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Latent Semantic Indexing (LS') (Deerwester et al., 1990)

Idea: words that co-occur frequently in documents should be similar.

Let xp and xé') count resp. the
number of occurrences of the words
physician and doctor in the it
document.
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Latent Semantic Indexing (LS') (Deerwester et al., 1990)

Idea: words that co-occur frequently in documents should be similar.

Let x§') and xé') count resp. the
number of occurrences of the words
physician and doctor in the it

document. ,

The directions of covariance or principal directions are obtained using
the singular value decomposition of X ¢ RN

X=USVT, with UTU=1l; and V'V =1y

and S € RN 3 matrix with non-zero element only on the diagonal: the
singular values of X, positives and sorted in decreasing order.
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LSI: computation of the document representation

U= |u® ... uld] : the principal directions.

Let Ux € RI*K Vi € RV*K be the matrices retaining the K first
columns and Sk € RK*K the top left K x K corner of S.
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U= |u® ... uld] : the principal directions.

Let Ux € RI*K Vi € RV*K be the matrices retaining the K first
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The projection of x(7) on the subspace spanned by Uk yields the
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LSI: computation of the document representation

U= |u® ... uld] : the principal directions.

| |
Let Ux € RI*K Vi € RV*K be the matrices retaining the K first
columns and Sk € RK*K the top left K x K corner of S.
The projection of x(7) on the subspace spanned by Uk yields the

Latent representation: %) = U )fx(,

Remarks
o UgX = UgUxSkVi = SkVy
o u(k is somehow like a topic and %) is the vector of coefficients
of decomposition of a document on the K “topics”.
@ The similarity between two documents can now be measured by
%(1) xU)
() gy = X X
R O Y
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LSl vs PCA

LSl is almost identical to Principal Component Analysis (PCA) proposed
by Karl Pearson in 1901.
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LSl is almost identical to Principal Component Analysis (PCA) proposed
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o Like PCA, LSI aims at finding the directions of high correlations
between words called principal directions.
o Like PCA, it retains the projection of the data on a number k of
these principal directions, which are called the principal
components.
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LSl vs PCA

LSl is almost identical to Principal Component Analysis (PCA) proposed
by Karl Pearson in 1901.

o Like PCA, LSI aims at finding the directions of high correlations
between words called principal directions.

o Like PCA, it retains the projection of the data on a number k of
these principal directions, which are called the principal
components.

o Difference between LSI and PCA

o LSI does not center the data (no specific reason).
o LSI is typically combined with TF-IDF
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Limitations and shortcomings of LSI

@ The generative model of the data underlying PCA is a Gaussian
cloud which does not match the structure of the data.
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Limitations and shortcomings of LSI

@ The generative model of the data underlying PCA is a Gaussian
cloud which does not match the structure of the data.

@ In particular: LSI ignores

e That the data are counts, frequencies or tf-idf scores.
o The data is positive (u typically has negative coefficients)
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Limitations and shortcomings of LSI

@ The generative model of the data underlying PCA is a Gaussian
cloud which does not match the structure of the data.

@ In particular: LSI ignores

e That the data are counts, frequencies or tf-idf scores.
o The data is positive (u typically has negative coefficients)

@ The singular value decomposition is expensive to compute
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Topic models and matrix factorization

o X € R*M with columns x; corresponding to documents

@ B the matrix whose columns correspond to different topics

@ O the matrix of decomposition coefficients with columns 8;
associated each to one document and which encodes its “topic
content”.
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Probabilistic LSI
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Probabilistic Latent Semantic Indexing (Hofmann, 2001)

TOPIC 1 | e,

system,

service, site,

phone,

internet,

machine
TOPIC 2 .

TOPIC 1 TOPIC 2
Download the Movie Legally
TOPIC 3
TOPIC 3
(a) Topics (b) Document Assignments to Topics
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Probabilistic Latent Semantic Indexing (Hofmann, 2001)

Obtain a more expressive model by allowing several topics per document
in various proportions so that each word wj, gets its own topic z;, drawn
from the multinomial distribution d; unique to the ith document.
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Probabilistic Latent Semantic Indexing (Hofmann, 2001)

Obtain a more expressive model by allowing several topics per document
in various proportions so that each word wj, gets its own topic z;, drawn
from the multinomial distribution d; unique to the ith document.

