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What is quantification?
1

1Dodds, Peter et al. Temporal Patterns of Happiness and Information in a
Global Social Network: Hedonometrics and Twitter. PLoS ONE, 6(12), 2011.
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What is quantification? (cont’d)
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What is quantification? (cont’d)

I Classification : a ubiquitous enabling technology in data science
I In many applications of classification, the real goal is determining

the relative frequency of each class in the unlabelled data; this
task is called quantification

I E.g.
I Among the blog posts concerning the next presidential elections,

what is the percentage of pro-Democrat posts?
I Among the posts about the iPhone6 posted on forums, what is

the percentage of “very positive” ones?
I How do these percentages evolve over time?

I This task has applications in IR, ML, DM, NLP, and has given
rise to learning methods and evaluation measures specific to it

I We will mostly be interested in quantification from text
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Classification: A Primer

I Classification (aka “categorization”) is the task of assigning data
items to groups (“classes”) whose existence is known in advance

I Examples :
1. Assigning newspaper articles to one or more of Home News,

Politics, Economy, Lifestyles, Sports
2. Assigning email messages to exactly one of Legitimate, Spam
3. Assigning product reviews to exactly one of Disastrous, Poor,

Average, Good, Excellent
4. Assigning one or more classes from the ACM Classification

Scheme to a computer science paper
5. Assigning photographs to one of Still Life, Portrait,

Landscape, Events
6. Predicting tomorrow’s weather as one of Sunny, Cloudy, Rainy
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Classification: A Primer (cont’d)

I Classification is different from clustering, since in the latter case
the groups (and sometimes their number) are not known in
advance

I Classification requires subjective judgment : assigning natural
numbers to either Prime or NonPrime is #not# classification

I Classification is thus prone to error; we may experimentally
evaluate the error made by a classifier against a set of manually
classified objects
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Classification: A Primer (cont’d)

I (Automatic) Classification is usually tackled via supervised
machine learning : a general-purpose learning algorithm trains
(using a set of manually classified items) a classifier to recognize
the characteristics an item should have in order to be attributed
to a given class

I “Learning” metaphor: advantageous, since
I no domain knowledge required to build a classifier (cheaper to

manually classify some items for training than encoding domain
knowledge by hand into the classifier)

I easy to revise the classifier (a) if new training items become
available, or (b) if new classes need to be considered

I Popular classes of supervised learning algorithms: SVMs,
boosting, decision trees, k-NN, Naïve Bayes, genetic algorithms,
neural networks, etc.
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Introduction (cont’d)

I Quantification goes under different names in different fields
1. “prevalence estimation” (in statistics and epidemiology)
2. “class prior estimation” (in machine learning)
3. “quantification” (in data mining)

I “relative frequency” ≡ “prevalence” ≡ “a priori probability” ≡
“prior (probability)”

I Slight differences among 1., 2., 3. are that
I There are no training data and no classifiers in 1., while there are

in 2. and 3.
I The task is of independent interest in 1. and 3, while it is only

ancillary (i.e., functional to generating better classifiers) in 2.

10 / 99



Introduction (cont’d)
I Quantification may be also defined as the task of approximating

a true distribution by a predicted distribution
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Distribution drift

I Real applications may suffer from distribution drift (or “shift”, or
“mismatch”), defined as a discrepancy between the class
distribution of Tr and that of Te

I Standard ML algorithms are instead based on the IID
assumption, i.e., that training and test items are drawn from the
same distribution. When using such algorithms in the presence of
distribution drift, suboptimal quantification accuracy may derive.

I Distribution drift may derive when
I the environment is not stationary across time and/or space

and/or other variables, and the testing conditions are
irreproducible at training time

I the process of labelling training data is class-dependent (e.g.,
“stratified” training sets)

I the labelling process introduces bias in the training set (e.g., if
active learning is used)
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Distribution drift (cont’d)

I Distribution drift is one type of concept drift, which may come in
three forms:
1. the prior probabilities p(cj) may change from training to test set
2. the class-conditional distributions (aka “within-class densities”)

p(x|cj) may change
3. the posterior probabilities p(cj |x) may change

I It is 1. that poses a problem for quantification
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The “paradox of quantification”

I Is “classify and count” the optimal quantification strategy? No!

I A perfect classifier is also a perfect “quantifier” (i.e., estimator of
class prevalence), but ...

I ... a good classifier is not necessarily a good quantifier (and vice
versa) :

FP FN
Classifier A 18 20
Classifier B 20 20

I Paradoxically, we should choose B rather than A!, since A is
biased

I This means that quantification should be studied as a task in its
own right
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Historical development

I The history of quantification research is highly non-linear, since
the task has been discovered and re-discovered from within
different disciplines.

I First stage : interest in the “estimation of class prevalence” from
screening tests in epidemiology;

I Earliest recorded method is (Gart & Buck, 1966)2

I No training data (and no supervised learning) is involved, the role
of the classifier is played by a clinical test that has imperfect
“sensitivity” and “specificity”

I Several papers appeared on epidemiology-related journals to this
day

2Gart, J. J. & A. A. Buck: 1966, Comparison of a screening test and a
reference test in epidemiologic studies: II. A probabilistic model for the
comparison of diagnostic tests. American Journal of Epidemiology 83(3), 593–602.
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Historical development (cont’d)

I Second stage : interest in the “estimation of class priors” in
machine learning

I Goal : building classifiers that are robust to the presence of
distribution drift, and that are better attuned to the
characteristics of the data to which they need to be applied

I Earliest recorded method is (Vucetic & Obradovic, 2001), most
influential one is (Saerens et al., 2002)

I Several papers appeared on ML-related venues to this day

I Third stage : interest in “quantification” from data mining / text
mining

I Goal : estimating quantities and trends from unlabelled data
I Earliest recorded work is (Forman, 2005), where the term

“quantification” was coined
I It is the applications from these fields that have provided the

impetus behind the most recent wave of research in quantification
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Related tasks: Prevalence Estimation from Screening
Tests

I Quantification is similar to “prevalence estimation from screening
tests” in epidemiology

I Screening test : a test that a patient undergoes in order to check
if s/he has a given pathology

I Tests are often imperfect, i.e., they may yield
I false positives (patient incorrectly diagnosed with the pathology)
I false negatives (patient incorrectly diagnosed to be free from the

pathology)

I Testing a patient is thus akin to classifying an item

I Main difference: a screening test typically has known and fairly
constant “sensitivity” (recall) and “specificity” (1−fallout), while
the same usually does not hold for a classifier
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Related tasks: Density Estimation

I Quantification is similar to density estimation (e.g., estimating
the prevalence of white balls in a large urn containing white balls
and black balls).

I However, in traditional density estimation
1. We can deterministically assess whether each item belongs to the

class (variable cj can be observed); in quantification this does not
hold.

