

Domain Specific IR Lecture 4 of 5: Beyond Text

Allan Hanbury
hanbury@ifs.tuwien.ac.at

Russian Summer School on Information Retrieval

August 6-11, 2012

Yaroslavl, Russian Federation

Image retrieval

- The most obvious step beyond text retrieval is usually image retrieval, due to the ubiquity of images
- But general images can be similar in so many different ways...

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

Contents

- Introduction to image retrieval
- Domain-specific image retrieval
 - Image search in the medical world
 - Image search in patents
- Challenges and conclusion

RuSSIR 2012, August 6-11

Retrieval of images

- Text retrieval of images
 - Is there any text attached to the images?
 - Doing this manually is expensive, subjective, language dependent, ...
 - Take text close to the images (such as captions)
 - Semantic concepts could help in some cases
- Visual retrieval of images
 - Using automatically extracted visual features
 - Content-based image retrieval (CBIR)
 - Query by Image Example(s) (QBE)
- · Multimodal retrieval (text+images)

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

Components of image retrieval systems Visual feature extraction Retrieval engine Storage and access methods Distance measures, similarity calculation Domain Specific IR / Hanbury / Lupu 7

Visual information for retrieval

- Object detection
 - Then potentially mapping the objects to an ontology
 - Usually works well for a small number of objects
- Image classification
 - Training data, limited set of classes
 - Global classification of images vs. local classification of pixels, regions
- Similarity retrieval of images
 - Global image information, regions of interest (ROIs), small
 - No training data, relevance as criterion for quality

RuSSIR 2012, August 6-11

Types of visual feature

- · Image thumbnails
- Colors
 - Different color spaces, human perception
- Textures
 - Many different models, no clear definition
- Shapes
 - Automatic segmentation is an ill defined problem
- Visual words
- Invariance of the extracted features
 - Rotation, shift, size, illumination, ...

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

11

Steps of a retrieval system

- Image pre-processing
 - Normalization, background removal, ...
- Salient region or point detection
- · Visual feature extraction
 - Feature selection
 - Then feature modeling in the case of visual words
- Distance calculation or similarity measurement
- Results fusion (text, visual, ...) for ranked list
- Results filtering (i.e. by modality)

•

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

Similarity by colour Similarity by colour Domain Specific IR / Hanbury / Lupu https://www.rocq.inria.fr/cgi-bin/imedia/circario.cgi/demos

Interest point-based approaches

- A set of interest points is extracted from the image by an algorithm.
- Many algorithms are available to do this.

RuSSIR 2012, August 6-11

/ Hankung / Lung

13

A clarification: definition of "BoW"

- Looser definition
 - Independent features

Bag of Visual Words in Practice

Obtaining visual words:

- 1. Extract keypoints in a (large) set of images
- 2. Extract features at each keypoint
- 3. Cluster the features, producing the visual words
- 4. Assign each keypoint to a visual word (cluster)

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

A clarification: definition of "BoW" Looser definition

- - Independent features
- Stricter definition
 - Independent features
 - histogram representation

For a new (unseen) image:

- 1. Extract keypoints
- 2. Extract features at keypoints
- 3. Assign each feature to the closest visual word
- 4. (Text) classification or similarity measures can now be applied

RuSSIR 2012, August 6-11

Domain-specific image retrieval

- So far, the same methods as for general image retrieval have generally been used for domainspecific image retrieval
- For domain-specific retrieval, domain knowledge is generally available to guide the choice of:
 - Features
 - Similarity functions

RuSSIR 2012, August 6-11 Domain Specific IR / Hanbury / Lupu

...

Contents

- Introduction to image retrieval
- Domain-specific image retrieval
 - Image search in the medical world
 - Image search in patents
- Challenges and conclusion

RuSSIR 2012, August 6-11 Domain Specific IR / Hanbury / Lupu 26

Medical imaging data production

- Medical imaging is estimated to occupy 30% of world storage capacity in 2010!
- Mammography data in the US in 2009 amounts to 2.5 Petabytes

Riding the wave – how Europe can gain from the rising tide of scientific data, report of the Europea Commission, 10/2010.

