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The bag—of—word model, a vector-space representation of documents
Given
@ a vocabulary of size d,
Represent a document consisting of N words

(wi,...,wy)
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Given
@ a vocabulary of size d,
Represent a document consisting of N words
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as x the vector of counts, or the vector of frequencies of the number of
appearances of each of the words (possibly corrected with tf-idf):
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@ a vocabulary of size d,
Represent a document consisting of N words

(wi,...,wy)

as x the vector of counts, or the vector of frequencies of the number of
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Multinomial mixture model (Unigram mixture)

@ K topics

@ z component indicator vector

0 z=(z1,...,2z¢)" €{0,1}¥

oz~ M(1,(m,...,Tk)) B

K
e p(z) = H e
k=1

Guillaume Obozinski Unigram mixtures and the EM algorithm 3/17



Multinomial mixture model (Unigram mixture)

@ K topics

@ z component indicator vector

0o z=(z1,...,2zx)" €{0,1}K

oz~ M(1,(m,...,Tk)) B

K
e p(z) = H e
k=1

Guillaume Obozinski Unigram mixtures and the EM algorithm 3/17



Multinomial mixture model (Unigram mixture)

@ K topics

@ z component indicator vector

0o z=(z1,...,2zx)" €{0,1}K

oz~ M(1,(m,...,Tk)) B

K
e p(z) = H e
k=1

Wy [{zk=1} ~ M(1, (b1k;, - - -, bak))
p(Wnj = 1] zx = 1) = by
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Multinomial mixture model (Unigram mixture)

@ K topics

@ z component indicator vector

0o z=(z1,...,2zx)" €{0,1}K

oz~ M(1,(m,...,Tk)) B

K
e p(z) = H e
k=1

W, | {Zk: 1} ~ M(]., (b1k7 N bdk))

o p(wnj =1]zc=1)= by
N d K '
° p(W,Z) — H H H (bjkﬂ_k)wmzk
n=1;=1k=1
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Multinomial mixture model (Unigram mixture)

@ K topics

@ z component indicator vector

0o z=(z1,...,2zx)" €{0,1}K

oz~ M(1,(m,...,Tk)) B

K
e p(z) = H e
k=1

W, | {Zk: 1} ~ M(]., (b1k7 N bdk))

© p(wnj =12z =1)= bi
N d K
° p(W, Z) — H H (bjkﬂ_k)wmzk
n=1j=1k=1
d K B
° p(x,z) o< H (bjri)
j=1k=1
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Applying maximum likelihood to the multinomial mixture
Let Z={ze {0, 1}X | K z =1}
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Applying maximum likelihood to the multinomial mixture
Let Z={ze {0, 1}X | K z =1}

p(x) = 3 p(x.2)

zceZ
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Applying maximum likelihood to the multinomial mixture
Let Z={ze {0, 1}X | K z =1}

- S nten= I [T162 |7 -

zeZ zeZ k=1 - j=1

Guillaume Obozinski Unigram mixtures and the EM algorithm 4/17



Applying maximum likelihood to the multinomial mixture
Let Z={z e {0,1}K | Kz =1}

= S nen= S IT 116 |2 = 32 [ 1T

Ty
zeZ zeZ k=1 - j=1 k=1 *j=1
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Applying maximum likelihood to the multinomial mixture
Let Z={z e {0,1}K | Kz =1}

= S nen= S IT 116 |2 = 32 [ 1T

Ty
zeZ zeZ k=1 - j=1 k=1 -j=1
Issue

o The marginal log-likelihood ¢(B,7) = 3, log(p(x()) is now
complicated
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Applying maximum likelihood to the multinomial mixture
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zeZ zeZ k=1 - j=1
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o The marginal log-likelihood ¢(B,7) = 3, log(p(x()) is now
complicated

@ No hope to find a simple solution to the maximum likelihood
problem
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o The marginal log-likelihood ¢(B,7) = 3, log(p(x()) is now
complicated

@ No hope to find a simple solution to the maximum likelihood
problem

@ By contrast the complete log-likelihood has a rather simple form:
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Applying maximum likelihood to the multinomial mixture
Let Z={z e {0,1}K | Kz =1}

WSS NI {ICEEE

zeZ zeZ k=1 - j=1

163 =

Ty
k=1 -j=1

[ssue

o The marginal log-likelihood ¢(B,7) = 3, log(p(x()) is now
complicated

@ No hope to find a simple solution to the maximum likelihood
problem

@ By contrast the complete log-likelihood has a rather simple form:

M
)= > logp(x.27) = 3~ X 27 og(b) + > _ 2, log(m)
i=1

i7j7k I’k
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Applying maximum likelihood to the multinomial mixture