2. It is impossible / economically not viable to assess class
membership for each single item (e.g., we do not want to inspect
every single ball in the urn); in quantification this does not hold

I Quantification is thus closely related to classification, where 1.
and 2. also do not hold. However,

I in classification the goal is correctly estimating the true class of
each single individual;

I classification is applied to individual items, and not to batches of
such examples
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Related tasks: Collective Classification

I A task seemingly related to quantification is collective
classification (CoC), as in e.g., the classification of networked
items. Similarly to quantification, in CoC the classification of an
instance is not viewed in isolation of the other instances.

I However, the focus of CoC is on improving the accuracy of
classification by exploiting relationships between the items to
classify (e.g., hypertextual documents). CoC

I assumes the existence of explicit relationships between the objects
to classify (which quantification does not)

I is evaluated at the individual level, rather than at the aggregate
level as quantification.
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Notation and terminology

I Domain X of items (documents), set C of classes
I Different brands of classification :

I Binary classification: each item has exactly one of C = {c1, c2}
I Single-label multi-class classification (SLMC): each item has

exactly one of C = {c1, ..., cn}, with n > 2
I Multi-label multi-class classification (MLMC) : each item may

have zero, one, or several among C = {c1, ..., cn}, with n > 1
I MLMC is usually reduced to binary by solving n independent

binary classification problems
I Ordinal classification (aka “ordinal regression”): each item has

exactly one of C = (c1 � ... � cn), where � is a total order and
n > 2

I (Metric regression): each item has a real-valued score from the
range [α, β]

I For each such brand of classification we will be interested in its
“quantification equivalent” (Q-equivalent), i.e., in solving and
evaluating that classification task at the aggregate level.
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Notation and terminology (cont’d)

x vectorial representation of item x
C = {c1, ..., cn} set of classes

pS(cj) true prevalence (aka “prior probability”) of cj in set S
p̂S(cj) estimated prevalence of cj in set S
p̂M

S (cj) estimate p̂S(cj) obtained via method M

p(cj |x) posterior probability of cj returned by the classifier
p(δj) probability that classifier attributes cj to a random item
pS(δj) fraction of items in S labelled as cj by the classifier
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Dimensions of quantification

I Text quantification, like text classification, may be performed
across various dimensions (i.e., criteria):

I by topic : applications to the social sciences, epidemiology,
market research, resource allocation, word sense disambiguation

I by sentiment (“sentiment classification”): applications to the
social sciences, political sciences, market research, ...

I by language (“language identification”): e.g., estimating language
diversity

I Applications of quantification found in the literature may be
distinguished into

I those that apply methods especially designed for quantification
I those that, unaware of the existence of specific methods for

quantification, apply standard classification methods with
“classify and count”
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Applications to the social / political sciences
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Applications to the social / political sciences (cont’d)
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Applications to the social / political sciences (cont’d)
I Social science is a discipline in which individual cases hardly

matter, and where the goal is obtaining quantitative indicators
about a population (e.g., by age group, gender, ethnic group,
geographical region, time interval, ...)

[Others] may be interested in finding the needle in the
haystack, but social scientists are more commonly
interested in characterizing the haystack.

(Hopkins and King, 2010)

I Further applications include
I predicting election results by estimating the prevalence of blog

posts (or tweets) supporting a given candidate or party3

I estimate the emotional responses of the population to a natural
disaster (Mandel et al., 2012)

I Computational social science is the big new paradigm spurred by
the availability of “big data” from social networks

3Hopkins, D. J. and G. King: 2010, A Method of Automated Nonparametric
Content Analysis for Social Science. American Journal of Political Science 54(1),
229–247.
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Applications to epidemiology

I Epidemiology : concerned with tracking the incidence of diseases
across spatio-temporal contexts and across other variables (e.g.,
gender, age group, religion, job type, ...)

I Text quantification: Supporting epidemiological research by
estimating the prevalence of clinical reports where a specific
pathology is diagnosed 4

4S. Baccianella, A. Esuli, F. Sebastiani: 2013, Variable-Constraint
Classification and Quantification of Radiology Reports under the ACR Index.
Expert Systems and Applications 40(9), 3441–3449.
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Applications to epidemiology (cont’d)

I Quantification: Supporting epidemiology via verbal autopsies,
i.e., tracking causes of death in populations where medical death
certification is missing5

I “verbal autopsy”: estimating the cause of death from verbal
symptom reports obtained from relatives (in the form of e.g.,
binary answers to questions about symptoms)

I a supervised learning task: training data (xi , yi) are death records
from nearby hospital in which both symptom reports obtained
from caregivers (xi) and medical death certification (yi) are
available

I Verbal autopsies:
I cheaper and more effective than having physicians guess the cause

of death from verbal reports
I of crucial importance for international health policy-making and

for channelling research efforts

5King, G. and Y. Lu: 2008, Verbal Autopsy Methods with Multiple Causes of
Death. Statistical Science 23(1), 78–91.
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Applications to market research

I Survey coding is the task of classifying natural language
responses (“open-ends”, aka “verbatims”) elicited via open-ended
questions in questionnaires6

I Main applications:
1. Market Research
2. Customer/Employee Relationship Management (CRM/ERM)
3. Social Science
4. Political Science (opinion polls)

6Esuli, A. and F. Sebastiani: 2010a, Machines that Learn how to Code
Open-Ended Survey Data. International Journal of Market Research 52(6),
775–800.
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Applications to market research (cont’d)

I Example 1 (CRM):

“How satisfied are you with our mobile phone services?”

Asked by: telecom company
Class of interest: MayDefectToCompetition
Goal: classification (at the individual level)

I Example 2 (MR):

“What do you think of the recent ad for product X?”

Asked by: MR agency
Class of interest: LovedTheCampaign
Goal: quantification (at the aggregate level)
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Applications to resource allocation

I Customer support center: planning the amount of human
resources to allocate to different types of issues

I Can be done by estimating the prevalence of customer calls
related to a given issue 7

I The same can be done for customer feedback obtained via email

I Important in order to improve customer support (determine
priorities, track costs, plan product fixes / reengineering)

“rising problems can be identified before they become
epidemics” (Forman, 2008)

7Forman, G., E. Kirshenbaum, and J. Suermondt, Pragmatic text mining:
Minimizing human effort to quantify many issues in call logs. KDD 2006, pp.
852–861.
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Applications to word sense disambiguation

I Word Sense Disambiguation (WSD) is the task of determining,
given the occurrence of a word w in a text, which sense of w is
meant

I WSD is a text classification task, where
I the linguistic context of the occurrence is the text
I the different senses of the word are the classes

I Words have sense priors, i.e., different senses have different
prevalences in language; WSD algorithms do exploit these priors

I The same word may have different priors in different domains; if
the WSD algorithms has been trained on domain d1, applying it
on domain d2 may yield suboptimal results

I Quantification may be used to estimate the word sense priors8 of
the new domain d2, and use them to re-tune the classifier trained
on domain d1 (a case of domain adaptation)

