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Dealing with structured data

IR is like many other fields confronted with

complex, structured, high-dimensional data.

To build algorithms, need to:

extract efficiently the relevant information in the data

→ necessary to take into account in a precise and quantitative way the
structure of the data
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Structures in IR

Structure of languages:
natural languages: synonymy, polysemy, word structure (stemming),
syntax, topics.
artificial languages (html, xml)

Structure of documents:
header, title, dates, fields, picture legends, links, plain text, etc.

Cross-lingual structure:
alignment between sentences in two languages
context dependent translation of words

“User structure”:
location, gender, interests, query style from browsing history

Search structure:
browsing behavior/search behavior
(eg: clicked on 3rd link → came back → 2nd link → came back

→ 7th link → came back → next page → new query)
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Goals of the course

introduce graphical model formalism

Present some of the prominent probabilistic models for text corpora

Unigram mixture
LSI, pLSI
Latent Dirichlet Allocation

Derive some algorithms

Discuss the relevance of these models

Some of:

Dictionary learning for topic models
Graphical models for alignments in translation models
Time varying models
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A reference

A short paper covering material very similar to the course:
Parameter estimation for text analysis

Gregor Heinrich: Technical report
Fraunhofer IGD (2004)

Machine Learning references:
Pattern Recognition and Machine Learning

Chris M. Bishop, Springer Verlag, 2006

Bayesian reasoning and machine learning
David Barber, 2011 - Cambridge University Press.

http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf
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Why probabilistic graphical models ?

Why a model?

To construct principled algorithm
To gain some understanding

Why probabilistic?
Account for:

uncertainty
randomness
noise

Use statistical methodology to estimate/learn
a quantitative model directly from the data

Why graphical?
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Structured problems in high-dimensions
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Curse of dimensionality
Exponential growth of the ”volume” with dimension
⇒ the number of parameters grows exponentially.

Example: Histograms

Construct the histogram of X ∈ [0, 1] with 10 bins

→ possible with 100 observations

Construct the histogram of X ∈ [0, 1]10

→ size and number of bins ?

→ a priori impossible with 100 or even 106 observations !

Model for SNPs

SNP: Single-Nucleotide Polymorphism

Correspond to 90% of human genetic variations

Number of loci k > 105

Number of configurations > 2105
...
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Some concepts from probability and statistics...

Independence: “X1 and X2 are independent random variables”

Conditional independence: “X1 and X2 are independent given Z”

i.i.d. data

Linear regression

Markov chain

Maximum Likelihood estimator

A priori distribution / a posteriori distribution

Kullback-Leibler divergence

Principal Component Analysis

Regularization / Ridge regression
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Outline

1 Background

2 The Maximum likelihood Principle

3 Oriented graphical model

4 Bayesian Inference

5 Naive Bayes
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Notations, formulas, definitions

Joint distribution of XA et XB : p(xA, xB)

Marginal distribution : p (xA) =
∑

xAc
p (xA, xAc )

Conditional distribution: p (xA|xB) = p(xA,xB)
p(xB) si p (xB) 6= 0

Bayes formula

p (xA|xB) =
p (xB |xA) p (xA)

p (xB)

→ Bayes formula is not a “Bayesian formula”.
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Expectation and Variances

Expectation of X : E [X ] =
∑

x x · p (x)

Expectation of f (X ), pour f mesurable :

E [f (X )] =
∑
x

f (x) · p (x)

Variance :

Var (X ) = E
[
(X − E [X ])2

]
= E

[
X 2
]
− E [X ]2

Covariance :

Cov(X ,Y ) = E
[
(X − E[X ]) (Y − E[Y ])

]
Conditional expectation of X given Y :

E [X |Y ] =
∑
x

x · p (x |y)
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Entropy and Kullback-Leibler divergence

Entropie

H(p) = −
∑
x

p(x) log p(x) = E[− log p(X )]

→ Expectation of the negative log-likelihood

Kullback-Leibler divergence

KL(p‖q) =
∑
x

p(x) log
p(x)

q(x)
= Ep

[
log

p(X )

q(X )

]
→ Expectation of the log-likelihood ratio

→ Property: KL(p‖q) ≥ 0
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Independence concepts

Independence: X ⊥⊥Y

We will say that X and Y are independent and write X ⊥⊥Y iff:

∀x , y , P(X = x ,Y = y) = P(X = x)P(Y = y)

Conditional Independence: X ⊥⊥Y | Z
We will say that X and Y are independent conditionally on Z and

write X ⊥⊥Y | Z ssi:

∀x , y , z ,

P(X = x ,Y = y | Z = z) = P(X = x |Z = z) P(Y = y |Z = z)
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Conditional Independence exemple