@ d; topic proportions in document |
@z, ~ M(l,d,’)
© (Win|Zink = 1) ~ M(1, (b1k; - - -, bak))
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EM algorithm for pLSI

Denote j; the index in the dictionary of the word appearing in document
i as the nth word.
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EM algorithm for pLSI

Denote j; the index in the dictionary of the word appearing in document
i as the nth word.

Expectation step
ql(rfl)< - p(zink =1 ‘ Win; dgt_1)7 B(tfl)) i J,n
(t—1) (t 1)
kfz_: % i

Maximization step

NG M NGO
Z ql(rfl)< ~ (i Z Z qu Winj

()
(t) _  n=1 Nk (t) _ i=1
Ak’ =0 =yo o b =—y N()
> Z Tk 20 ik
n k'= i=1 n=1
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Issues with pLSI

Too many parameters — overfitting !
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Issues with pLSI ?

Too many parameters — overfitting ! Not clear

Solutions or alternative approaches
@ Frequentist approach: regularize + optimize — Dictionary Learning

min — log p(xi|67) + AQ(67)
@ Bayesian approach: prior + integrate — Latent Dirichlet Allocation
p(8ilx;, &) o< p(x;|0;) p(0i|cx)

o “Frequentist + Bayesian” — integrate + optimize

M
max [ | / p(xi16:) p(6i]cx) 06
i=1

. called Empirical Bayes approach or Type Il Maximum Likelihood
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Latent Dirichlet Allocation
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Latent Dirichlet Allocation (Blei et al., 2003)

K topics
a = (aq,...,aK) parameter vector
0; = (01i,...,0ki) ~ Dir(ax) topic proportions

®© 6 o o

z;, topic indicator vector for nt" word of jt"
document:

© 2= (Zint, .-, Zink) " €{0,1}

o Zj,~ M(l, (01/'7 R 9Ki))
K

o p(zin|€;) = H (0] “in

k=1
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Latent Dirichlet Allocation (Blei et al., 2003)

e K topics
o a=(aq,...,ak) parameter vector
e 0; = (01j,...,0k;) ~ Dir(a) topic proportions
@ z;, topic indicator vector for nt" word of ith
document:
o z=(Zin1,...,zink) " € {0,1}K
e Zin ~ M(]., (01;, ey 9Ki))
K
o p(zinl€i) = H [6i] Zink
k=1

o Wiy [{Zink=1} ~ M(L, (b1k, - - -, bak))
© p(Winj =1 zink = 1) = b
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LDA likelihood

P((Wl'n7z"”)1§m§Ni | 0,’) -
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LDA likelihood

N;
p((wi”7zi”)1§m§N; | 01) = HP(WimZin | 01)

n=1
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LDA likelihood

N;
p((wi”7zi”)1§m§N; | 01) = HP(WimZin | 01)
n=1
Ny d K
=TT TITI(bw k) "ini Zink
n=1j=1k=1
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LDA likelihood

N;
P((Wimzin)lngNi 16;) = H p(Win, zin | 6;)
n=1
N, d K
S 101 (OO
n=1j=1 k=1
p((wi")lgmgN,- | 6;)
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LDA likelihood

N;
p((wi”7zi”)1§m§N; | 01) = HP(WimZin | 01)
n=1
Ny d K
= TITIII(b0w) " Zink
n=1j=1k=1
N;

P((Win)ycmen, 161 = T D p(Winzin | 6))

n=1 zj,
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LDA likelihood

N;
p((wi”7zi”)1§m§N; | 01) = HP(WimZin | 01)

n=1
N, d K

= TITIII(b0w) " Zink
n=1j=1k=1
N;

p((w’”)1<m<N | 0) = H Zp(wimzin ‘ 0")

n=1 z;,
N d Winj

- TI1I [zb,kek,} ,

n=1j=1
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LDA likelihood

p((wi”7zi”)1§m§N; | 01) — HP(WimZin | 01)

N;

d K
Wini Zj,
1010 (OB
n=1j=1 k=1
N;

p((w’”)1<m<N | 0) = H Zp(w,-,,,z,-,, ‘ 01’)

n=1 z;,

- ﬁljﬁl [Z bjkek,}

sothat  wj, |0 =~ M(1,B;) or x;|60; = M(N;B8;).
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LDA as Multinomial Factorial Analysis

Eliminating zs from the model yields a conceptually simpler model in
which 6; can be interpreted as latent factors as in factorial analysis.