8Chan, Y. S. and H. T. Ng, Estimating Class Priors in Domain Adaptation for
Word Sense Disambiguation. ACL 2006, pp. 89–96.
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(Meta-)applications to classification
I Accurate quantification may improve classification accuracy

since, in the presence of distribution drift, classification accuracy
may suffer

I E.g., in a Naïve Bayesian classifier

p(cj |x) = p(x|cj)p(cj)
p(x)

posterior probabilities have been “calibrated” for Tr
I Probabilities are calibrated for a set S when

pS(cj) = ES [cj ] = 1
|S |

∑
x∈S

p(cj |x)

which means that in the presence of distribution drift they
cannot be calibrated for both Tr and Te

I By estimating class prevalence in Te we can adjust the classifier
itself so as to yield better classification accuracy9

9Saerens, M., P. Latinne, C. Decaestecker: 2002, Adjusting the Outputs of a
Classifier to New a Priori Probabilities: A Simple Procedure. Neural Computation
14(1), 21–41.
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(Meta-)applications to classification (cont’d)

I Posterior probabilities p(cj |x) can be re-calibrated as

p(cj |x) =

p̂Te(cj)
pTr(cj)

· pTr(cj |x)

∑
cj∈C

p̂Te(cj)
pTr(cj)

· pTr(cj |x)

where the pTr(cj |x) are the posteriors before calibration
I Also investigated for semi-supervised learning (Xue and Weiss,

KDD 2009)
I Quantification is “ancillary” to classification, and not a goal in

itself

34 / 99



Miscellaneous applications

I Ante litteram: In the late 1600s the Catholic Church tracked the
proportion of printed texts which were non-religious

I Quantifying the proportion of damaged cells in biological
samples, e.g., sperm for artificial insemination (González-Castro
et al., 2013) or human tissues for oncology (Decaestecker et al.,
1997)

I Measuring the prevalence of different types of pets’ activity as
detected by wearable devices (Weiss et al., 2013)

I Estimation of skeleton age distribution in paleodemography, the
study of ancient human mortality, fertility, and migration (Hoppa
and Vaupel, 2002)

I Real-time estimation of collective sentiment about TV shows
from tweets (Amati et al., 2014)

I ...
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Measures for evaluating binary + SLMC quantification

1. Absolute Error

2. Relative Absolute Error

3. Kullback-Leibler Divergence
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Absolute Error
I Absolute Error (AE – sometimes called “Mean Absolute Error”)

is
AE(p̂, p) = 1

|C|
∑
cj∈C
|p̂(cj)− p(cj)| (1)

I Ranges between 0 (best) and

2(1−min
cj∈C

p(cj))

|C|

(worst)
I A normalized version of AE that always ranges between 0 (best)

and 1 (worst) can thus be obtained as

NAE(p̂, p) =
∑

cj∈C |p̂(cj)− p(cj)|
2(1−min

cj∈C
p(cj))

(2)
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Absolute Error (cont’d)

I Pros:
I enforces the notion that positive and negative bias are equally

undesirable, and can thus be used as a general metric of
Q-accuracy

I intuitive, appealing to non-initiates too

I Cons:
I predicting p̂Te(cj) = 0.01 when pTe(cj) = 0.02 should be

considered more serious than predicting p̂Te(cj) = 0.49 when
pTe(cj) = 0.50
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Relative Absolute Error
I Relative Absolute Error (RAE) is

RAE(p̂, p) = 1
|C|

∑
cj∈C

|p̂(cj)− p(cj)|
p(cj)

(3)

I Ranges between 0 (best) and

|C| − 1 +
1−min

cj∈C
p(cj)

min
cj∈C

p(cj)

|C|
(worst)

I A normalized version of RAE that always ranges between 0
(best) and 1 (worst) can thus be obtained as

NRAE(p̂, p) =

∑
cj∈C

|p̂(cj)− p(cj)|
p(cj)

|C| − 1 +
1−min

cj∈C
p(cj)

min
cj∈C

p(cj)

(4)
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Relative Absolute Error (cont’d)

I May be undefined due to the presence of zero denominators.
I To solve this we can smooth p(cj) and p̂(cj) via additive

smoothing; the smoothed version of p(cj) is

ps(cj) = ε+ p(cj)
ε|C|+

∑
cj∈C

p(cj)
(5)

I ε = 1
2|Te| is often used as a smoothing factor.

I Pros:
I all of the above, plus: relativizes to true class prevalence
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Kullback-Leibler Divergence

I KLD (aka normalized cross-entropy) is 10

KLD(p̂, p) =
∑
cj∈C

p(cj) log
p(cj)
p̂(cj)

(6)

I An information-theoretic measure of the inefficiency incurred
when estimating a true distribution p over a set C of classes by
means of a predicted distribution p̂.

I Not symmetric
I Ranges between 0 (best) and +∞ (worst)

10Forman, G., Counting Positives Accurately Despite Inaccurate Classification.
ECML 2005, pp. 564–575.
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Kullback-Leibler Divergence (cont’d)
I A normalized version of KLD ranging between 0 (best) and 1

(worst) may be defined as

NKLD(p̂, p) = eKLD(p̂,p) − 1
eKLD(p̂,p) (7)
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Kullback-Leibler Divergence (cont’d)

I Pros:
I all of the above, plus: well studied within information theory and

language modelling

I Cons:
I hardly intuitive, difficult to explain to non-initiates ...
I undefined when the p̂Te is 0 for at least one class; smoothing thus

needed with
ps(cj) = ε+ p(cj)

ε|C|+
∑
cj∈C

p(cj)

44 / 99



Kullback-Leibler Divergence (cont’d)

I KLD has somehow become the “standard” measure for binary,
MLMC, and SLMC quantification

I KLD is a member of the family of “f -divergences”; other such
members might be appropriate measures for evaluating
quantification; e.g., the Hellinger distance11

HD(p̂, p) = (
∑
cj∈C

(p̂(cj)
1
2 − p(cj)

1
2 )2) 1

2

11Víctor González-Castro, Rocío Alaiz-Rodríguez, Enrique Alegre: Class
distribution estimation based on the Hellinger distance, Information Sciences 218
(2013), 146–164.
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Measures for evaluating ordinal quantification
I Ordinal classification ≡ SLMC classification when there is a total

order on the n classes
I Important in the social sciences, ordinal scales often used to elicit

human evaluations (e.g., product reviews)
I The only known measure for ordinal quantification is the Earth

Mover’s Distance12 (aka “Wasserstein metric”)

EMD(p̂, p) =
|C|−1∑
j=1
|

j∑
i=1

p̂(ci)−
j∑

i=1
p(ci)| (8)

I The EMD may be seen as measuring the “minimum effort” to
turn the predicted distribution into the true distribution, where
the effort is measured by

I the probability masses that need to be moved between one class
and the other;

I the “distance” traveled by these probability masses
12Esuli, A. and F. Sebastiani: 2010, Sentiment quantification. IEEE Intelligent

