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Abstract. Deep neural networks composed of several pre-trained layers
have been successfully applied to various tasks related to audio process-
ing. Stacked denoising autoencoders represent one type of such networks.
They are discussed in this paper in application to audio feature extrac-
tion for audio chord estimation task. The features obtained from au-
dio spectrogram with the help of autoencoders can be used instead of
conventional chroma vectors to estimate the actual chords in the audio
recording.
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1 Introduction

One of important areas of music information retrieval is the estimation of ele-
ments related to musical concepts. The concepts such as note, chord, melody,
key can be determined from musical score, but their extraction from an audio
signal is a very difficult task even for the human.

The ultimate goal of estimating automatically all musical concepts of a given
musical audio, or obtaining its transcription, can hardly be solved. Instead, many
researchers work on different aspects of this task, such as audio melody extrac-
tion, beat detection or audio chord estimation. The system that can estimate
chords in a given audio recording will be of great value for those who want to play
a favourite song on a guitar: a rare song may be missing in the online sources of
guitar chords, or its chords may be incorrect or may describe a different version
of the song. For a musicologist who analyzes the harmony of a song such a sys-
tem may provide a good starting point by recognizing most part of chords and
letting him only fix recognition errors in difficult cases. The information about
the sequence of chords in a musical audio may also be used by other algorithms.
For instance, an index can be built that allows for searching the song by a chord
sequence.

More formally, the task of audio chord estimation consists in following. Given
a digital musical audio recording one needs to determine the sequence of chords
that were played in this recording with their boundaries: for each chord the
name and the times of its beginning and end must be specified. Chord names
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are usually chosen from a fixed set of 12 major and 12 minor chords plus a N
symbol for a missing chord (e.g. when no pitched musical instrument is playing
or when there is silence).

During chord estimation various properties of music are exploited, such as
the presence of rhythm, the presence of harmonic frequencies of pitched instru-
ments, repeated sections, polyphony. Sometimes audio recordings contain noises,
unpitched musical instruments, a voice singing out-of-tune, which make it harder
to recognize the chord.

A common approach to this task can be divided into 3 steps. At first, the au-
dio recording is pre-processed (beat detection is often performed here) and trans-
formed to the time-frequency domain (using fast Fourier transform or constant- Q)
transform [2]), resulting in a so-called spectrogram. It shows how the spectrum
of this recording is changing in time. Each spectrogram column represents the
spectrum of a short fragment of the original recording. If beat detection was
performed, fragment boundaries correspond to beat locations.

Then a series of transforms is applied to the spectrogram to take into account
music properties mentioned above and obtain the sequence of feature vectors
(e.g. pitch class profile vectors [7], chroma DCT-reduced log-pitch [16]). Most of
them are generally called chroma vectors, because they have 12 components, one
component per pitch class (which unites all frequencies that correspond to notes
with the same name from different octaves). Each feature vector is of smaller
dimensionality than the corresponding spectrogram column.

Finally, the sequence of feature vectors is converted to the sequence of chord
symbols. Chord boundaries appear naturally, because of initial separation of the
recording into a set of fragments with fixed boundaries. Probabilistic models
such as hidden Markov models (e.g. [12]) and dynamic Bayesian networks [14]
are often used here because of their ability to model series of sequential events
and include various factors (bass note, musical key). The target sequence of
chord labels can be obtained from the sequence of observed feature vectors by
application of the Viterbi algorithm to the model.

Simpler algorithms that only compare the feature vectors with predefined
template vectors for chords [18] perform a little worse, but do not require train-
ing and therefore cannot be overfitted to concrete chord sequences or music style.
We believe that a good chord recognition quality can be achieved without prob-
abilistic models, using better features with simpler classifier instead. Promising
results in this direction were obtained in [10] with the help of deep convolutional
neural network. In this paper we investigate stacked denoising autoencoders (in-
cluding recurrent ones), which were applied successuflly to automatic speech
recognition [15]. With the introduction of recurrent connections it is possible
to model the dependency on the chord playing at the previous fragment of a
recording.

The remainder of the paper is organized as follows. Section 2 introduces
autoencoders and their modifications. In section 3 the experimental setup and
evaluation methods are described. In section 4 the results are presented and
discussed. Section 5 provides the directions for future work.
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2 Autoencoders and recurrent networks

2.1 Theoretical background

The definitions here are given following [21].
An autoencoder (also often called autoassociator) can be represented as a
pair of transforms:
y = fo(z) =s(Wx +b) (1)

z=go(y) =s(W'y +1) (2)

Here z is an input vector, z is the reconstructed output vector, y is the internal
representation of z, § = {W, b} and 6’ = {W’ b} are parameters (with a typical
restriction W’ = W7), s is a non-linear activation function, natural choice for
it is the sigmoid function or the hyperbolic tangent function. In (2) a linear
function s is sometimes used. A convenient representation for an autoencoder is
a neural network with one hidden layer.

