

Health and Medical Information Patient-specific information HealthVault Structured Personal Health reports data images Records (PHR) information EHR/EMR **Knowledge-based information** guidelines vocabularies, Web 2.0 ontologies, ... · Primary - original research (in journals, books, reports, etc.) · Secondary - summaries of research (in review articles, books, practice guidelines, etc.) Domain Specific IR / Hanbury / Lupu

Contents

- Introduction
- Medical Domain:
 - End users and tasks
 - Documents to be indexed
 - Search process refinements
- Future Challenges

RuSSIR 2012, August 6-11

Potential End-Users of Health Information

- Physicians
- Specialists
- Nurses
- Medical Students
- · Biomedical researchers
- Lay-people (general public)

• ...

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

Unrecognized Needs

- Lack of awareness of the need
- Don't know that new information is available

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

Physician Information Needs

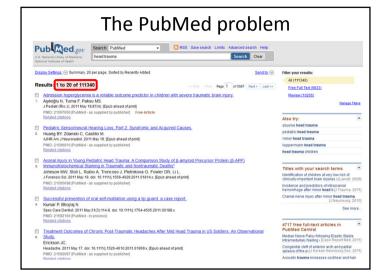
- Unrecognized Needs
- · Recognized Needs
- Pursued Needs
- Satisfied Needs

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

Recognized Needs

- Physicians recognise that they have an unmet information need
- Numbers from various studies:
 - Average of 2 unmet needs for every 3 patients (0.66 per patient) [CU85]
 - 1.4 questions per patient [OF91]
- Questions of type:
 - What is the cause of symptom X?
 - What is the dose of drug X?
 - How should I manage disease or finding X?
 - 69 in total [EO99]


RuSSIR 2012, August 6-11

Pursued Needs

- Physicians decided against pursuing answers for a majority of the unmet needs (from many studies)
- Most important reasons for not pursuing an answer [EO05]
 - Doubted existence of relevant information 25%
 - Readily available consultation leading to referral rather than pursuit – 22%
 - Lack of time to pursue 19%
 - Not important enough to pursue answer 15%
 - Uncertain where to look for answer 8%

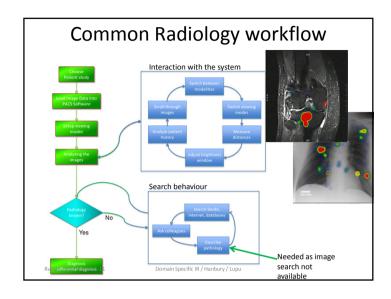
RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

• Difficulties identified:

- Time:
 - Physicians search on average for less than 5 minutes, and seldom search for more than 10 minutes [HSV08].
 - The time taken to answer questions using MEDLINE averages 30 minutes [HH98], and the information found is often scattered over multiple articles, making PubMed searching MEDLINE impractical for intensive clinical use [HSV08]
- Query language:
 - Physicians tend to make simple queries, containing 2 to 3 terms on average [HSV08b], resulting in long lists of results (Boolean model of PubMed)
- Language:
 - Dutch-speaking physicians observed in the study [HSV08b] may have used erroneous English terms, resulting in poorer returned results

RuSSIR 2012, August 6-11


Domain Specific IR / Hanbury / Lupu

Satisfied Needs

- The finding of relevant information could be improving as Internet affinity become more widespread
- Investigation of implicit search, starting automatically from an EHR
- Potential increase of mobile search

RuSSIR 2012, August 6-11 Domain Specific IR / Hanbury / Lupu

Other Groups

- Have different
 - Needs
 - Search behaviours

- ...

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

Eye-tracking

• http://youtu.be/YWo1Cx3jdOo

RuSSIR 2012, August 6-11 Domain Specific IR / Hanbury / Lupu

Consumer Health Searchers

- Non-professionals can access large amount of health information on the Internet
- 61% of American Adults seek out health advice online
- Around a third of those surveyed admitted that they changed their thinking about how they should treat a condition based on what they found online (Pew Internet and American Life Project, June 2009)

RuSSIR 2012, August 6-11

Patients searching...

