
Comparison of Partial Orders Clustering
Techiques

Alexey Raskin

National Research Nuclear University MEPhI,
Kashirskoe sh. 31, 115409 Moscow, Russia

a.a.raskin@gmail.com

http://www.mephi.ru/en

Abstract. In this paper we compare three approaches of clustering to-
tally ordered subsets of a set of items. First approach was k-medoid
clustering algorithm with distance function based on Levenshtein dis-
tance. The second approach was k-means algorithm with cosine distance
as distance function after vectorization of partial orders. And the third
one was k-medoids algorithm with Kendall’s tau as a distance function.
We use Adjusted Rand Index as a measure of quality of clustering and
find out that clustering with Levenshtein distance and Kendall’s tau get
more stable results when variance of number of items ranked is high.

Keywords: Levenshtein distance, partial orders, clustering, distance
measure, Kendall’s tau distace

1 Introduction and Motivation

This investigation is a part of big project of developing clustering module for
weighted sequences. As an example of such data we can suggest log of WEB
site pages user opens with time, number clicks etc as characteristics of each
state. Another data example (less obvious, but it is a real data we use) is set
of medical treatments, provided in hospitals and policlinics: sequence of medical
treatments, which were provided to patient with a diagnosis during some fixed
period of time. The main problem we try to solve is a development of system,
which help specialists to analyze such sequences. One of the tools we need to
implement is clustering module.

The main problem of research is a distance function between such complex-
structured data. We need to take into account:

1. A set medical treatments.
2. Parameters of medical treatments.
3. Order of medical treatments.

We start to making our own distance based on Levenshtein (it can be easily
modified for uor purpose), but decide to test new distance on each step to make
sure, that our new distance is good enough in comparison with other distances.

2 Comparison of Partial Orders Clustering Techiques

This paper consider first step of our research: comparison Levenshtein distance
with another distances for partial orders. Partial orders is simplest example of
weighted sequences: there are no repeated objects and no weights.

So this paper consider the problem of clustering partial orders as a part of
problem mentioned above. Since the problem of clustering orders does not differ
much from the problem of clustering any set of objects we focused on distance
function between objects of clustering. Comparison of partial orders obviously
is quite difficult problem because if we compare two of them we need to take
into account not only set of elements, but in addition an order of them. Despite
complexity and interest of this theme it has surprisingly little work has been
done [6, 2].

We decide to compare Levenshtein distance as a function of similarity be-
tween partial orders and compare it with a recently presented approach proposed
in [6] and well-known Kendall tau rank distance [7] to find out their performance
in different circumstance.

2 Definitions and Problem Statement

According to [6] chain is a ”totally ordered subsets of a set of items, meaning
that for all items that belong to a chain we know the order, and for items not
belonging to the chain the order is unknown”. Hence every chain can’t include
one object more than one time. As an example of such data we can suggest a
rating of some objects (films, music compositions etc). More precisely, when we
talk about clustering chains we assume, that full data set of chains was generated
from some total orders. We want to make such clusters, where all chains in one
clusters were generated by one total order.

For our analysis we use Lloyds algorithm, also known as k-means, which is
one of the most common clustering algorithms and the k-medoids algorithm,
which is a medoidshift clustering algorithm related to the k-means. Both the
k-means and k-medoids algorithms are partitional (breaking the dataset up into
groups) and both attempt to minimize the distance between points labeled to
be in a cluster and a point designated as the center of that cluster. In contrast
to the k-means algorithm, k-medoids chooses datapoints as centers (medoids or
exemplars) and works with an arbitrary matrix of distances between datapoints
[3]. We use two different algorithms in depend on distance function and ability
to calculate mean value.

3 Distance Algorithms

As we mentioned above clustering algorithms themselves does not differ much
for different objects, but the distance function highly depends on data we want
to analyze. So we focused on distance function between partial orders and im-
plement Levenshtein distance function to calculate distance between them. We
also try to compare three distance functions: vectorizing algorithm presented in

Comparison of Partial Orders Clustering Techiques 3

[6] (Ukkonen distance), Kendall’s tau rank distance and our implementation of
Levenshtein distance [4].