@ Topic proportions for document i:
0; RK
0; ~ Dir(a)
@ Empirical words counts for document /:
X € RY

X ~ M(N,', BO,-)
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LDA with smoothing of the dictionary

Issue with new words: they will have probability 0 if B is optimized over
the training data.

— Need to smooth B e.g. via Laplacian smoothing.
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Learning with LDA
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How do we learn with LDA?

@ How do we learn for each topic its word distribution b, ?
@ How do we learn for each document its topic composition 6,7

@ How do we assign to each word of a document its topic z;, ?
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How do we learn with LDA?

@ How do we learn for each topic its word distribution b, ?
@ How do we learn for each document its topic composition 6,7

@ How do we assign to each word of a document its topic z;, 7

These quantities are treated in a Bayesian fashion, so the natural
Bayesian answer are

p(BIW)  p(6i|W)  p(zin|W)
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How do we learn with LDA?

@ How do we learn for each topic its word distribution b, ?
@ How do we learn for each document its topic composition 6,7

@ How do we assign to each word of a document its topic z;, 7

These quantities are treated in a Bayesian fashion, so the natural
Bayesian answer are

p(BIW)  p(6i|W)  p(zin|W)

or

E(B|W) E(6;|W) E(z;n|W)

if point-estimates are needed.
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Monte Carlo

Principle of Monte Carlo integration

Let Z be a random variable, to compute E[f(Z)] we can sample
zm, .. zB) ' 7

and do the approximation

B
E[f(X)] ~ EZ f(ZP)
b=1
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Monte Carlo

Principle of Monte Carlo integration

Let Z be a random variable, to compute E[f(Z)] we can sample
zW . zB) e 7
and do the approximation

B
E[f(X)] ~ 5 Z f(Z®)y
b=1

Problem: In most situations sampling exactly from the distribution of Z
is too hard, so this direct approach is impossible.
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Markov Chain Monte Carlo (MCMC)

If we can cannot sample exact from the distribution of Z, i.e. from some
q(z) = P(Z = z) or g(z) is the density of r.v. Z, then we can create a
sequence of random variables that approach the correct distribution.

Principle of MCMC

Construct a chain of random variables

Z(b’l), o ’Z(b,T) with Z(b,t) ~ pt(z(b,t) | Z(b,t—l) — Z(b,t—l))

such that

76T Py 7
T—o0

We can then approximate:

Mm

E[f(Z

()
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MCMC in practice

Run a single chain:

\'

E[f(Z)] Z ( To+k~t)>
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@ Ty is the burn-in time
@ k is the thinning factor
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MCMC in practice

Run a single chain:

\'

E[f(Z)] Z ( To-i-kt)

@ Ty is the burn-in time
@ k is the thinning factor

— Useful to take k > 1 only if almost i.i.d. samples are required.
— To compute an expectation in which the correlation between Z(%)
and Z(t=1) would not interfere take k = 1
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Main difficulties:

@ the mixing time of the chain can be very large
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— To compute an expectation in which the correlation between Z(%)
and Z(t=1) would not interfere take k = 1

Main difficulties:
@ the mixing time of the chain can be very large
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MCMC in practice

Run a single chain:

\'

E[f(Z)] Z ( To-i-kt)

@ Ty is the burn-in time
@ k is the thinning factor

— Useful to take k > 1 only if almost i.i.d. samples are required.
— To compute an expectation in which the correlation between Z(%)
and Z(t=1) would not interfere take k = 1

Main difficulties:

@ the mixing time of the chain can be very large

@ Assessing whether the chain has mixed or not is a hard problem
= proper approximation only with T very large.