- The Internet is changing the doctor-patient relationship
- Want empowered patients but no Cyberchondria
 - But can they access information of high quality?

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

Classification of Health Information

- Patient-specific information
 - Structured laboratory results, vital signs
 - Narrative history and physical, progress note, radiology report
- Knowledge-based information
 - Primary original research (in journals, books, reports, etc.)
 - Secondary summaries of research (in review articles, books, practice guidelines, etc.)

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

From Hersh

Contents

- Introduction
- · Medical Domain:
 - End users and tasks
 - Documents to be indexed
 - Search process refinements
- Future Challenges

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

Classification of Health and **Biomedical Information Content**

- 1. Bibliographic
 - Literature reference databases
 - MEDLINE
 - Scopus
 - Web catalogues and feeds
 - List of medical resources on the internet
 - E.g. http://www.tripdatabase.com
 - Specialized registries
 - · E.g. Catalogue of U.S. Government Publications, National Guidelines Clearinghouse

From Hersh

RuSSIR 2012, August 6-11

2. Full text

- Periodicals/Journals
- Books and reports
- Web collections
- US Government: NIH, NCI
- Clinical practice guidelines
- Wikis
- Evidence-based medicine (EBM) resources
 - Clinical care should be guided by the best scientific

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

Common primary literature

- Results of Randomized Controlled Trials
 - Potential bias as only those with positive outcomes tend to be published
 - But this is changing with clinical trial registers
- Reports of individual interesting cases

RuSSIR 2012, August 6-11

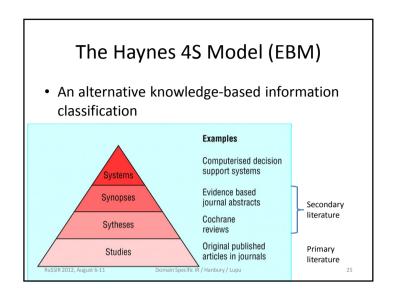
Domain Specific IR / Hanbury / Lupu

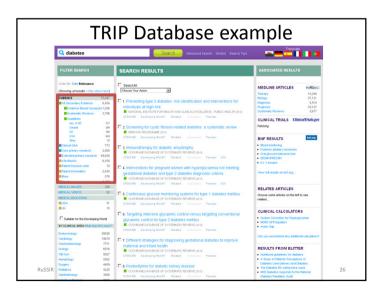
Properties of primary literature

- Growth
- Obsolescence
 - But also problem of pre-Internet literature

Domain Specific IR / Hanbury / Lupu

- Fragmentation
- · Linkage and Citations
- Propagation


RuSSIR 2012, August 6-11


From Hersh

Properties of secondary literature

- Syntheses
- Less fragmented
- · Contain older information
- Linkage and Citations
- Potentially more certain results due to combination and re-analysis of many studies
- Obsolesence

RuSSIR 2012, August 6-11

3. Annotated (metadata tightly integrated)

- Images
 - E.g. Visible Human Project
- Videos
- Citations
 - · E.g. Science Citation Index
- Molecular biology and –omics
 - E.g. Genomics, proteomics, ...
- Other
 - E.g. clinicaltrials.gov, PubChem, ...