3.1 Ukkonen Distance

There were a number of different distances between partial orders in [6]. For
analysis we choose planted partion model, which is very interesting first of all
because it help to vectorize partial orders. It doesn’t compare two orders directly,
but firstly vectorize them and then use ordinary mathematical distances (Cosine,
Euclidian or any other). Additionally it is very simple from computational point
of view: it needs just O(nm) to compute vectors for n partial orders, when size
of total order is m.

The main idea of planted partion model is next. A function f that maps total
orders to Rm as follows: let τ be a total order on M, and let τ(u) denote the
position of u ∈ M in τ . Consider the vector fτ where

fτ (u) = −(m+ 1)/2 + τ(u) (1)

If partial orders are shorter than total order we need to take into account
cases, when element from total order not exist in partial order (is not ranked).
So if π is a partial order and u - one of the element of M :

fπ(u) =

{
−(|π|+ 1)/2 + π(u) iff u ∈ π

0 iff u 6∈ π
(2)

And after normalization of function we get:

f(π) = fπ/‖fπ‖ (3)

After this vectorization procedure we can use any of classical distances be-
tween objects, for example, cosine distance which we use in this work. Using this
distance we can use k-means algorithm, because we can easily calculate mean
value of number of partial orders.

3.2 Levenshtein Distance

In information theory and computer science, the Levenshtein distance is a string
metric for measuring the difference between two sequences. Informally, the Lev-
enshtein distance between two words is the minimum number of single-character
edits (insertion, deletion, substitution) required to change one word into the
other. If we think about total orders as an alphabet, partial orders as a words
and elements of order as a letter we can draw full analogy from distance between
partial orders to distance between words:

Levπ,π′(i, j) =

max(i, j) if min(i, j) = 0

min

 Levπ,π′(i, j − 1) + 1
Levπ,π′(i− 1, j) + 1

Levπ,π′(i− 1, j − 1) + [π(i) 6= π′(j)])
, else

(4)

4 Comparison of Partial Orders Clustering Techiques

In this case we cannot use k-means algorithm, because mean value of partial
orders is not defined, so we need to use k-medoids clustering algorithm.

3.3 Kendall’s Tau Rank Distance

The Kendall tau rank distance is a metric that counts the number of pairwise
disagreements between two ranking lists. The larger the distance, the more dis-
similar the two lists are. The main problem is that if the chains π1 and π2 have
no items in common, we have to use a fixed distance between π1 and π2. For
example it was made for Spearmen’s rho by [2]. We can use the same approach
also with the Kendall distance by defining the distance between the chains π1

and π2 as the (normalized) Kendall distance between the permutations that are
induced by the common items in π1 and π2. If there are no common items we
set the distance to 0.5.

The Kendall tau ranking distance between two lists L1 and L2 is

K(τ1, τ2) = |{(i, j) : ij, (τ1(i)τ1(j) ∧ τ2(i)τ2(j)) ∨ (τ1(i)τ1(j) ∧ τ2(i)τ2(j))}| (5)

where τ1 and τ2 are the rankings of the elements in L1 and L2

4 Expirements and Results

For testing these distance functions we produce a number of clusterizations and
evaluate results of clustering. We assume that quality of clusters is strongly cor-
related to quality of distance functions. Data we use for clustering was artificial:
we generate a number of partial orders from three total orders. So we have an
opportunity to use Adjusted Rand Index as a measure of quality of clustering [5,
1]. For testing we make Python program in which implement K-means clustering
algorithm with Ukkonen distance function, K-medoids algorithm with Kendall’s
tau distance and K-medoids algorithm with Levenshtein distance.

First thing we want to test is how the quality of clustering depends on fraction
of items ranked. It was predictable that the bigger fraction is the easier it is to
distinguish them from each other, so we produce a number of test with different
fraction of items ranked. We assume, that all partial orders are the same length.
Results of multiple clustering tests with different number of items ranked and
different number of items in total order are in Fig.1

We can see, that if number of items ranked is equal to number of elements
in total order (in other words, all elements of total order are in partial order)
all three algorithms are quite good, but when partial orders are very little all
of them cannot perform well. In the case when ratio is about 0.5 Levenshtein
algorithm perform better than Ukkonen distance and worse than Kendall’s tau.