M
iB,m) = log p(x?,20) = 3~ x7 2 log(by) + > 21" log(m)
i=1 ij, k ik
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Applying maximum likelihood to the multinomial mixture

M
iB,m) = log p(x?,20) = 3~ x7 2 log(by) + > 21" log(m)
i=1 ij, k ik

o If we knew z()) we could maximize /(B, ).
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o If we knew z()) we could maximize /(B, ).
o If we knew B and 7, we could find the best z(!) since we could
compute the true a posteriori on z() given x(1:
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Applying maximum likelihood to the multinomial mixture

M
) = Z log p(x(, 2 Z x7 z, (N log(bjk) + sz log()
i=1

iJsk ik

o If we knew z()) we could maximize /(B, ).
o If we knew B and 7, we could find the best z(!) since we could
compute the true a posteriori on z() given x(1:

TFkHJ 1 _jk

Zk’— Tk! HJ 1bjk’

p(zk =1|x;B,m) =
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Applying maximum likelihood to the multinomial mixture

M
) = Z log p(x(, 2 Z x7 z, (N log(bjk) + sz log()
i=1
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o If we knew z()) we could maximize /(B, ).
o If we knew B and 7, we could find the best z(!) since we could
compute the true a posteriori on z() given x(1:

TFkHJ 1 _jk

Zk’ 17k HJ 1bjk’

— Seems a chicken and egg problem...

p(zk =1|x;B,m) =
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Applying maximum likelihood to the multinomial mixture

M
) = Z log p(x(, 2 Z x7 z, (N log(bjk) + sz log()
i=1

iJsk ik

o If we knew z()) we could maximize /(B, ).
o If we knew B and 7, we could find the best z(!) since we could
compute the true a posteriori on z() given x(1:

TFkHJ 1 _jk

Zk/ 17k HJ 1 bjk’

— Seems a chicken and egg problem...
@ In addition, we want to solve

maxZIog(Zp )z()> and not max Zlogp ()
My i

() z()

p(zk =1|x;B,m) =

z(

@ Can we still use the intuitions above to construct an algorithm
maximizing the marginal likelihood?
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Principle of the Expectation-Maximization Algorithm

log p(x;6) =
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Principle of the Expectation-Maximization Algorithm

log p(x;0) = IogZp(x,z;O)
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Principle of the Expectation-Maximization Algorithm

log p(x;0) = IogZp(X,Z;e Iong plx.2, 0)
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Principle of the Expectation-Maximization Algorithm

logp(x;0) = log>» p(x,z;0) = Iogz xzo)

og P(X:2:6)
> Z:()lg <)
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Principle of the Expectation-Maximization Algorithm

logp(x;0) = log>» p(x,z;0) = |og2q

og P(X:2:6)
> Z:()lg <)

= Eqllog p(x,z; 8)] + H(q)

sz)
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Principle of the Expectation-Maximization Algorithm

log p(x;0) = IogZp(X,Z 0) Iong plx.z, 0)

og P(X:2:6)
> Z:()lg <)

= Eqg[log p(x, z; 0)] + H(q) =: L(q,0)
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Principle of the Expectation-Maximization Algorithm

logp(x;0) = log>» p(x,z;0) = Iogz XZO)

> Z: q(z )logp((i)o)

= Eqg[log p(x, z; 0)] + H(q) =: L(q,0)

@ This shows that £(q,0) < log p(x; 8)
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Principle of the Expectation-Maximization Algorithm

log p(x;0) = IogZp(X,Z;e Iong plx.2, 0)

> Z: q(z )logp((i)o)

= Eqg[log p(x, z; 0)] + H(q) =: L(q,0)

@ This shows that £(q,0) < log p(x; 8)

@ Moreover: 8 — L(q,8) is a concave function.
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Principle of the Expectation-Maximization Algorithm

logp(x;0) = log>» p(x,z;0) = Iogz XZO)

> 22: q(z )logp((i)o)

= Eqg[log p(x, z; 0)] + H(q) =: L(q,0)

@ This shows that £(q,0) < log p(x; 8)
@ Moreover: 8 — L(q,8) is a concave function.

o Finally it is possible to show that

L(q,0) = log p(x; 6) — KL(q]|p(-|x; 6))

Guillaume Obozinski Unigram mixtures and the EM algorithm



Principle of the Expectation-Maximization Algorithm

logp(x;0) = log>» p(x,z;0) = Iogz XZO)

> 22: q(z )logp((i)o)

= Eqg[log p(x, z; 0)] + H(q) =: L(q,0)

@ This shows that £(q,0) < log p(x; 8)
@ Moreover: 8 — L(q,8) is a concave function.