Systems 25(4), 72–75.
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Measures for evaluating ordinal quantification (cont’d)
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I Pros: It works ...
I Cons: It is the “ordinal analogue” of absolute error ...
I Open problem: devising an “ordinal analogue” of KLD!
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Multi-objective measures
I The “paradox of quantification”:

1. Classifier A : CT1 = (TP = 0,FP = 1000,FN = 1000,TN = 0)
2. Classifier B : CT2 = (TP = 990,FP = 0,FN = 10,TN = 1000)

A yields better KLD than B!, but we intuitively prefer A to B
I The (Milli et al., 2013) method optimizes the multi-objective

measure13

MOM (p̂, p) =
∑
cj∈C
|FP2

j − FN 2
j |

=
∑
cj∈C

(FNj + FPj) · |FNj − FPj |

since
I |FNj − FPj | is a measure of quantification error
I (FNj + FPj) is a measure of classification error

I By optimizing MOM we strive to keep both classification and
quantification error low

“it is difficult to trust a quantifier if it is not also a good
enough classifier”

13Milli, L., A. Monreale, G. Rossetti, F. Giannotti, D. Pedreschi, F. Sebastiani,
Quantification Trees. In: ICDM 2013, pp. 528–536. 48 / 99



Experimental protocols for evaluating quantification

I Standard classification datasets may be used for evaluating
quantification

I Two different experimental protocols used in the literature
I the artificial-prevalence approach (adopted by most works in the

DM literature): take a standard dataset split into Tr and Te,
conducting repeated experiments in which either pTr(cj) or
pTe(cj) are artificially varied via subsampling

I Pros: class prevalence and drift may be varied at will
I Cons: non-realistic experimental settings may result

I the natural-prevalence approach (adopted in (Esuli & Sebastiani,
2015)14): pick one or more standard datasets that represent a
wide array of class prevalences and drifts

I Pros: experimental settings being tested are realistic
I Cons: class prevalence and drift may not be varied at will

14Esuli, A. and F. Sebastiani: 2015, Optimizing Text Quantifiers for
Multivariate Loss Functions. ACM Transactions on Knowledge Discovery from
Data, 9(4): Article 27, 2015.
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The natural prevalence approach: An example
RCV1-v2 OHSUMED-S

A
ll

Total # of docs 804,414 15,643
# of classes (i.e., binary tasks) 99 88

Time unit used for split week year

T
ra

in
in

g

# of docs 12,807 2,510
# of features 53,204 11,286

Min # of positive docs per class 2 1
Max # of positive docs per class 5,581 782
Avg # of positive docs per class 397 55

Min prevalence of the positive class 0.0001 0.0004
Max prevalence of the positive class 0.4375 0.3116
Avg prevalence of the positive class 0.0315 0.0218

T
es

t

# of docs 791,607 13,133
# of test sets per class 52 4
Total # of test sets 5,148 352

Avg # of test docs per set 15,212 3,283
Min # of positive docs per class 0 0
Max # of positive docs per class 9,775 1,250
Avg # of positive docs per class 494 69

Min prevalence of the positive class 0.0000 0.0000
Max prevalence of the positive class 0.5344 0.3532
Avg prevalence of the positive class 0.0323 0.0209
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The natural prevalence approach: An example (cont’d)

I Breaking down by drift

RCV1-v2 VLD LD HD VHD All
PACC 1.92E-03 2.11E-03 1.74E-03 1.20E-03 1.74E-03
ACC 1.70E-03 1.74E-03 1.93E-03 2.14E-03 1.87E-03
CC 2.43E-03 2.44E-03 2.79E-03 3.18E-03 2.71E-03
PCC 8.92E-03 8.64E-03 7.75E-03 6.24E-03 7.86E-03

I Breaking down by class prevalence

RCV1-v2 VLP LP HP VHP All
PACC 2.16E-03 1.70E-03 4.24E-04 2.75E-04 1.74E-03
ACC 2.17E-03 1.98E-03 5.08E-04 6.79E-04 1.87E-03
CC 2.55E-03 3.39E-03 1.29E-03 1.61E-03 2.71E-03
PCC 1.04E-02 6.49E-03 3.87E-03 1.51E-03 7.86E-03
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Sampling

I The naïve method for quantification is sampling (Sa), which
consists in computing pTr(cj) and taking it as an estimate of
pTe(cj); i.e.,

p̂Sa
Te(cj) = pTr(cj) (9)

I Akin to always picking the majority class in classification
I Optimal in case of no distribution drift but “risky”, since

distribution drift is
I ubiquitous in real-life applications
I fundamental to application that track trends

Sampling is simply not an answer
“In quantification (...) you fundamentally need to
assume shifts in the class priors; if the class distribution
does not change, you don’t need an automatic
quantifier” (Forman, 2006)
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Sampling (cont’d)
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Aggregative methods based on general-purpose learners

I Quantification methods belong to two classes
I 1. Aggregative : they require the classification of individual items

as a basic step
I 2. Non-aggregative : quantification is performed without

performing classification

I Aggregative methods may be further subdivided into
I 1a. Methods using general-purpose learners (i.e., originally

devised for classification); can use any supervised learning
algorithm that returns posterior probabilities

I 1b. Methods using special-purpose learners (i.e., especially
devised for quantification)
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Classify and Count

I Classify and Count (CC) consists of
1. generating a classifier from Tr
2. classifying the items in Te
3. estimating pTe(cj) by counting the items predicted to be in cj , i.e.,

p̂CC
Te (cj) = pTe(δj) (10)

I But a good classifier is not necessarily a good quantifier ...
I CC suffers from the problem that “standard” classifiers are

usually tuned to minimize (FP + FN ) or a proxy of it, but not
|FP − FN |

I E.g., in recent experiments of ours, out of 5148 binary test sets
averaging 15,000+ items each, standard (linear) SVMs bring
about an average FP/FN ratio of 0.109.
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Probabilistic Classify and Count

I Probabilistic Classify and Count (PCC) is a variant of CC which
estimates pTe by simply counting the expected fraction of items
predicted to be in the class, i.e.,15

p̂PCC
Te (cj) = ETe[cj ] = 1

|Te|
∑

x∈Te
p(cj |x) (11)

I The rationale is that posterior probabilities contain richer
information than binary decisions, which are obtained from
posterior probabilities by thresholding.

I PCC is shown to perform better than CC in (Bella et al., 2010)
and (Tang et al., 2010)

15Bella, A., C. Ferri, J. Hernańdez-Orallo, and M. J. Ramírez-Quintana,
Quantification via Probability Estimators. ICDM 2010, pp. 737–742.
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Probabilistic Classify and Count (cont’d)
I If the classifier only returns scores sj(x) that are not (calibrated)

probabilities, the scores must be converted into calibrated
probabilities, e.g., by applying a generalized logistic function

p(cj |x) = eσsj(x)

eσsj(x) + 1
(12)

I Calibration consists in tuning the σ parameter so that

pTr(cj) = ETr [cj ] = 1
|Tr |

∑
x∈Tr

p(cj |x)
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Probabilistic Classify and Count (cont’d)

I PCC is dismissed as unsuitable in (Forman, 2008) on the grounds
that, if the p(cj |x) are calibrated on Tr , they can also be
calibrated for Te only if there is no distribution drift ...