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

29

Content vs. context

- Most often text around images does not describe the image content itself
 - Unless specifically annotated for retrieval
 - Text often gives the context in which the images were taken (private, also medical)
- Image content is rarely described precisely and completely with text
 - Visual features describe the pure content
 - Low level of semantics
- Content and context are complementary for search

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

21

Text used for image search

- Image captions (in longer texts, scientific articles)
 - Some journals require high quality of this
- Link names to the images (in html)
- URL names (sometimes cryptic)
- Full text
 - Not specific as often many images in a text
- Text close to the images
 - Often better than the full text
- Mapping of free text to semantics
 - MeSH, UMLS, WordNet

RuSSIR 2012, August 6-11

in Specific IR / Hanbury / Lupu

Modality classification modality classification Radiology Microscopy Photograph Graphic Other AN Phorescence General Graphs Drawing Compound MR Gel Endoscopic WSSR 2012, August 6-11 Domain Specific IR / Hanbury / Lupu 32

Images in patents

- A patent application is required to contain drawings, if drawings are necessary to understand the subject matter to be patented.
- Most patent applications contain drawings.
- The drawings must show every feature of the invention as specified in the claims.
- Omission of drawings may cause an application to be considered incomplete and no application filing date will be granted by the USPTO.

RuSSIR 2012, August 6-11

The USPTO "Nonprovisional (Utility) Patent Application Filing Guide"

Domain Specific IR / Hanbury / Lupu

38

Characteristics

- Sometimes information is in the drawings that is not in the text (e.g. mechanical gearing)
- Drawings in older patents are often done by hand
- Drawings are usually in bitmap format from scanning, and not in vector format
- Drawings can be of poor quality in older patents due to poor scanning technology

RuSSIR 2012, August 6-11

Image similarity in patents • Patmedia — Informatics and Telematics Institute, Greece — Adaptive Hierarchical Density Histogram • Focus on geometry • Sidiropoulos et al., 2011

- A difference in patents
 - Markush Structures

- Potentially infinite combinations
- Extremely difficult to properly match image, table and free text

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

Image similarity

• When images are not images (1)

• These images must be converted to a textual representation of chemical structure for search

CLEF-IP 2011 Image-Based Prior Art Search

• 3 IPC sub-classes (of 631) used:

	A43B	CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
	A61B	DIAGNOSIS; SURGERY; IDENTIFICATION
	H01L	SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR

- 47.000 xml files (patent documents), 290.000 tiff files – 5.5 GB
- 211 query patents
- Retrieval of patents within the same IPC class (i.e. group of images)

Patent image search evaluation

- Patent image retrieval evaluations have been done on small datasets (max. 2000 images)
- Changed in 2011 with 3 patent image evaluations:
 - CLEF-IP Image-based Prior Art
 - CLEF-IP Image Classification
 - TREC-CHEM Chemical Structure Recognition
- Even more data is available for such tasks...

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

Results

- Only 1 participant (Xerox)
- Best MAP for 3 types of runs are shown below:

Run Type	MAP
Image only	0.035
Text only	0.203
Text + Image	0.212

Combining image and text search can improve the retrieval results

RuSSIR 2012, August 6-11

Patent drawing search: present and future

- Currently, much drawing search in practice is done by manual visual comparison
- There are initiatives to change the rules for patent drawing in patent submissions:
 - Why not use colour?
 - Why submit 2D cross-sectional black-and-white drawings when a 3D CAD model would be much more useful?
- For automated search, more effort is being put on specific search techniques for specific drawing classes

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

Contents

- Introduction to image retrieval
- · Domain-specific image retrieval
 - Image search in the medical world
 - Image search in patents
- Challenges and conclusion

RuSSIR 2012, August 6-11

Some challenges

- Combining text retrieval, visual retrieval and visual classification based on needs, queries
 - Analysis of the query to estimate goal
 - Quick learning from small training data, changing images
 - Work on robustness of fusion techniques
 - · Rank, not score based
- Domain-specific retrieval
 - Medical, expert search, ...

• ..

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

61

Combinations of techniques

- Classify modalities, then search in sub space
 - Basically remove noise
 - Allow for tabbed browsing
 - Separate compound figures, separate them and reclassify the sub figures
- Detect important regions
 - Segment areas, visualize the results
- Retrieve similar cases/documents based on structured data, free text and the visual information
 - Case/document-based retrieval is much more realistic than image-based retrieval

RuSSIR 2012, August 6-11

-

Conclusion

- Many techniques for general image search are also used for domain-specific image search
- For domain-specific image search, it is usually possible to use domain knowledge to make informed choices on
 - Image features
 - Similarity functions
- Still much research to do, especially on combining information from different modalities

RuSSIR 2012, August 6-11

Domain Specific IR / Hanbury / Lupu

63