o Finally it is possible to show that
£(q,0) = log p(x; 8) — KL(q||p(-|x; 8))
So that if we set g(z) = p(z | x; 8(!)) then
L(q,0) = p(x; 01).
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Principle of the Expectation-Maximization Algorithm
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= Eqg[log p(x, z; 0)] + H(q) =: L(q,0)

@ This shows that £(q,0) < log p(x; 8)

@ Moreover: 8 — L(q,8) is a concave function.

o Finally it is possible to show that

L(q,0) = log p(x; 6) — KL(q]|p(-|x; 6))

So that if we set g(z) = p(z | x; 8(!)) then
L(q,0)) = p(x;0").
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A graphical idea of the EM algorithm

001d 0 new
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Expectation Maximization algorithm

Expectation step

Maximization step

gold — pg(t-1)

grew  —  g(t)
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Expectation Maximization algorithm
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@ q(z) = p(z | x;61)

Maximization step
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Expectation Maximization algorithm

Expectation step
@ q(z) = p(z | x;61)

(2]
L(q,0) = Eq[log p(x,z: 6*"D)] + H(q)
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grew  —  g(t)
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Expectation Maximization algorithm

Expectation step
@ q(z) = p(z | x;61)

(2]
L(q,0) = Eq[log p(x,z: 6*"D)] + H(q)

Maximization step
Q@ 0 = argmax Eq| log p(x, z; O(t_l))]
)

gold — pg(t-1)

grew  —  g(t)
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Expectation Maximization algorithm

Initialize @ = O

WHILE (Not converged)

Expectation step
@ q(z) = p(z | x; 61 1)
(2]
L(q,0) = Eq[log p(x,z: 6*"D)] + H(q)

Maximization step
Q@ 0 = argmax Eq| log p(x, z; O(t_l))}
)

gold  — pg(t-1)

grew  —  g(t)
ENDWHILE
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Expected complete log-likelihood

With the notation: qfkt) = ]P)q(t) (z,((i) =1)= qut) [z,((i)], we have
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Expected complete log-likelihood
(1) _ () _ 1y — ()
With the notation: g, " =P o) (2, 1) = qut) [zk ] we have

Eg [2(37 m)] =
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Expected complete log-likelihood
(1) _ () _ 1y — ()
With the notation: g, " =P o) (2, 1) = qut) [zk ] we have

E o [l(B,7)] = E,o[logp(X,Z;B,m)]
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Expected complete log-likelihood
(1) _ (i) _ 1y _ (i)
With the notation: g, " =P o) (2, 1) = qut) [zk ] we have
E o [l(B,7)] = E,o[logp(X,Z;B,m)]

- [Zlogp z(): B, 7)
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Expected complete log-likelihood

With the notation: q,(kt) = ]P’q(t) (z,((i) =1)= qut) [z,((i)], we have

E o [l(B,7)] = E,o[logp(X,Z;B,m)]

= [Zlogp )Bﬂ)]
[Zx 2 log(bjk +sz log wk]

7J>
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Expected complete log-likelihood
: Lo () () _ 1y — ()
With the notation: g;, ]P’q(t) (z,'=1)= qut) [zk ] we have

E o [l(B,7)] = E,o[logp(X,Z;B,m)]

= Eqo [Zlogp );B W)]
= Ey [ Z le Z,E') log(bjk) + ZZ,EI) |0g(7Tk)]

',j, k ik
= x t) | log(bji) + o) zk og(mk)
7./ k I k
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Expected complete log-likelihood

With the notation: q,(kt) = ]P’q(t) (z,((i) =1)= qut) [z,((i)], we have

) [{(B,m)] = Eo[logp(X,Z;B,m)]

= Eqo [Zlogp );B W)]
= Ey [ Z le Z,E') log(bjk) + ZZ,EI) |0g(7Tk)]

i,j, k ik

= Zx()IE t) Iog k) —|—ZE (t zk)] log(mk)

Eq

i\j, k
= E x() ( log(bjk) + g qk)log (k)
ij, k ik
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Expectation step for the Multinomial mixture

We computed previously q,(t)(z(i)), which is a multinomial distribution
defined by

qft)(z(i)) - p(z(i)|x(i); B(tfl),ﬂ-(tfl))
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Expectation step for the Multinomial mixture

We computed previously q,(t)(z(')), which is a multinomial distribution
defined by

qft)(z(i)) - p(z(i)|x(i); B(tfl),ﬂ-(tfl))

Abusing notation we will denote (qflt)7 ey qff()) the corresponding vector

of probabilities defined by

a = P o () =1) = E o 2]
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Expectation step for the Multinomial mixture

(1)

We computed previously g;
defined by

(z{7), which is a multinomial distribution

qft)(z(i)) - p(z(i)|x(i); B(tfl),ﬂ-(tfl))

(t) (1)

Abusing notation we will denote (g;;’, ..., ;¢ ) the corresponding vector
of probabilities defined by