I Indeed, (Esuli & Sebastiani, 2015) find PCC to be worse than CC
for all values of distribution drift

RCV1-v2 VLD LD HD VHD All
CC 2.43E-03 2.44E-03 2.79E-03 3.18E-03 2.71E-03
PCC 8.92E-03 8.64E-03 7.75E-03 6.24E-03 7.86E-03

OHSUMED-S VLD LD HD VHD All
CC 3.31E-03 3.87E-03 3.87E-03 5.43E-03 4.12E-03
PCC 1.10E-01 1.07E-01 9.97E-02 9.88E-02 1.04E-01

59 / 99



Adjusted Classify and Count

I Adjusted Classify and Count (ACC – aka the “confusion matrix
model”)16 is based on the observation that

pTe(δj) =
∑
ci∈C

pTe(δj |ci) · pTe(ci) (13)

I We do not know the pTe(δj |ci)’s but we may estimate them on Tr
via k-fold cross-validation.

I This results in a system of |C| linear equations with (|C| − 1)
unknowns, i.e., the pTe(cj)’s. ACC consists in solving this system.

16Gart, J. J. and A. A. Buck: 1966, Comparison of a screening test and a
reference test in epidemiologic studies: II. A probabilistic model for the
comparison of diagnostic tests. American Journal of Epidemiology 83(3), 593–602.
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Adjusted Classify and Count (cont’d)
I In the binary case this comes down to

pTe(δ1) = pTe(δ1|c1) · pTe(c1) + pTe(δ1|c2) · pTe(c2)
= tprTe · pTe(c1) + fprTe · (1− pTe(c1))

I If we equate c1 with the “positive class” and c2 with the
“negative class”, then

pTe(c1) = pTe(δ1)− fprTe

tprTe − fprTe
(14)

p̂ACC
Te (c1) = pTe(δ1)− fprTr

tprTr − fprTr
(15)

I Cons:
I May return values outside [0,1], due to imperfect estimates of the

pTe(δj |ci)’s: this requires “clipping and rescaling”, which is
scarcely reassuring

I Relies on the hypothesis that estimating the pTe(δj |cj)’s via
k-FCV can be done reliably, which is questionable in the presence
of distribution drift
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Probabilistic Adjusted Classify and Count
I Probabilistic Adjusted Classify and Count (PACC – aka “Scaled

Probability Average”)17 stands to ACC like PCC stands to CC.
I It is based on the observation that (similarly to ACC)

ETe[δj ] =
∑
ci∈C

ETe,ci [δj ] · pTe(ci) (16)

where

ETe[δj ] = 1
|Te|

∑
x∈Te

p(cj |x) (17)

ETe,ci [δj ] = 1
|Te|

∑
x∈Te

p(cj |x, ci) (18)

The latter can be estimated via k-FCV from Tr , so PACC
amounts to solving a system of |C| linear equations with (|C| − 1)
unknowns

17Bella, A., C. Ferri, J. Hernańdez-Orallo, M. J. Ramírez-Quintana,
Quantification via Probability Estimators. ICDM 2010, pp. 737–742.
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Probabilistic Adjusted Classify and Count (cont’d)

I PACC is dismissed in (Forman, 2005) on the same grounds as
PCC

I PACC is shown to be the best among CC, ACC, PCC, PACC in
both (Bella et al., 2010) and (Tang et al., 2010)

I Results in (Esuli & Sebastiani, 2015) are more varied ...

RCV1-v2 VLD LD HD VHD All
PACC 1.92E-03 2.11E-03 1.74E-03 1.20E-03 1.74E-03
ACC 1.70E-03 1.74E-03 1.93E-03 2.14E-03 1.87E-03
CC 2.43E-03 2.44E-03 2.79E-03 3.18E-03 2.71E-03
PCC 8.92E-03 8.64E-03 7.75E-03 6.24E-03 7.86E-03

OHSUMED-S VLD LD HD VHD All
PACC 1.90E-05 1.59E-04 1.01E-04 4.16E-06 7.12E-05
ACC 1.49E-05 2.27E-05 3.35E-05 9.16E-05 4.08E-05
CC 1.23E-05 2.88E-05 2.60E-05 1.15E-04 4.58E-05
PCC 5.86E-04 4.92E-04 9.21E-04 9.86E-04 7.63E-04
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T50, Method X, Method Max, Median Sweep

I Forman18 observes that ACC is very sensitive to the decision
threshold of the classifier, and this may yield unreliable /
unstable results for p̂CC

Te (cj); e.g., in the binary case
I if c1 is very infrequent, a classifier optimized for 0-1 loss may yield

tprTe ≈ 0 and fprTe ≈ 0, which may bring to 0 the denominator of

p̂ACC
Te (c1) = p̂CC

Te (c1)− fprTr

tprTr − fprTr

I even if the denominator is not 0, it may be very small, making
the result unstable

I Forman proposes to use ACC after picking, via a number of
methods, a threshold different from the “natural” one and “that
admits more true positives and more false positives”

18Forman, G., Quantifying trends accurately despite classifier error and class
imbalance. KDD 2006, pp. 157–166.
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T50, Method X, Method Max, Median Sweep (cont’d)

I Threshold@0.50 (T50): set the decision threshold t in such a way
that tprTr (as obtained via k-FCV) is equal to .50

I Rationale: avoid the tail of the 1− tprTr(t) curve

I Method X (X): set the decision threshold in such a way that
fprTr + tprTr = 1

I Rationale: avoid the tails of the fprTr(t) and 1− tprTr(t) curves

I Method Max (MAX): set the decision threshold in such a way
that (tprTr − fprTr) is maximized

I Rationale: avoid small values in the denominator of (15)

I Median Sweep (MS): compute p̂ACC
Te (c1) for every threshold that

gives rise (in k-FCV) to different tprTr or fprTr values, and take
the median19

I Rationale: ability of the median to avoid outliers

19Forman, G., Quantifying trends accurately despite classifier error and class
imbalance. KDD 2006, pp. 157–166.
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T50, Method X, Method Max, Median Sweep (cont’d)
I Cons:

I Methods have hardly any theoretical foundation
I Unclear that these choices return better estimates of tprTe and

fprTe
I Complete lack of relation to classification accuracy

I In the experiments of (Esuli & Sebastiani, 2015) all these
methods are generally outperformed by plain ACC

RCV1-v2 VLP LP HP VHP All
ACC 2.17E-03 1.98E-03 5.08E-04 6.79E-04 1.87E-03
MAX 2.16E-03 2.48E-03 6.70E-04 9.03E-05 2.03E-03
X 3.48E-03 8.45E-03 1.32E-03 2.43E-04 4.96E-03
MS 1.98E-02 7.33E-03 3.70E-03 2.38E-03 1.27E-02
T50 1.35E-02 1.74E-02 7.20E-03 3.17E-03 1.38E-02