= MCMC can be quite slow or just never converge and you will not
necessarily know it.
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Gibbs sampling
A nice special case of MCMC:
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Gibbs sampling
A nice special case of MCMC:

Principle of Gibbs sampling

For each node i in turn, sample the node
conditionally on the other nodes, i.e.

Sample Zl-(t) ~ p<z,- | Z_; = z(fi_l))
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Gibbs sampling
A nice special case of MCMC:

Principle of Gibbs sampling

For each node i in turn, sample the node
conditionally on the other nodes, i.e.

Sample Zl-(t) ~ p(z,- | Z_; = z(fi_l))

Markov Blanket

Definition: Let V be the set of nodes of the graph. The Markov blanket
of node i is the minimal set of nodes S (not containing i) such that

p(Zi | Zs) = p(Zi | Z-i) orequivalently Z; 1L Zy\(suiy) | Zs
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d-separation

Theorem

Let A, B and C three disjoint sets of nodes. The property Xa 1L Xg|Xc

holds if and only if all paths connecting A to B are blocked, which means

that they contain at least one blocking node. Node j is a blocking node
@ if there is no "v-structure” in j and jisin C or

o if there is a "v-structure” in j and if neither j nor any of its
descendants in the graph is in C.
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Markov Blanket in a Directed Graphical model
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Markov Blankets in LDA?

Markov blankets for
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Markov Blankets in LDA?
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Markov Blankets in LDA?

Markov blankets for
° 0i —(zin)n=1..N,
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Markov Blankets in LDA?
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o B —
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Markov Blankets in LDA?

Markov blankets for
° 0i —(zin)n=1..N,
@z, —>Wj, 0;and B

o B — (Win, Zin)n=1..n;,i=1...M

Guillaume Obozinski LSI, pLSI, LDA and inference methods 26/40



Markov Blankets in LDA?
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Gibbs sampling for LDA with a single document

p(W’ Z7 0’ Bla7'r]) =
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Gibbs sampling for LDA with a single document

p(w,2,0,B; 1) = [Hp<wn|zn, p(a1/0) | p(61) T plbeln)

k
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Gibbs sampling for LDA with a single document

p(w,2,0,B; 1) = [Hp<wnrzn, p(a1/0) | p(61) T plbeln)

ik :

Whni Znk ar—1 H nji—1
[(ewon™5 2| T[oe Tl
jk k .k

i ’:]z I
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Gibbs sampling for LDA with a single document

p(w,2,0,B; 1) = [Hp<wnrzn, p(a1/0) | p(61) T plbeln)

<[ |

Whni Znk ar—1 H nji—1
[(ewon™5 2| T[oe Tl
jk k .k

i ’:]z I

We thus have:

o (z,|wp,,0)~
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Gibbs sampling for LDA with a single document

p(w.2.0.B;0.m) = [Hp<wnrzn, p(a1/0) | p(61) T plbeln)

ik :

H kek Whj Z,,k] H ekakfl H ijj—l
ok k Jk
° (Zn ‘ Wnae) ~ M(]-’ﬁm) with  ppx =

i ’:]z I

We thus have:
bj(n)k Ok

>k bj(my ke O
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Gibbs sampling for LDA with a single document

p(w.2.0.B;0.m) = [Hp<wnrzn, p(a1/0) | p(61) T plbeln)

ik :

H kek Whj Z,,k] H ekakfl H ijj—l
ok k Jk
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LDA Results (Blei et al., 2003)

“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI
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Reading Tea leaves: word precision (Boyd-Graber et al., 2009)

50 topics 100 topics 150 topics
1.0+
1 - - - g
0.6 g
7 g
=
0.4+ =
3
5
§ 021
2
3 00+ . L
o 104
T
S o8- - - -
g o
0.6 %
=
?
0.4+ s
0.2+
004 | | | | | | | | | o
CT™M LDA pLSI CT™M LDA pLSI CT™M LDA pLSI

Precision of the identification of word outliers,
by humans and for different models.
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Reading Tea leaves: topic precision (Boyd-Graber et al., 2009)