I(kt) = qut) (Z,Ei) =1)= ]qut) [Z,((i)]

t 1)HJ 1[ (t— 1)]

At = p(z) = 1 x; B, (e e
Zk’l Hjl[Jk/ K
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Maximization step for the Multinomial mixture

(B, ") = argmax Eg o [Z(B,ﬂ')]

,TC
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Maximization step for the Multinomial mixture

(Bf, ") = argmax E [E(B,ﬂ')]
This yields the updates:
t
(1) i X( ) q:(k (t) _ 2l q,(kt)
bjk and ™ = 7(1’)
2 qik 2 ik ik
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Final EM algorithm for the Multinomial mixture model

Initialize @ = 69
WHILE (Not converged)

Expectation step
(t—1) r1d (t—1)7x"
T "1 | b J
qfkt) = g H [ ] 6]

Ek’ 1 k’ H [b_[(lf/ 1)]

Maximization step

( i) _(t)
bt 72' J ik and 7Tk — 2 q”‘
> NGO

ENDWHILE
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The EM algorithm
for the

Gaussian mixture model
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Gaussian mixture model

@ K components

@ z component indicator

0 z=(z1,...,2zx)" €{0,1}K
oz~ M(1,(m,...,7K))

K
p(z) = [ =&
k=1
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Gaussian mixture model

K components

zZ= (Zlv"'azK)T € {O’l}K
ZNM(l,(ﬂ—l,--'ﬂrK))

K
p(z) = [ =&
k=1

o
@ z component indicator
o
o

K

p(x|z; (1K, B )k) = Z 2k N(X; poi, Ek)
k=1

(]
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Gaussian mixture model

K components

z component indicator
z=(z1,...,zx)" €{0,1}K
z~ M(1,(m1,...,7K))

K
p(z) = [ =&
k=1

K
o p(x|z: (i i) = Y 2k N(x; pe, )
) k=1
o p(x) =) mN(x; p, k)

k=1
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Gaussian mixture model

K components

z component indicator
z=(z1,...,zx)" €{0,1}K
z~ M(1,(m1,...,7K))

K
p(z) = [ =&
k=1

°
K
o p(x|z; (pk, Xk)k) = Z zk N(x; pg, k)
k=1
K
o p(x) =) M N(X; e, i)
k=1
°

K
Estimation:  argmax log Z T N(x; p, i)
179937 k=1
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EM Algorithm for the Gaussian mixture model
Soit 0° = (7", (1, B )k)-

Hp(z x" 0) HHﬂ'k< X;:“kazk))ZL

i=1 k=1 K=

E step:
P, 2L, . X" 0%) = [0, p(2]x]; 0°)

- ; - 2t =1;0%) P(zf=1;6"
g = P(zj=1)xi; 1) = PUIZ=LO) P =10T)
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EM Algorithm for the Gaussian mixture model

Soit 67 = (", (1, TL)).

Hp(z x'; 9) HHﬂ'k< X;”kazk))ZL

i=1 k=1

E step:

TN (X e, 2F)

IDYLACHTR)

Eqllog p(z,x10)] = Eq| > 2 (log my + log N'(x'; s, )|

ik
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EM Algorithm for the Gaussian mixture model

Soit 67 = (", (1, TL)).

Hp(z x'; 9) HHﬂ'k< X;“kazk))zL

i=1 k=1

E step:

TN (X e, 2F)

IDYLACHTR)

Eqllog p(z,x10)] = Eq| > 2 (log my + log N'(x'; s, )|

ik

_ 1,
= Z q log i — qu( — i) T2 O — k) — §q;< log((27)|Zk])
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EM Algorithm for the Gaussian mixture model Il

i 1 i — 1 i
Q6.0 = dilogm — 5 (i — i) "M (x — pui) — 5 log((2m) | S
ik
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EM Algorithm for the Gaussian mixture model Il
. 1, 1
Q(6,6") = gjlogmi — EQL(X:' — ) "B 06— ) — 5k log((27)7|2x])
ik

M step:
max Q((T[‘, (uk,Ek)k),9t> s.t. Zﬂ'k =1
k

7, (1, 2k )k
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EM Algorithm for the Gaussian mixture model Il
. 1, 1
Q(0.6%) = > _ ajlogme — 5 (xi — ) "B (xi — i) — 5k log((2m)7 )

M step:
max Q((T[‘, (uk,zk)k),9t> s.t. Zﬂ'k =1
k

7, (1, 2k )k

After calculations:

nt-‘rl
t+1 t+1 _ Mg t+1
E qk Ty -, = ng qu,

DT mzqk — 00— )T
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EM Algorithm for the Gaussian mixture model IlI

p(x|z)

N
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