OHSUMED-S VLP LP HP VHP All
ACC 2.37E-03 5.40E-03 2.82E-04 2.57E-04 2.99E-03
MAX 5.57E-03 2.33E-02 1.76E-01 3.78E-01 3.67E-02
X 1.38E-03 3.94E-03 3.35E-04 5.36E-03 4.44E-03
MS 3.80E-03 1.79E-03 1.45E-03 1.90E-02 1.18E-02
T50 7.53E-02 5.17E-02 2.71E-03 1.27E-02 2.74E-02
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The Mixture Model

I The Mixture Model (MM) method consists of assuming that the
distribution DTe of the scores that the (binary) classifier assigns
to the test examples is a mixture20

DTe = pTe(c1) ·DTe
c1

+ (1− pTe(c1)) ·DTe
c2

(19)

where
I DTe

c1 and DTe
c2 are the distributions of the scores that the classifier

assigns to the examples of c1 and c2, respectively
I pTe(c1) is a parameter of this mixture

I MM consists of
I estimating DTe

c1 and DTe
c2 via k-FCV

I picking as value of pTe(c1) the one that yields the best fit between
the observed DTe and the mixture

20Forman, G., Counting Positives Accurately Despite Inaccurate Classification.
ECML 2005, pp. 564–575.
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The Mixture Model (cont’d)

I Two variants of MM:
I the Kolmogorov-Smirnov Mixture Model (MM(KS))
I the PP-Area Mixture Model (MM(PP))

differ in terms of how the goodness of fit between the left- and
the right-hand side of (19) is estimated.

I Cons:
I relies on the hypothesis that estimating DTe

c1 and DTe
c2 via k-FCV

on Tr can be done reliably
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The Mixture Model (cont’d)

I In the experiments of (Esuli & Sebastiani, 2015) both MM(PP)
and MM(KS) are outperformed by plain ACC

RCV1-v2 VLP LP HP VHP All
ACC 2.17E-03 1.98E-03 5.08E-04 6.79E-04 1.87E-03

MM(PP) 1.76E-02 9.74E-03 2.73E-03 1.33E-03 1.24E-02
MM(KS) 2.00E-02 1.14E-02 9.56E-04 3.62E-04 1.40E-02

OHSUMED-S VLP LP HP VHP All
ACC 2.37E-03 5.40E-03 2.82E-04 2.57E-04 2.99E-03

MM(PP) 4.90E-03 1.41E-02 9.72E-04 4.94E-03 7.63E-03
MM(KS) 1.37E-02 2.32E-02 8.42E-04 5.73E-03 1.14E-02

I A similar method (called “HDy”) is proposed in
(González-Castro et al., 2013), where the Hellinger distance is
used to measure the goodness of fit.)
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Iterative methods
I (Saerens et al., 2002) propose an iterative, EM-based

“quantification” method for improving classification accuracy21

I The likelihood of the test set Te = {x1, ...,xm} is

L(Te) =
∏

xk∈Te
p(xk)

=
∏

xk∈Te

∑
cj∈C

p(xk |cj)p(cj)

I Since the within-class densities p(xk |cj) are assumed constant,
the idea is to determine the estimates of p(cj) that maximize
L(Te); these are determined via EM

I EM is a well-known iterative algorithm for finding
maximum-likelihood estimates of parameters (in our case: the
class priors) for models that depend on unobserved variables (in
our case: the class labels)

21Saerens, M., P. Latinne, and C. Decaestecker: 2002, Adjusting the Outputs of
a Classifier to New a Priori Probabilities: A Simple Procedure. Neural
Computation 14(1), 21–41.
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Iterative methods (cont’d)
I We apply EM in the following way until convergence of the

p̂(s)(cj):
I Step 0: For each cj initialize p̂(0)(cj) = pTr(cj)
I Step s: Iterate:

I Step s(E): For each test item xk and each cj compute:

p(s)(cj |xk) =

p̂(s)(cj)
pTr (cj)

· pTr (cj |xk)∑
cj∈C

p̂(s)(cj)
pTr (cj)

· pTr (cj |xk)
(20)

I Step s(M): For each cj compute:

p̂(s+1)(cj) =
1
|Te|

∑
xk∈Te

p(s)(cj |xk) (21)

I Step s(E) re-estimates the posterior probabilities by using the
new priors, and Step s(M) re-estimates the priors in terms of the
new posterior probabilities
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Iterative methods (cont’d)

I If we have an initial “guess” of the values of the p(cj)’s, we can
use these guesses in place of pTr(cj) in Step 0 to speed up
convergence

I The method depends on the pTr(cj |xk), so these should be well
“calibrated” before starting the iteration
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Iterative methods (cont’d)
I (Xue & Weiss, 2009) propose a different iterative binary

quantification method22
I Main idea : train a classifier at each iteration, where the

iterations progressively improve the quantification accuracy of
performing CC via the generated classifiers
1. Initialize by training standard classifier on Tr
2. Iterate:

2.1 compute p̂CC
Tr (cj) via k-FCV;

2.2 compute p̂CC
Te (cj);

2.3 retrain classifier via a cost-sensitive learner
I The authors show that the cost ratio C (fp)/C (fn) to be used by

the cost-sensitive learner is the “distribution mismatch ratio”, i.e.,

dmr =

p̂CC
Tr (c1)

(1− p̂CC
Tr (c1))

p̂CC
Te (c1)

(1− p̂CC
Te (c1))

22Xue, J. C. & G. M. Weiss: 2009, Quantification and semi-supervised
classification methods for handling changes in class distribution. KDD 2009, pp.
897–906.
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Aggregative methods based on special-purpose learners

I Most researchers using aggregative methods have used
general-purpose learning algorithms, i.e., ones optimized for
classification; quantification is achieved by post-processing their
results

I An alternative idea is that of using special-purpose learning
algorithms optimized directly for quantification

I Pros :
I Addressing quantification as a task in its own right
I Direct optimization usually delivers better accuracy

I Cons :
I Optimal classification and optimal quantification require two

different learning processes which do not “mirror” each other
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Methods based on explicit loss minimization

I The first aggregative method based on special-purpose learners is
due to (Esuli and Sebastiani, 2015)

I The basic idea is using explicit loss minimization, i.e., using a
learner which directly optimizes the evaluation measure (“loss”)
used for quantification

I The measures most learners (e.g., AdaBoost, SVMs) are
optimized for are 0-1 loss or variants thereof.

I In case of imbalance (e.g., positives � negatives) optimizing for
0-1 loss is suboptimal, since the classifiers tend to make negative
predictions, which means FN � FP, to the detriment of
quantification accuracy.