In previous test we assume that all partial orders are of equal length. Next
test helps us to define quality of distance functions in case of comparison of
partial orders with different length. We want to understand if distance function
can correctly compare partial orders with different number of elements. So the

Comparison of Partial Orders Clustering Techiques 5

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00
Fraction of items ranked

A
dj

us
te

d
R

an
d

In
de

x

Method

Kendall

Levenshtein

Ukkonen

Fig. 1. Quality of clustering in depending on fraction of items ranked (all partial orders
has the same length)

idea of expirement was the next one. We assume that length of chain is a random
value generated by normal distribution with some mean value and some variance.
The mean value is not so important in this test, because the main idea is to
understand dependency of clustering quality on variance of partial orders length,
so it was fixed for all expirements. Accordinly to this assumption we generate
partial orders with different lengthes (from normal distributions with same mean
value and different variance). For each variance we evaluate Adjusted Rand
Index. Results are in Fig. 2.

All algorithms decreased their quality with increasing variance of number of
items ranked, but we want to emphasize, that variance of clustering quality with
Ukkonen distance significantly increase in comparison with Levenshtein distance.

5 Conclusion

We find out that using Levenshtein distance help to achieve more stable results
with higher quality than Ukkonen distance. Ukkonen distance is relatively good
when we take into account partial orders with the same number of elements in
them. But quality of clustering process decreased with increasing variance of
number of items ranked.

Kendall’s tau distance get very stable result with high quality, but there is
no reasonable way to modify this distance to compare weighted sequences.

We do not consider that fact in paper, but we cannot to ignore that fact that
on the other hand, Ukkonen distance had a showing great promise property: we
can vectorize (and in some cases vizualize) partial orders using this algorithm
while Levenshtein distance is applied directly to partial orders and all problems

6 Comparison of Partial Orders Clustering Techiques

0.5

0.7

0.9

0 1 2 3 4 5
Variance of partial order length

A
dj

. R
an

d
In

de
x

Elements in order = 20

a.1

0.7

0.8

0.9

1.0

0 2 4 6
Variance of partial order length

A
dj

. R
an

d
In

de
x

Elements in order = 30

b.1

0

10

20

30

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Variance of partial order length

P
ar

tia
l o

rd
er

 le
ng

th

a.2

10

20

30

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Variance of partial order length

P
ar

tia
l o

rd
er

 le
ng

th

b.2

Fig. 2. Quality of clustering in depending on variance of number of items ranked. Size
of total order is 20 elements (a.1 and a.2) and 30 elements (b.1 and b.2)

Comparison of Partial Orders Clustering Techiques 7

of vizualization. Another good property is the computational complexity of the
algorithm: we can vectorize n objects in O(nm), when the size of the total order
is m and use after that simple functions to get distances.

References

1. Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classifica-
tion, 2(1):193–218, 1985.

2. Toshihiro Kamishima and Jun Fujiki. Clustering orders. In Gunter Grieser, Yuzuru
Tanaka, and Akihiro Yamamoto, editors, Discovery Science, volume 2843 of Lecture
Notes in Computer Science, pages 194–207. Springer Berlin Heidelberg, 2003.

3. L. Kaufman and P. Rousseeuw. Clustering by Means of Medoids. Reports of the
Faculty of Mathematics and Informatics. Delft University of Technology. Fac., Univ.,
1987.

4. V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10:707, 1966.

5. W.M. Rand. Objective criteria for the evaluation of clustering methods. Journal of
the American Statistical association, 66(336):846–850, 1971.

6. A. Ukkonen. Clustering algorithms for chains. J. Mach. Learn. Res., 999999:1389–
1423, July 2011.

7. M. Kendall and J. D. Gibbons Rank Correlation Methods. Oxford University Press,
fth edition, 1990.