Example of
“X-linked recessive inheritance”:

Transmission of the gene
responsible for hemophilia

Risk for sons from an unaffected father:

dependance between the situation of the two brothers.

conditionally independent given that the mother is a carrier of the
gene or not.
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Statistical Model

Parametric model – Definition:

Set of distributions parametrized by a vector θ ∈ Θ ⊂ Rp

PΘ =
{
p(x |θ) | θ ∈ Θ

}

Bernoulli model: X ∼ Ber(θ) Θ = [0, 1]

p(x |θ) = θx(1− θ)(1−x)

Binomial model: X ∼ Bin(n, θ) Θ = [0, 1]

p(x |θ) =

(
n

x

)
θx(1− θ)(1−x)

Multinomial model: X ∼M(n, π1, π2, . . . , πK ) Θ = [0, 1]K

p(x |θ) =

(
n

x1, . . . , xk

)
π1

x1 . . . πk
xk
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Gaussian model

Scalar Gaussian model : X ∼ N (µ, σ2)

X real valued r.v., and θ =
(
µ, σ2

)
∈ Θ = R× R∗+.

pµ,σ2 (x) =
1√

2πσ2
exp

(
−1

2

(x − µ)2

σ2

)

Multivariate Gaussian model: X ∼ N (µ,Σ)

X r.v. taking values in Rd . If Kn is the set of positive definite matrices
of size n × n , and θ = (µ,Σ) ∈ Θ = Rd ×Kn.

pµ,Σ (x) =
1√

(2π)d det Σ
exp

(
−1

2
(x − µ)T Σ−1 (x − µ)

)
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1√

(2π)d det Σ
exp

(
−1

2
(x − µ)T Σ−1 (x − µ)

)
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Gaussian densities
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Sample/Training set

The data used to learn or estimate a model typically consists of a
collection of observation which can be thought of as instantiations of
random variables.

X (1), . . . ,X (n)

A common assumption is that the variables are i.i.d.

independent

identically distributed, i.e. have the same distribution P.

This collection of observations is called

the sample or the observations in statistics

the samples in engineering

the training set in machine learning
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3 Oriented graphical model
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Maximum likelihood Principle

Let PΘ =
{
p(x |θ) | θ ∈ Θ

}
be a given

model

Let x be an observation

Likelihood:

L : Θ → R+

θ 7→ p(x |θ)

Maximum likelihood estimator:

θ̂ML = argmax
θ∈Θ

p(x |θ)
Sir Ronald Fisher

(1890-1962)

Case of i.i.d data

If (xi )1≤i≤n is an i.i.d. sample of size n:

θ̂ML = argmax
θ∈Θ

n∏
i=1

p(xi |θ) = argmax
θ∈Θ

n∑
i=1

log p(xi |θ)
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Examples of computation of the MLE

Bernoulli model

Multinomial model

Gaussian model
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1 Background
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4 Bayesian Inference

5 Naive Bayes
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Notations

G = (V ,E ) is a graph.

A random variable Xi is associated to each node i ∈ E .

We will write its values xi .

If A ⊂ E is a set of nodes, we will write XA = (Xi )i∈A et
xA = (xi )i∈A.
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Oriented graphical model or Bayesian Network

Let G be a directed acyclic graph (DAG). We say that a distribution
factorizes according to the graph if it can be written as a product of
conditional distributions involving exactly each variable
and its parent variables in the graph.

p(a, b, c) = p(a) p(b|a) p(c |b, a)

a

b

c

p(x1, x2) = p(x1)p(x2)
x1 x2

p(x1, x2, x3) = p(x1)p(x2|x1)p(x3|x2)
x1 x2 x3
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Oriented graphical model or Bayesian Network

a⊥⊥ b | c

c

a b

p∏
j=1

p(xj |xΠj
)

x1

x2 x3

x4 x5

x6 x7

p(x1)
M∏
j=2

p(xj |xj−1)

x1 x2 xM
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Factorization and Independence

A factorization induces conditional independence properties

∀x , p(x) =

p∏
j=1

p(xj |xΠj
) ⇔ ∀j , Xj ⊥⊥X{1,..., j−1}\Πj

| XΠj

Is it possible to read directly from the graph the conditional
independence statements that are true given the factorization?