During autoencoder training the cost function L(X,Z(X))) is minimized,
where X is a set of possible inputs. A natural choice in case when X is a set of
spectrogram columns is the squared error objective function L(x,z) = ||z — z||?.

To avoid learning the identity mapping, the internal representation often has
less dimensions than the input vector. Alternative way is to make the internal
representation having more dimensions than the input vector, and introduce the
sparsity restriction on the hidden layer, so that most of its activations are close
to zero. In this case the internal representation becomes a sparse representation
of the input. If we denote as fj (x) the activation of hidden unit j for an input
x, then we can define the average activation of this hidden unit over the whole

training set of size m:
R I
= 1500 () .
=

We would like to enforce p; = p, where p is a sparsity parameter, typically close
to zero, we choose p = 0.05. To achieve this, an extra penalty term L, is added
to the cost function L. Many choices for this term are possible, we apply the one
proposed in [17]:

h

1—
L,=p8 Z(plog;jﬂl—p)logl;) (4)

J

j=1

where h is the number of units in the hidden layer.

A denoising autoencoder is trained to reconstruct the input vector x from its
corrupted version . It was shown (see [1]) that internal representations obtained
from a denoising autoencoder are more stable and robust and capture better the
internal structure of the input distribution. Potential noise in the audio spectrum
can be simply modelled as additive isotropic Gaussian noise Z|r ~ N (z,0%I).
Other noise types can be also considered.
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Denoising autoencoders can be stacked by connecting the hidden layer of
one autoencoder to the input of another autoencoder. The layers are pre-trained
one by one in an unsupervised manner. The values from the hidden layer of the
innermost autoencoder can be used as feature vectors.

Recurrent denoising autoencoder can be constructed from the conventional
denoising autoencoder by adding a recurrent connection from its hidden layer
to itself (which results essentially in the Elman network [6]). Then the output
of this layer is computed as

y(zi) = s(Wap + b+ Uy(wi-1)) ()

2.2 Adaptation to audio chord estimation

The output of the hidden layer depends both on current input and on the hidden
representation of previous input vector. This allows modeling of dependence on
the previously sounding chord. In case of stacked denoising autoencoder recur-
rent connection can be added at any level or even at all layers.

A shortcoming of autoencoders is the lack of an evident interpretation of
those values. We could train a multiclass classifier directly on these feature vec-
tors. But having 25 different classes a lot of examples may be needed to train
the classifier properly. The task can be instead reduced to a regression task in
a known feature space. For chord estimation algorithms it is more common to
work with chroma features in 12-dimensional space. To convert the feature vec-
tor to a chroma vector, a logistic regression layer with 12 outputs is added on
top of the autoencoders.

The whole network is then fine-tuned in a supervised manner using minibatch
stochastic gradient descent with chord templates as target vectors. Binary chord
templates were used for training, and a null vector was used as the template for
no chord. Binary templates have 1 on the positions that correspond to notes of
a chord, and 0 on the other positions. Then the no chord was detected when the
element of the resulting vector with maximum absolute value is no greater than
A — the parameter, which was adjusted empirically. In fact, autoencoders are
used to pre-train the network.

Rotation of inputs or chroma vectors is a common trick when learning model
parameters in chord estimation algorithms. We propose here to use rotation both
when training a stacked denoising autoencoder and when testing it on unknown
inputs. The input vector spanning 6 octaves can be passed through a sliding
rectangle window 5 octaves wide. Each time when the window moves a semitone
up, the root note of the chord moves a semitone down (with possible loss of data
in the lower octave). During the training this yields in 12x growth of training
examples with evenly spaced root notes. To compensate for the difference in total
numbers of major and minor chords within the training set, we restricted this
difference to be no more than 100 (which turns to 1200 due to rotation) in the
generated set of examples for neural network training. On the other hand, chroma
vectors for a new spectrogram can be calculated 12 times with 12 different roots,
then rotated to the same root and averaged. This can potentially result in better
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recognition quality. Another option here is to use input vectors that span 5
octaves and do cyclic rotation for them. This is not natural, because highest
spectral components are moved before lowest ones, and we did not use this
option in the experiments.

3 Experimental setup

3.1 Pre-processing and spectrogram

A thorough description of the spectrogram calculation can be found in [8]. We
will further assume that the spectrogram spans 6 octaves: from C2 (65.41 Hz)
to B7 (3951 Hz) and has 1 row per note. Therefore each spectrogram column
consists of 72 values that represent the intensity of the corresonding note on a
given sound fragment. A logarithmic transformation is applied to each value to
mimic the human perception of sound intensity: each value v is replaced with
log,,(1000v + 1), as proposed in [16]. Each spectrogram column was normalized
to fit its values into [0, 1] before passing it to the neural network.