I E.g., the experiments in the above paper report that, out of 5148
binary test sets, standard (linear) SVMs bring about an average
FP/FN ratio of 0.109.
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Methods based on explicit loss minimization (cont’d)

I Problem:
I The measures most learners (e.g., AdaBoost, SVMs) can be

optimized for must be linear (i.e., the error on the test set is a
linear combination of the error incurred by each test example) /
univariate (i.e., each test item can be taken into consideration in
isolation)

I Evaluation measures for quantification are nonlinear (the impact
of the error on a test item depends on how the other test items
have been classified) / multivariate (they must take in
consideration all test items at once)

I (Esuli and Sebastiani, 2015) thus adopt CC with the SVM for
Multivariate Performance Measures (SVMperf ) algorithm of
(Joachims, 2005)23 tailored to optimize KLD

23Joachims, T. A support vector method for multivariate performance measures.
ICML 2005, 377–384.
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Methods based on explicit loss minimization (cont’d)

I SVMperf is a specialization to the problem of binary classification
of SVMs for structured prediction24, an algorithm designed for
predicting multivariate, structured objects (e.g., trees, sequences,
sets)

I SVMperf learns multivariate classifiers h : X |S| → {−1,+1}|S|
that classify entire sets S of instances in one shot

I Pros: SVMperf can generate classifiers optimized for any
non-linear, multivariate loss function that can be computed from
a contingency table (as KLD is)

I Cons: not SLMC-ready

24Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. 2004. Support
vector machine learning for interdependent and structured output spaces. ICML
2004.
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Methods based on explicit loss minimization (cont’d)

Table: Accuracy as measured in terms of KLD on the 5148 test sets of
RCV1-v2 grouped by class prevalence in Tr

RCV1-v2 VLP LP HP VHP All
SVM(KLD) 2.09E-03 4.92E-04 7.19E-04 1.12E-03 1.32E-03

PACC 2.16E-03 1.70E-03 4.24E-04 2.75E-04 1.74E-03
ACC 2.17E-03 1.98E-03 5.08E-04 6.79E-04 1.87E-03
MAX 2.16E-03 2.48E-03 6.70E-04 9.03E-05 2.03E-03
CC 2.55E-03 3.39E-03 1.29E-03 1.61E-03 2.71E-03
X 3.48E-03 8.45E-03 1.32E-03 2.43E-04 4.96E-03

PCC 1.04E-02 6.49E-03 3.87E-03 1.51E-03 7.86E-03
MM(PP) 1.76E-02 9.74E-03 2.73E-03 1.33E-03 1.24E-02

MS 1.98E-02 7.33E-03 3.70E-03 2.38E-03 1.27E-02
T50 1.35E-02 1.74E-02 7.20E-03 3.17E-03 1.38E-02

MM(KS) 2.00E-02 1.14E-02 9.56E-04 3.62E-04 1.40E-02
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Methods based on explicit loss minimization (cont’d)

Table: Variance of KLD results across the 5148 test sets of RCV1-v2
grouped by class prevalence in Tr

RCV1-v2 VLP LP HP VHP All
SVM(KLD) 7.52E-06 3.44E-06 8.94E-07 1.56E-06 5.68E-06

PACC 7.58E-06 2.38E-05 1.50E-06 2.26E-07 1.29E-05
ACC 1.04E-05 7.43E-06 4.25E-07 4.26E-07 8.18E-06
MAX 8.61E-06 2.27E-05 1.06E-06 1.66E-08 1.32E-05
CC 1.79E-05 1.99E-05 1.96E-06 1.66E-06 1.68E-05
X 2.21E-05 6.57E-04 2.28E-06 1.06E-07 2.64E-04

PCC 1.75E-04 1.76E-04 3.56E-05 1.59E-04 9.38E-04
T50 2.65E-04 4.56E-04 2.43E-04 1.19E-05 3.33E-04

MM(KS) 3.65E-03 7.81E-04 1.46E-06 4.43E-07 2.10E-03
MM(PP) 4.07E-03 5.69E-04 6.35E-06 2.66E-06 2.21E-03

MS 9.36E-03 5.80E-05 1.31E-05 6.18E-06 4.61E-03
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Methods based on explicit loss minimization (cont’d)

Table: Accuracy as measured in terms of KLD on the 5148 test sets of
RCV1-v2 grouped into quartiles homogeneous by distribution drift

RCV1-v2 VLD LD HD VHD All
SVM(KLD) 1.17E-03 1.10E-03 1.38E-03 1.67E-03 1.32E-03

PACC 1.92E-03 2.11E-03 1.74E-03 1.20E-03 1.74E-03
ACC 1.70E-03 1.74E-03 1.93E-03 2.14E-03 1.87E-03
MAX 2.20E-03 2.15E-03 2.25E-03 1.52E-03 2.03E-03
CC 2.43E-03 2.44E-03 2.79E-03 3.18E-03 2.71E-03
X 3.89E-03 4.18E-03 4.31E-03 7.46E-03 4.96E-03

PCC 8.92E-03 8.64E-03 7.75E-03 6.24E-03 7.86E-03
MM(PP) 1.26E-02 1.41E-02 1.32E-02 1.00E-02 1.24E-02

MS 1.37E-02 1.67E-02 1.20E-02 8.68E-03 1.27E-02
T50 1.17E-02 1.38E-02 1.49E-02 1.50E-02 1.38E-02

MM(KS) 1.41E-02 1.58E-02 1.53E-02 1.10E-02 1.40E-02
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Quantification trees and quantification forests
I Quantification trees are special-purpose decisions trees optimized

for quantification25; the basic idea is to use, in the learning
phase, a measure of quantification as the splitting criterion at
each node. Three different such measures are mentioned

I (a proxy of) absolute error, i.e.,

D(p̂, p) =
∑
cj∈C

|FP − FN |

I KLD
I a “multiobjective” measure, i.e.,

MOM (p̂, p) =
∑
cj∈C

|FP2
j − FN 2

j |

=
∑
cj∈C

(FNj + FPj) · |FNj − FPj |

I Quantification forests are “random forests” of quantification trees
I Exploits the “wisdom of the crowds” effect

25Milli, L., A. Monreale, G. Rossetti, F. Giannotti, D. Pedreschi, F. Sebastiani,
Quantification Trees. In: ICDM 2013, pp. 528–536.
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Quantification trees and quantification forests (cont’d)

I Pros:
I SLMC-ready
I Theoretically well-founded

I Cons:
I Tree-based learning does not scale to large dimensionalities
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Non-aggregative methods

I (King and Lu, 2008)’s method, later popularized in (Hopkins &
King, 2010), does not require the classification of the individual
items26

I The idea is to estimate class prevalences directly via

pTe(x) =
∑
cj∈C

pTe(x|cj)pTe(cj) (22)

I If pTe(x) and pTe(x|cj) could be estimated, pTe(cj) could be
derived; but (at least in text quantification) x is too
high-dimensional for the above to be reliably estimated

26King, G. and Y. Lu: 2008, Verbal Autopsy Methods with Multiple Causes of
Death. Statistical Science 23(1), 78–91.
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Non-aggregative methods (cont’d)

I (King and Lu, 2008) propose using subsets sk(x) in place of x,
i.e.,

p(sk(x)) =
∑
cj∈C

p(sk(x)|cj)p(cj) (23)

I When all individual words are chosen as subsets, this is clearly
reminiscent of the independence assumption in NB classifiers

I p(cj) is estimated several times by estimating (e.g., via k-FCV)
p(sk(x)) and p(sk(x)|cj) for different choices of sk(x)

I The average (or median) of these results is taken as the final
value of p̂Te(cj)

I A “query-biased” variant of this method is proposed in (Amati et
al., 2014)
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Which methods perform best?