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

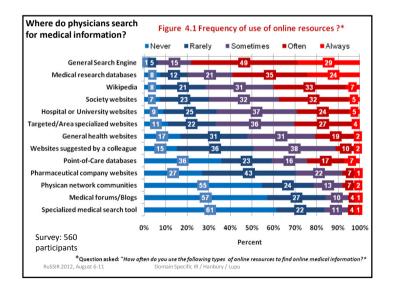
27

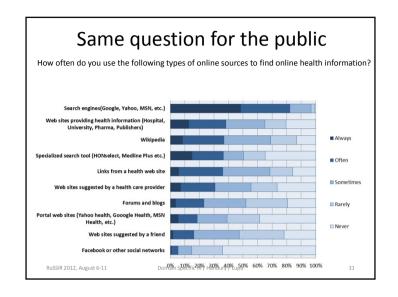
4. Aggregations

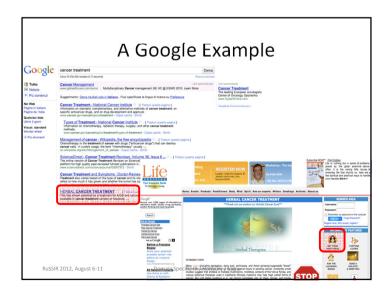
- Consumer
 - E.g. http://www.medlineplus.gov
- Professional
 - E.g. http://www.mdconsult.com
- Body of knowledge
 - Has the goal of mapping all knowledge in a field
 - E.g. Health Information Management Body of Knowledge
- Model organism databases
 - All information about an organism brought together
 - E.g. Mouse Genome Informatics, FlyBase (fruit fly), ...

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu


28


Consumer Health Information


- Concerns
 - Inaccurate or out-of-date information
 - Readability
 - Trustability
 - Web 2.0 sources (forums, Wikipedia, ...)

— ...

RuSSIR 2012, August 6-11

Search Engines

- About 70% of the top websites with information on oral cancers gathered by Google and Yahoo searches had serious deficiencies [LC09]
 - web sites failed to attribute authorship, cite sources and report conflicts of interest.
- On the first page of results, "lawyers were the most common sponsors of websites retrieved by the terms cerebral palsy (52%), birth trauma (48%), and shoulder dystocia (43%)" [KCB08]

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

Wikipedia

- Wikipedia articles appear in the top 10 results for more than 70% of medical queries in four different search engines tested in [LV09]
- Whereas Wikipedia medical articles have been found to be accurate, they are also often incomplete.
 - E.g. a study on drug information comparing Wikipedia to the Medscape Drug Reference [CPK08] found that "no factual errors were found in Wikipedia, whereas 4 answers in Medscape conflicted with the answer key." However, "Wikipedia was able to answer significantly fewer drug information questions (40.0%) compared with MDR (82.5%)."
 - An advantage of Wikipedia was that "there was a marked improvement in Wikipedia over time, as current entries were superior to those 90 days prior."

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

3.4

Codes of Conduct

- Various criteria for the quality of health web pages have been put forward.
- E.g. Health on the Net is an NGO that certifies health web pages satisfying the HONcode Principles
 - http://www.healthonnet.org
- · Semi-automatic certification
- Have a search engine that searches certified pages

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

25

HONcode principles

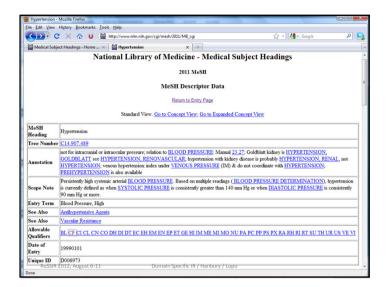
- 1. Authoritative
 - Indicate the qualifications of the authors
- 2. Complementarity
 - Information should support, not replace, the doctor-patient relationship
- 3. Privacy
 - Respect the privacy and confidentiality of personal data submitted to the site by the visitor
- 4. Attribution
 - Cite the source(s) of published information, date and medical and health pages
- Justifiability
 - Site must back up claims relating to benefits and performance
- 6. Transparency
- Accessible presentation, accurate email contact
- . Financial disclosure
- Identify funding sources
- 8. Advertising policy
 - Clearly distinguish advertising from editorial content

RuSSIR 2012, August 6-11

Contents

- Introduction
- Medical Domain:
 - End users and tasks
 - Documents to be indexed
 - Search process refinements
- Future Challenges

RuSSIR 2012, August 6-11


Domain Specific IR / Hanbury / Lupu

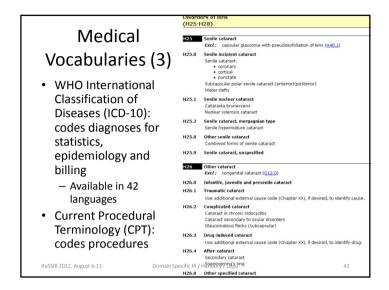
Medical Vocabularies (1)