X5

?
⊥⊥X2 | X4

x1

x2 x3

x4 x5

x6 x7
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Blocking nodes

diverging edges consecutive edges ”v”-structure

c

a b

a c b

c

a b

=
a⊥⊥� b a⊥⊥� b a⊥⊥ b

c

a b

a c b

c

a b

= =
a⊥⊥ b | c a⊥⊥ b | c a⊥⊥� b | c
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d-separation

f

e b

a

c

Theorem

Let A,B and C three disjoint sets of nodes. The property XA⊥⊥XB |XC

holds if and only if all paths connecting A to B are blocked, which means
that they contain at least one blocking node. Node j is a blocking node

if there is no ”v-structure” in j and j is in C or

if there is a ”v-structure” in j and if neither j nor any of its
descendants in the graph is in C .
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Factorization and Independence II

Several graphs can induce the same set of conditional independence
statements.

c

a b

a c b

Some combinations of conditional independence statements cannot
be represented by a graphical model.
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How to parameterize an Oriented graphical model?

x1

x2 x3

x4 x5

Conditional Probability tables

x1 ∈ {0, 1}
x2 ∈ {0, 1, 2}
x3 ∈ {0, 1, 2}

p(x3 = k)
x1 x2 0 1 2

0 0 1 0 0
0 1 1 0 0
0 2 0.1 0 0.9
1 0 1 0 0
1 1 0.5 0.5 0
1 2 0.2 0.3 0.5

p(x;θ) = p(x1; θ1) p(x2|x1; θ2) p(x3|x2, x1; θ3) p(x4|x3, x2; θ4) p(x5|x3; θ5)
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A Markov random field or non-oriented graphical model

Is it possible to define a collection of distributions that somehow
factorize according to the graph such that conditional independence
coincides exactly with usual separation in the graph, i.e. such that we
have the

Global Markov Property

XA⊥⊥XB | XC ⇔ C separates A from B

A

C
B
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Gibbs distribution

Clique Set of nodes which is fully connected.

Potential The potential ψC (xC ) ≥ 0 is associated to the clique C .

Gibbs distribution

p(x) =
1

Z

∏
C

ψC (xC )

Partition funtcion

Z =
∑
x

∏
C

ψC (xC )

x1

x2

x3

x4

Potential in exponential form: ψC (xC ) = exp{−E (xC )}.
E (xC ) is an energy term.
This is then called a Boltzmann distribution.
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Outline

1 Background

2 The Maximum likelihood Principle

3 Oriented graphical model

4 Bayesian Inference

5 Naive Bayes
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Bayesian estimation
Bayesians treat the parameter θ as a random variable.

A priori

The Bayesian has to specify an a priori distribution p (θ) for the model
parameters θ, which models his prior belief of the relative plausibility of
different values of the parameter.

A posteriori

The observation contribute through the likelihood: p (x |θ).
The a posteriori distribution on the parameters is then

p (θ|x) =
p (x |θ) p (θ)

p (x)
∝ p (x |θ) p (θ) .

→ The Bayesian estimator is therefore a probability distribution on the
parameters.

This estimation procedure is called Bayesian inference.
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Graphical models associated with an i.i.d. sample from PΘ

Important to distinguish between:

constituents of a structured random variable X = (X1, . . . ,Xd) and

an i.i.d. sample X (1), . . . ,X (n) with X ∼ X (i) = (X
(i)
1 , . . . ,X

(i)
d ).

I.i.d. sampling itself corresponds to a graphical model:

x (i)

n

θ

x (i)

n

θ

x (i)

n

θ

x (1) x (2) x (n)

α

θ

x (i)

n

Frequentist model Bayesian formulation
n∏

i=1

p(x (i) ; θ) p(θ ; α)
n∏

i=1

p(x (i)|θ)
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Graphical model for an i.i.d. sample II

Exposing the structure

in the frequentist case

x
(i)
1

x
(i)
2 x

(i)
3

x
(i)
4 x

(i)
5

n

or

x
(i)
1x

(i)
2 x

(i)
3

x
(i)
4 x

(i)
5

θ1

θ2 θ3

θ4 θ5

n

p(x(1), . . . , x(n);θ) =
n∏

i=1

[ d∏
j=1

p( x
(i)
j | x

(i)
Πj

; θj )

]
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Conjugate priors

A family of prior distribution

PA = {pα(θ) | α ∈ A}

is said to be conjugate to a model PΘ, if, for a sample

X (1), . . . ,X (n) i.i.d.∼ pθ with pθ ∈ PΘ,

the distribution q defined by

q(θ) = p(θ|x (1), . . . , x (n)) =
pα(θ)

∏
i pθ
(
x (i)
)∫

pα(θ)
∏

i pθ
(
x (i)
)
dθ

is such that
q ∈ PA.
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Dirichlet distribution

We say that θ = (θ1, . . . , θK ) follows the Dirichlet distribution and note

θ ∼ Dir(α)

for

θ in the simplex 4K = {u ∈ RK
+ |
∑K

k=1 uk = 1} and admitting the
density

p(θ;α)=
Γ(α0)∏
k Γ(αk)

