience with the methods that enable specific object
recognition. It includes: (i) using SIFT features to obtain sparse matches between two images; (ii) using affine co-variant
detectors to cover changes in viewpoint; (iii) vector quantizing the SIFT descriptors into visual words to enable large scale
retrieval; and (iv) constructing and using an image retrieval system to identify objects.