3.2 Feature vectors and neural networks

12-dimensional chroma feature vectors are obtained from the neural network
trained as described above. We experimented with various network layouts. In
all cases the network has 60 inputs and 12 outputs, but the number of hidden
layers and their size varied across expermients. Hidden layers are pre-trained as
autoencoders. Following options were considered:

— the described network with 1, 2 and 3 hidden layers and no recurrent con-
nections (SDA);

— the described network with 1, 2 and 3 hidden layers and recurrent connection
from the innermost hidden layer to itself (RSDA);

— conventional chroma features calculated without neural network: pitch class
profile (PCP) [7], chroma-log-pitch (CLP) [11] and chroma DCT-reduced log
pitch (CRP) [16].

3.3 Post-processing

At first, each feature vector is replaced with a linear combination of 15% of most
similar vectors, where each vector’s weight is its similarity to the source feature
vector. Similarity is calculated as Euclidean distance between 2 vectors. This
allows to take into account the repetition of music phrases. Similar technique
was employed in [14], but they only preserved the diagonals in self-similarity
matrix which are parallel to the main diagonal. We do not put such restriction
on this matrix.

Additionally, two heuristics were implemented to correct chord detection er-
rors of certain types. First heuristic consists in searching for all intervals where
multiple chords of same root but different type are arranged next to each other,
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and then replacing each interval with a single chord label. This chord is chosen
as the nearest one to the sum of all feature vectors within the interval. Another
heuristic was introduced to fix chord sequences like (A, B, C), where 3 succes-
sive beats are marked with 3 different chords. Each similar sequence is replaced
with the one of (A, A, C), (A, C, C), (B, B, C), (A, B, B) for which the sum
the of distances from successive feature vectors to corresponding chord labels is
minimal.

3.4 Evaluation

The experiments were conducted on the extensively used Isophonics dataset [13]
consisting of 218 songs by The Beatles, Queen and Zweieck. This dataset was
randomly divided into 2 groups of same size, which were treated by turns as
train and test sets.

Given the reference sequence of chord labels and the estimated sequence of
chord labels for a recording the evaluation was performed as follows. At first,
the recording is separated into segments using all chord boundaries from both
reference and estimated sequences. Then on each segment a “Mirex2010” score
was calculated as described in [19]. Its value s equals to 1 on a segment when
estimated and reference chord on this segment have at least 3 common notes
(or at least 2 if the reference chord is an augmented or diminished chord) or are
both no chord symbols. Otherwise s = 0. Then the overlap ratio is calculated

for this recording as:
Nsegm,

o - L5t
Zi:lg ti
where s; is the score on ith segment, ¢; is the length of ith segment, Nyegpm is
the total number of segments in the recording. Weighted average overlap ratio
is defined for the whole dataset as:

sil;

(6)

Niracks
21" OR; - L
Ntracks
Zi:1 Li

where OR; is the overlap ratio for ith recording, L; is the total length of ith
recording and Ni.qcrs is the size of the dataset (218 recordings).

The values of weighted average overlap ratio calculated during the MIREX
Audio Chord Estimation 2012 contest! are between 0.7159 and 0.8273. Average
segmentation defined in [14] is not commonly used, but we also provide its values
here. It characterizes the chord boundaries estimation quality.

We also performed statistical significance tests to determine, if there is a
significant difference between algorithm variations. Friedman’s ANOVA with
post-hoc Tukey HSD is used in MIREX Audio Chord Estimation and other
MIREX contests [5]. In this work the R [20] implementation [9] was employed
using the code by Tal Galili®.

WAOR = (7)

1 http://nema.lis.illinois.edu/nema_out/mirex2012/results/ace/mrx/
summary.html
2 http://wuw.r-statistics.com/2010/02/post-hoc-analysis-for-friedmans-test-r-code)
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4 Results

The number of inputs in the network is relatively small. Therefore we only exper-
imented with 1, 2 and 3 hidden layers. Learning rate for autoencoder pre-training
and network learning were set to 0.03 and 0.01 respectively; both pre-training
and network learning were run for 15 epochs. Batch size for batch gradient de-
scent was set to 5. Standard deviance for isotropic Gaussian noise was set to 0.2,
and the noise was applied to each spectral component with probability p = 0.7.

The first experiment is targeted at discovering the best performing network
layout. Same layouts were used with and without recurrent connections. The
spectrum was calculated from 6 octaves using sliding 5 octaves wide window.
Both logarithmic transformation and post-processing were applied. The results
are summarized in Table 1 (in parentheses are the sizes of hidden layers).