50 topics 100 topics 150 topics |
o
2
! { 3
1 . =~
-3 d . : 5
3
0 ™7 g
=}
8 51 1 1
=3 1 =
g —
o %7
a 14
&7
_a- i ' : : %
1 . =3
4 g
&
5
-6+ b
-7 ¢ T
I I I I I I I I I o
cT™ LDA pLSI cT™ LDA pLSI cT™ LDA pLSI

Precision of the identification of topic outliers,
by humans and for different models.
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Reading Tea leaves: log-likelihood on held out data
(Boyd-Graber et al., 2009)

CORPUS ToriCcs LDA CT™M PLSI
50 -7.3214/784.38  -7.3335/788.58 -7.3384/796.43
NEW YORK TIMES 100 -7.2761/778.24 -7.2647/762.16  -7.2834/785.05
150 -7.2477/777.32 -7.2467/755.55  -7.2382/770.36
50 -7.5257/961.86 -7.5332/936.58 -7.5378/975.88
WIKIPEDIA 100 -7.4629/935.53 -7.4385/880.30  -7.4748/951.78
150 -7.4266/929.76 -7.3872/852.46  -7.4355/945.29

Log-likelihoods of several models including LDA, pLSI and CTM

(CTM=correlated topic model)
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Variational inference for LDA

ozinski LSI, pLSI, LDA and inference methods



Principle of Variational Inference
Problem: it is hard to compute:

p(B,0;,zi,|W), E(B|W), E(6;|W), E(zj|W).

Idea of Variational Inference:
Find a distribution g which is
@ as close as possible to p(-|W)
e for which it is not too hard to compute Eq(B), Eq(0;), Eq(zin)-
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Variational Inference for LDA (Blei et al., 2003)

Assume B is a parameter, assume there is a single document, and focus
on the inference on 0 and (z,),. Choose q in a factorized form (mean
field approximation)

q(0, (zn)n) = qe(0 H 92, (2
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Variational Inference for LDA (Blei et al., 2003)

Assume B is a parameter, assume there is a single document, and focus
on the inference on 0 and (z,),. Choose q in a factorized form (mean
field approximation)

q(0,(zn)n) = qe(0 | | Gz,(zn) with
_ F(Zk Vk) vie—1 Zni
0) = =" 0 d z n
W) = G L% ot ale) =110

q(0, (zn)n)
p(0,(zn)n | W)

. logp(Bla) — 3 (log p(za]6) + log p(wlzn B))} ~ p((wa)a)

n

KL(qHP('IW))ZEq[log } E [logqo 0) + Y _log qz,(zn)
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Variational Inference for LDA Il

E | log d0(8)—log p(8]a)+ Y (10g Gz, (20)—Iog p(2016)log p(wn|z0, B))
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Variational Inference for LDA Il
E| log go(0)—log P(9|04)+Z (10g Gz, (zn)—log p(z4|6)—log p(W|z,, B))

Eq [ log qo(e)] =
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Variational Inference for LDA Il
E| log go(0)—log P(9|0)+Z (10g Gz, (zn)—log p(z4|6)—log p(W|z,, B))

Eq[log a(8)] = Eq[log "X, vk) — i log T(v) + Do ((e—1) log(6k)) ]
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Variational Inference for LDA Il
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Variational Inference for LDA Il
E| log go(0)—log P(9|0)+Z (10g Gz, (zn)—log p(z4|6)—log p(W|z,, B))

Eq [ log qg(O)] = [Iog Pk 7k) — 2ok log T(vk) + >k ((“Yk ) log(6 ))]
= logT(Q_,vk) — Dok log T(vi) + Dk ( (ne—1) Eg[log(0 )])

Eqlp(0la)] = E[(ak —1)log(fk)] + cst = (o — 1)Eq[log(bk)] + cst

IEq[log Clzn(Zn) - IOg P(Zn)] = IEq [ Z (an IOg(¢nk) — Zpk |Og(9k))]
k

= Z Eq[znk] ( log(Pnk) — Eq[IOg(ek)])
K

Eq“Og p(w,,|z,,, ) Z anWn_/ IOg( _jk ZEq[an] Whj IOg(bjk)
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VI for LDA: Computing the expectations

The expectation of the logarithm of a Dirichlet r.v. can be computed
exactly with the digamma function W:

Ballog(0)] = V() ~ V(X 7), with W(x) = < (logT(x).
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VI for LDA: Computing the expectations

The expectation of the logarithm of a Dirichlet r.v. can be computed
exactly with the digamma function W:

Eqllog(0k)] = V(vk) — V(2 7k), with W(x):= aax(bg r(x)).
We obviously have Eq[z,.] = ¢p.