θα1−1
1 . . . θαK−1

K

with respect to the uniform measure on the simplex, where

α0 =
∑
k

αk and Γ(x) :=

∫ ∞
0

tx−1e−tdt

Guillaume Obozinski Probabilistic graphical models for Information Retrieval 39/46



Dirichlet distribution

We say that θ = (θ1, . . . , θK ) follows the Dirichlet distribution and note

θ ∼ Dir(α)

for θ in the simplex 4K = {u ∈ RK
+ |
∑K

k=1 uk = 1} and

admitting the
density

p(θ;α)=
Γ(α0)∏
k Γ(αk)

θα1−1
1 . . . θαK−1

K

with respect to the uniform measure on the simplex, where

α0 =
∑
k

αk and Γ(x) :=

∫ ∞
0

tx−1e−tdt

Guillaume Obozinski Probabilistic graphical models for Information Retrieval 39/46



Dirichlet distribution

We say that θ = (θ1, . . . , θK ) follows the Dirichlet distribution and note

θ ∼ Dir(α)

for θ in the simplex 4K = {u ∈ RK
+ |
∑K

k=1 uk = 1} and admitting the
density

p(θ;α)=
Γ(α0)∏
k Γ(αk)

θα1−1
1 . . . θαK−1

K

with respect to the uniform measure on the simplex, where

α0 =
∑
k

αk and Γ(x) :=

∫ ∞
0

tx−1e−tdt

Guillaume Obozinski Probabilistic graphical models for Information Retrieval 39/46



Dirichlet distribution II

E[θk ] =
αk

α0
, Var(θk) =

αk(α0 − αk)

α2
0(α0 + 1)

and Cov(θj , θk) =
−αjαk

α2
0(α0 + 1)

with α0 =
∑

k αk .
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Bayesian estimation of a multinomial random variable

Consider the simple Bayesian Dirichlet-Multinomial model with

α

θ

z(i)

N

A Dirichlet prior on the parameter of the multinomial:
θ ∼ Dir(α)

A multinomial random variable z ∼M(1,θ)

p(θ) ∝
K∏

k=1

θαk−1
k and p(z|θ) =

K∏
k=1

θzkk

Let z(1), . . . , z(N) be an i.i.d. sample distributed like z.
We have

p(θ|z(1), . . . , z(N)) =
p(θ)

∏
n p(z(n)|θ)

p(z(1), . . . , z(N))
∝

∏
k

θ
αk+

∑
n znk−1

k

So that (θ|(Z )) ∼ Dir((α1 + N1, . . . , αK + NK )) with Nk =
∑

n znk
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Laplace smoothing

To obtain point estimates in the Bayesian setting, we can compute
posterior expectations:

E[θ | z(1), . . . , z(n)].

We have

E[θk |Z] =
Nk + αk

N + α0
=

N

N + α0

Nk

N
+

α0

N + α0

αk

α0
,

with Nk =
∑

n znk and α0 =
∑

k αk .

This can be useful in to smooth count estimates in IR and NLP since
data is very sparse. There exists however other smoothing methods.
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The bag-of-word model, a vector-space representation of documents

Given

a vocabulary of size d ,

Represent a document consisting of N words

(w1, . . . ,wN)

as x the vector of counts, or the vector of frequencies of the number of
appearances of each of the words (possibly corrected with tf-idf):

x =

x1
...
xd

 ∈ Nd
+, or [0, 1]d+, or Rd .

Document collection

X =

 | |
x (1) . . . x (M)

| |

 =

 x
(1)
1 x

(M)
1

...
. . .

...

x
(1)
d x

(M)
d

 ∈ Rd×M
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The “Naive Bayes” model for classification

Data

Class label: C ∈ {1, . . . ,K}
Class indicator vector Z ∈ {0, 1}K

Features Xj , j = 1, . . . ,D
(e.g. word presence)

Model

p(z) =
∏
k

πzkk

Which model for

p(x1, . . . , xD |zk = 1) ?

z

x1 xD

“Naive” hypothesis

p(x1, . . . , xD |zk = 1) =
D∏
j=1

p(xj | zk = 1; bjk) =
D∏
j=1

b
xj
jk (1− bjk)1−xj
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Naive Bayes (continued)

Learning (estimation)

π̂ = argmax
π:π>1=1

∏
k,i

π
z

(i)
k

k b̂jk = argmax
bjk

n∑
i=1

log p(x
(i)
j |z

(i) = k; bjk)

Prediction:

ẑ = argmaxz

∏D
j=1 p(xj |z)p(z)∑

z ′
∏D

j=1 p(xj |z ′)p(z ′)

Properties

Ignores the correlation between features

Prediction requires only to use Bayes rule

The model can be learnt in parallel

Complexity in O(nD)
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