I Different papers present different methods + use different
datasets, baselines, and evaluation protocols; it is thus hard to
have a precise view

I Largest experimentation to date is likely (Esuli & Sebastiani,
2015)

I No TREC-like evaluation campaign for quantification (yet?); but
see SemEval 2016 Task 4 ...
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CC x x x x x x x x
ACC x x x x x x x x x
EM o

MM(KS) o x x
MM(PP) o x x

T50 o x x x x
X o x x

MAX o x x
MS o x x x
KL o

CDE-Iterate o
PCC o x x

PACC o x x
CC(SVM(KLD)) o

CC(k-NN) o
ACC(k-NN) o
ACC(QT) o
ACC(QF) o
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Efficiency

I Which methods are most efficient?
I Only large-scale comparison to date is (Esuli & Sebastiani, 2015),

which compares 11 methods
I CC (with linear SVMs) is the fastest, SVM(KLD) is 2nd fastest

I Reason for fast performance is the fact that they are
parameter-free, no need to need to estimate parameters via
k-FCV

I The other methods (PCC, ACC, PACC, T50, X, MAX, MS,
MM(PP), MM(KS)) are slowed down by need to estimate
parameters via k-FCV (cost becomes a function of k):

I PCC and PACC need to estimate σ (for probability calibration)
I ACC (and T50, X, MAX, MS) need to estimate the pTe(δj |cj)’s
I MM(PP) and MM(KS) need to estimate DTe

c1 and DTe
c2

I EM not tested: sense that this might be as fast as CC and
SVM(KLD), although dependent on the speed of convergence
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Single-label multi-class quantification

I Some of the algorithms (e.g., CC, PCC, ACC, PACC, EM, QT,
QF) presented previously are SLMC-ready, since their underlying
intuitions apply straightforwardly to SLMC classifiers

I Some other algorithms (e.g., T50, X, MAX, MS, MM,
SVM(KLD)) are binary in nature; while this is suboptimal,
SLMC can be done by

I doing binary quantification (“one against the rest”, i.e., cj vs.
C/cj) for each cj ∈ C

I rescaling the results so that they sum up to 1

I Open problem: devise SLMC variant of SVM(KLD)
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Ordinal quantification

I Some of the algorithms (e.g., CC, PCC, ACC, PACC) presented
previously are OC-ready, since their underlying intuitions apply
straightforwardly to OC classifiers (train an OC classifier, and
adjust its CC class estimates)

I For some other algorithm (e.g., EM – let alone those algorithms
for which not even a SLMC version is available, e.g., SVM(KLD))
“ordinal equivalents” are not trivial to devise
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Networked data quantification

I Networked data quantification is quantification when the
individual unlabelled items are linked to each other27

I This is the Q-equivalent of collective classification, which
leverages both

I endogenous features (e.g., textual content)
I exogenous features (e.g., hyperlinks and/or labels of neighbouring

items)

I For performing “collective quantification” we may use a collective
classification algorithm and then correct the resulting prevalence
estimates via ACC or other

27Tang, L., H. Gao, and H. Liu: 2010, Network Quantification Despite Biased
Labels. MLG 2010, pp. 147–154.
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Networked data quantification (cont’d)

I (Tang et al., 2010) propose a non-aggregative method for this
correction based on observing that

p(ik) = p(ik |c1) · pTe(c1) + p(ik |c2) · (1− pTe(c1)) (24)

where p(ik) is the probability that a node has a directed path of
length k into node i

I It follows that

pTe(c1) = p(ik)− p(ik |c2)
p(ik |c1)− p(ik |c2)

(25)

I p(ik) can be observed in the data, while p(ik |c1) and p(ik |c2) can
be estimated from a training set

I A value p̂(i,k)
Te (c) is obtained for each (i, k). All estimates for

k ∈ [1, kmax ] are computed and the median is used as the final
estimate p̂Te(c)
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Quantification in data streams

I One of the major application modes for quantification: important
for real-time monitoring, early detection of epidemics, of market
and ecosystem evolution, of endangered species, etc.

I Granularity is an important issue when quantifying across time28

I Need to bin the timestamped data and treat each bin as a
separate test set

I Problem: select the best bin width
I If too granular, the size of the sample may become too small,

estimates may become unreliable, curves become jagged
I If too coarse, changes over time become less apparent

I Solution: use a sliding window to aggregate cases from adjacent
bins into each test set

28Forman, G.: 2008, Quantifying counts and costs via classification. Data
Mining and Knowledge Discovery 17(2), 164–206.
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Software resources for quantification

I Andrea Esuli and Fabrizio Sebastiani. Optimizing Text
Quantifiers for Multivariate Loss Functions. ACM Transactions
on Knowledge Discovery from Data, 9(4): Article 27, 2015.
Contains links to quantification software.

I Wei Gao and Fabrizio Sebastiani. Tweet Sentiment: From
Classification to Quantification. Proceedings of the 6th
ACM/IEEE International Conference on Advances in Social
Networks Analysis and Mining (ASONAM 2015), Paris, FR,
2015. Contains links to quantification software.

I Hopkins, D. J. and G. King: 2010, A Method of Automated
Nonparametric Content Analysis for Social Science. American
Journal of Political Science 54(1), 229–247. Contains links to
quantification software.
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Shared tasks

I SemEval 2016 Task 4: “Sentiment Analysis in Twitter”
(http://alt.qcri.org/semeval2016/task4/)

I Subtask D: Tweet quantification according to a two-point
scale:

I Given a set of tweets about a given topic, estimate the distribution
of the tweets across the “Positive” and “Negative” labels.

I Evaluation measure is KLD
I Subtask E: Tweet quantification according to a five-point
scale:

I Given a set of tweets about a given topic, estimate the distribution
of the tweets across the five classes of a five-point scale.

I Evaluation measure is Earth Mover’s Distance
I Register and participate!
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Conclusion

I Quantification: a relatively (yet) unexplored new task, with lots
of low-hanging fruits to pick

I Growing awareness that quantification is going to be more and
more important; given the advent of “big data”, application
contexts will spring up in which we will simply be happy with
analysing data at the aggregate (rather than at the individual)
level
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Questions?
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Thank you!

For any question, email me at
fsebastiani@qf.org.qa
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