Algorithm Overlap|Segmentation
SDA (48) 0.7104 |0.7562
SDA (48, 40) 0.7154 10.7594
SDA (120, 60)  |0.7183 |0.7596
SDA (48, 40, 36) [0.7087 |0.7561
RSDA (48) 0.7047 10.7553
RSDA (48, 40) 0.7102 10.7585
RSDA (120, 60) (0.7170 |0.7615
RSDA (48, 40, 36)|0.7100 |0.7579

Table 1. Chord recognition quality achieved with different neural network layouts.

All network layouts lead to very similar results. Sparse variants seem to
perform a bit better. But only the differences between RSDA (48) and SDA (120,
60), RSDA(48) and RSDA (120, 60), RSDA(48) and SDA (48, 40), RSDA(48) and
RSDA (48, 40), RSDA (48, 40, 36) and SDA(48, 40) were statistically significant.
Sparse version SDA(120, 60) provides best average overlap value and therefore
it was chosen for further experiments. Best results were obtained using networks
with 2 hidden layers. Probably the input vectors have too little dimensions to
provide any advantage for deeper models. We may increase the dimensionality by
concatenating spectra of 3 or more sequential fragments, but short experiments
in this direction did not lead to any improvement.

It can be noted that the difference between SDA and corresponding RSDA
decreases when the number of units in hidden layers grows, and RSDA (48, 40,
36) even outperforms SDA (48, 40, 36).

The process of CLP features computation also involves a logarithmic transfor-
mation of the spectrum. CRP features additionally employ one more non-linear
transformation — discrete cosine transform, followed by suppression of first coef-
ficients and inverse discrete cosine transform. To understand if non-linear trans-
formations performed by the network units can lead to better results, we trained
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SDA(120, 60) network using spectral data without logarithmic transformation.
We then measured the recognition quality using PCP, CLP and CRP features
(which are obtained without neural network) calculated from spectrograms span-
ning 5 octaves on the same dataset. The results are shown in table 2.

Algorithm Overlap|Segmentation
SDA (120, 60) 0.7183 |0.7596
RSDA (120, 60) 0.7170 |0.7615

SDA (120, 60) (no log) |0.6814 [0.7522
RSDA (120, 60) (no log)|0.6753 [0.7504

PCP 0.6830 |0.7314
CLP 0.7148 |0.7367
CRP 0.7382 |0.7597

Table 2. The effect of non-linear transformations.

Both SDA and RSDA being learned on spectrum without logarithmic trans-
formation show the same recognition quality as PCP features, there is no sig-
nificant difference between them. With such transformation SDA and RSDA
perform slightly better than corresponding CLP features, but again with no
significant difference. But it seems impossible for this network to learn a trans-
formation similar to the one that is used during CRP features computation.
CRP features provide consistently better results compared to SDA/RSDA.

Algorithm Overlap|Segmentation
SDA (96, 48) [0.7197 |0.7630

SDA (120, 60)[0.7183 |0.7596
CRP (4) 0.7458 |0.7679
CRP (5) 0.7382 |0.7597

Table 3. The effect of the input size.

Table 3 summarizes the effect of the number of octaves in spectrum on the
chord recognition quality. In previous experiments all neural networks had 60
input units, and so has the SDA (120, 60) in this table. SDA (96, 48) has 48 inputs
and was trained in the same way as SDA (120, 60), but using 4 octaves wide
window sliding over the spectrum spanning 5 octaves. The number in parentheses
for CRP features also specifies the number of octaves used to calculate them.
Both neural network and CRP perform slightly better when using 4 octaves
instead of 5, but not significantly.

It was already noticed in our previous work [8] and in other works (e.g.
[14]) that smoothing of the sequence of feature vectors has a positive effect on
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Algorithm Overlap|Segmentation
SDA (120, 60) 0.7183 |0.7596
SDA (120, 60) (without heuristics)|0.7041 |0.7346
CRP 0.7382 |0.7597
CRP (without heuristics) 0.7302 |0.7627

Table 4. The effect of the post processing.

the chord recognition quality. So we only evaluate the effect of the heuristics
introduced in section 3.3. From table 4 it can be seen that these heuristics also
have a positive effect, but it is only significant for SDA (120, 60), not for CRP.

5 Conclusions and future work

In this paper we have investigated how the introduction of stacked denoising
autoencoder can help to produce features that can be used for audio chord
estimation. It was found that different layout and the presence of a recurrent
connection layer do not influence significantly to the resulting chord recognition
quality. The feautres obtained when first denoising autoencoder was sparse were
the best ones. But we could not achieve the same chord recognition quality
as with CRP chroma features. We have also implemented heuristics that can
improve the result and can be combined with any features.

In the future we plan to investigate whether aggregating different types of
features can lead to better chord recognition quality. Another option to consider
is the usage of bagging technique with neural networks.
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