The problem mig KL(q || p(-|W)) is therefore equivalent to
ge

min D(~, (®n)n with
Jmin (; (én)n)

D(, (#n)n) = log T(>_ k) = D> log T(vk) + Y _ dnk log(dnk)
k k nk

)

=Y bk Y waylog(bik) = > ((ak + X, bk — ) (Wlrk) = W, k)
n,k J

k
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VI for LDA: Solving for the variational updates

Introducing a Lagrangian to account for the constraints Zszl Onk = 1:

N
‘C(’Y’ (¢n)n) = D(77 (¢n)n) + Z )\n (1 - Zk ¢nk)
n=1
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VI for LDA: Solving for the variational updates

Introducing a Lagrangian to account for the constraints Zszl Onk = 1:

N

L(, (én)n) = D(v (¢n)n) + Z An (1 -k ¢nk)

n=1
Computing the gradient of the Lagrangian:

gf (@t Tk = WVOR) ~ V(i)
oL

To = 108(@m) 1= 3 wjlog(bi) = V() — W(L, )

Jj

Partial minimizations in v and ¢,x are therefore respectively solved by

Yk = ak + Z(/%k and Gk < bj(nyk exP(V(vk) — V(D k Vk)),

where j(n) is the one and only j such that w,; = 1.



VI for LDA: Solving for the variational updates

Introducing a Lagrangian to account for the constraints Zszl Onk = 1:

N
‘C(7’ (¢n)n) = D(’Yv (¢n)n) + Z )\n (1 - Zk ¢nk)
n=1

Computing the gradient of the Lagrangian:
oc

87 — (o + Z Onk — Yk )( (’yk) — \UI(Z[( k)
aifk = log(dm) +1 = > wajlog(bic) = (W(1) = V(L)) -

Jj
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VI for LDA: Solving for the variational updates

Introducing a Lagrangian to account for the constraints Zszl Onk = 1:

N
‘C(7’ (¢n)n) = D(’Yv (¢n)n) + Z )\n (1 - Zk ¢nk>
n=1

Computing the gradient of the Lagrangian:

oc

o

oL
Ok

Oék+z¢nk—’7k

= log(¢ni) + 1= D walog(bje) — (W(e)

Jj

V(i) = V(3 w))

V(K m) —

Partial minimizations in v and ¢,x are therefore respectively solved by

’Yk:ak+z¢nk
n

and

Gk X bj(n),k eXP(W (k) —

Yk k)

where j(n) is the one and only j such that w,; = 1.
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Variational Algorithm

Algorithm 1 Variational inference for LDA
Require: W, o, ¥init, (@n,init)n
1: while Not converged do
2: Yk O+ Zn ¢nk
for n=1..N do
for k=1..K do
Pk < bj(n) k xP(V(7k) — V(3 k 74))
end for
1
Pn S Ok bn
8: end for
9: end while

10: return v, (¢p),

N g s w
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Variational Algorithm

Algorithm 2 Variational inference for LDA

Require: W, O, Yinity (¢n,init)n
1: while Not converged do

2:

N g s w

8:

Yk O+ Zn ¢nk
for n=1..N do

for k=1..K do

Pk < bj(n) k xP(V(7k) — V(3 k 74))

end for

1
Gn S Ok bn
end for

9: end while
10: return v, (¢p),

With the quantities computed we can approximate:

Yk
k' Tk’

Guillaume Obozinski

and | E[z,|W] ~ ¢,
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Polylingual Topic Model (Mimno et al., 2009)

Generalization of LDA to documents available simultaneously in several
languages such as Wikipedia articles, which are not literal translations of one
another but share the same topics.

s # N\
m
r / N N\
2y’ 2, ? 2y
Owl| Ow? O w;’
Ve N NG
- J M |
o B(1) o B2 o gL
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