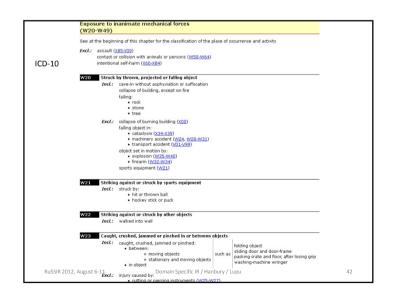
- Many such vocabularies available
- Medical Subject Headings (MeSH)
 - Produced by the NLM
 - Used to manually index MEDLINE entries
 - Contains 23.000 headings (concepts)
 - Contains the following relationships:
 - Hierarchical: organised into 16 trees
 - Synonymous: entry terms are synonyms of headings (e.g. plurality, word order, hyphenation)
 - Related: terms that may be useful for searchers to add to their searches

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

Medical Vocabularies (2)


• SNOMED CT: patient-specific information

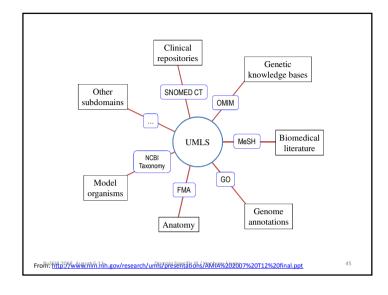

RuSSIR 2012, August 6-11

- 283,000 Active concept codes

CONCEPTIO OT FULLYSPECIFIEDNAME CTV3ID SNOMEDII 210566005 0 Open wound of hand with tendon involvement (disorder) S922. 210567001 0 Complete division extensor tendon hand (disorder) S9220 DF-008E6 210568006 0 Complete division flexor tendon hand (disorder) \$9221 DE-008E7 210569003 0 Partial division extensor tendon hand (disorder) S9222 DF-008E8 210570002 0 Partial division flexor tendon hand (disorder) S9223 DF-008E9 210571003 0 Degloving injury of hand (disorder) S923 DD-30125 210572005 0 Degloving injury hand, palmar (disorder) S9230 DD-30126 210573000 0 Degloving injury hand, dorsum (disorder) S9231 DD-30127 210574006 0 Severe multi tissue damage hand (disorder) S924. DD-00414 210575007 0 Massive multi tissue damage hand (disorder) S925. 210576008 6 Open wound of hand, excluding fingers, NOS (disorder) S92z. DD-33163 210577004 4 Open wound: [finger(s) or of thumb] or [fingernail] or [nail] \$93... 210578009 6 Open wound of finger or thumb without mention of complication (disorder) DD-3317E 125653000 0 Open wound of finger (disorder) S9300 DD-33169 DD-3317F 210579001 0 Open wound, finger, multiple (disorder) S9301 125654006 0 Open wound of thumb (disorder) S9302 210580003 0 Open wound of finger or thumb with complication (disorder) DD-33189

20058t1004petific@jefri-wound:\ffingepor thumb with tendon involvement] \$932.
or [finger with tendon injury]

Medical Vocabularies (4) Procedure RadLex (Radiology Lexicon) Report component - Single unified source of Imaging observation Radlex non-anatomical set Radiology terms Non-anatomical substance - Links to SNOMED CT and Contrast agent DICOM Anesthesia Medication - 34 446 active classes Radiopharmaceutical Chemical element Radioisotope Physiological condition Imaging modality Property Imaging procedure attribute Procedure step RuSSIR 2012, August 6-11 Domain Specific IR / Hanbury / Lupu Report


Medical Vocabularies (5)

- Unified Medical Language System (UMLS)
 - Goal of providing a mechanism for linking diverse medical vocabularies
 - Metathesaurus component links more than 100 source vocabularies
 - Multilingual (non-English translations are synonyms of English translations)

RuSSIR 2012, August 6-11

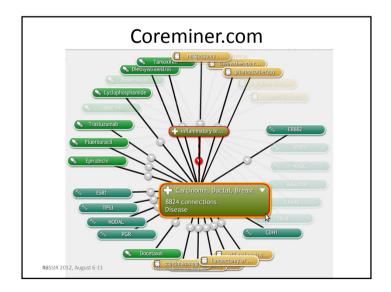
Domain Specific IR / Hanbury / Lupu

44

• Classification constraint

- Know from the labels and ontology information if a classification of organs in an image is possible
- · Multilingual search
 - Map terms in many languages into the vocabulary
- Search term suggestion or disambiguation
- Example of previous two: http://www.wrapin.org

RuSSIR 2012, August 6-11


Domain Specific IR / Hanbury / Lupu

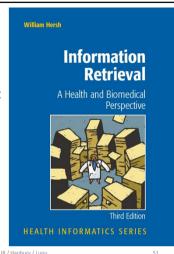
47

Use of Vocabularies (Domain Knowledge)

- Query Expansion
 - PubMed is an NLM search engine to search MEDLINE: http://www.pubmed.gov
 - Boolean search
 - Uses MeSH terms to expand queries
- Document annotation
 - Find occurrences of words in documents and link them to the vocabulary
 - Exopatent: http://fda.semanticannotation.com

RuSSIR 2012, August 6-11

Contents


- Introduction
- Medical Domain:
 - End users and tasks
 - Documents to be indexed
 - Search process refinements
- Future Challenges

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

Reference

 William Hersh, M.D., Information Retrieval: A Health and Biomedical Perspective, Third Edition, Springer, 2009

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

Challenges

- Exploding amount of information
- Ever increasing rate of generating new information
- Multilingual information
- Huge amounts of information stored unused in hospital archives
- Future information sources, e.g. Genome information

• ...

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

References

[CPK08] K. A Clauson, H. H. Polen, M. N. Kamel Boulos, J. H. Dzenowagis, Scope, Completeness, and Accuracy of Drug Information in Wikipedia, The Annals of Pharmacotherapy, Volume 42, No. 12, pages 1814-1821,

[CU85] D. Covell, G. Uman, et al, Information needs in office practice: are they being met? Annals of Internal Medicine, 103:596-599, 1985

[EO99] J. Ely, J. Osheroff, et al., Analysis of questions asked by family doctors regarding patient care, British Medical Journal, 319(7206):358-61, 1999 [EO05] J. Ely, J. Osheroff, Answering Physicians' Clinical Questions: Obstacles and Potential Solutions, J Am

Med Inform Assoc., 12(2): 217–224, 2005.

[HH98] W. R. Hersh, D. H. Hickam, How Well Do Physicians Use Electronic Information Retrieval Systems? A Framework for Investigation and Systematic Review, Journal of the American Medical Association, 280:15,

[HSV08] A Hoogendam, A. F. H. Stalenhoef, P. F de Vries Robbé, A. J. P. M. Overbeke, Answers to Questions Posed During Daily Patient Care Are More Likely to Be Answered by UpToDate Than PubMed, J Med Internet Res, Volume 10, Number 4, 2008.

ries, yourne 10, Nurinter 4, 2002. [HSV08b] A. H. H. Stalenhoef, P. F. de Vries Robbé, A. J. P. M. Overbeke, Analysis of queries sent to PubMed at the point of care: Observation of search behaviour in a medical teaching hospital, BMC Medical Informatics and Decision Making 2008, Volume 8, Number 42, 2008

[KCB08] A. J. Kamal, Y. W. Cheng, A. S. Bryant, M. E. Norton, B. L. Shaffer, A. B. Caughey, Google obstetrics: who is educating our patients?, American Journal of Obstetrics & Gynecology, Volume 198, Number 6, June 2009

 $[LCO9] \ P. \ L\'opez-Jornet, F. \ Camacho-Alonso, The \ quality \ of Internet sites providing information \ relating to \ oral \ cancer, \ Oral \ Oncology, 2009.$

[LV09] M. R. Laurenta, T. J. Vickers, Seeking Health Information Online: Does Wikipedia Matter?, Journal of the American Medical Informatics Association, Volume 16, pages 471-479, 2009

[OF91] J. Osheroff, D. Forsythe, et al., Physicians' information needs: analysis of questions posed during clinical teaching, Annals of Internal Medicine, 114:576-581, 1991

RuSSIR 2012, August 6-11 D