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Latent Semantic Indexing
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Latent Semantic Indexing (LSI) (Deerwester et al., 1990)

Idea: words that co-occur frequently in documents should be similar.

Let x
(i)
1 and x

(i)
2 count resp. the

number of occurrences of the words
physician and doctor in the i th

document.

e1•
x(1)

e2

•x(2) u(1)

•

The directions of covariance or principal directions are obtained using
the singular value decomposition of X ∈ Rd×N

X = USV>, with U>U = Id and V>V = IN

and S ∈ Rd×N a matrix with non-zero element only on the diagonal: the
singular values of X , positives and sorted in decreasing order.
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LSI: computation of the document representation

U =


| |

u(1) . . . u(d)

| |

 : the principal directions.

Let UK ∈ Rd×K ,VK ∈ RN×K be the matrices retaining the K first
columns and SK ∈ RK×K the top left K × K corner of S .

The projection of x(i) on the subspace spanned by UK yields the

Latent representation: x̃(i) = U>K x(i).

Remarks

U>K X = U>K UKSKV>K = SKV>K
u(k) is somehow like a topic and x̃(i) is the vector of coefficients
of decomposition of a document on the K “topics”.

The similarity between two documents can now be measured by

cos(∠(x̃(i), x̃(j))) =
x̃(i)

‖x̃(i)‖ ·
x̃(j)

‖x̃(j)‖
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LSI vs PCA

LSI is almost identical to Principal Component Analysis (PCA) proposed
by Karl Pearson in 1901.

Like PCA, LSI aims at finding the directions of high correlations
between words called principal directions.

Like PCA, it retains the projection of the data on a number k of
these principal directions, which are called the principal
components.

Difference between LSI and PCA

LSI does not center the data (no specific reason).
LSI is typically combined with TF-IDF
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Limitations and shortcomings of LSI

The generative model of the data underlying PCA is a Gaussian
cloud which does not match the structure of the data.

In particular: LSI ignores

That the data are counts, frequencies or tf-idf scores.
The data is positive (uk typically has negative coefficients)

The singular value decomposition is expensive to compute
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Topic models and matrix factorization
X ∈ Rd×M with columns xi corresponding to documents
B the matrix whose columns correspond to different topics
Θ the matrix of decomposition coefficients with columns θi
associated each to one document and which encodes its “topic
content”.

X B= . �Θ
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Probabilistic LSI
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Probabilistic Latent Semantic Indexing (Hofmann, 2001)

computer, 
technology, 

system, 
service, site, 

phone, 
internet, 
machine

play, film, 
movie, theater, 

production, 
star, director, 

stage

sell, sale, 
store, product, 

business, 
advertising, 

market, 
consumer

TOPIC 1

TOPIC 2

TOPIC 3

(a) Topics

Forget the Bootleg, Just 
Download the Movie Legally

Multiplex Heralded As 
Linchpin To Growth

The Shape of Cinema, 
Transformed At the Click of 

a Mouse

A Peaceful Crew Puts 
Muppets Where Its Mouth Is

Stock Trades: A Better Deal 
For Investors Isn't Simple

The three big Internet 
portals begin to distinguish 

among themselves as 
shopping mallsRed Light, Green Light: A 

2-Tone L.E.D. to 
Simplify Screens

TOPIC 2

TOPIC 3

TOPIC 1

(b) Document Assignments to Topics

Figure 1: The latent space of a topic model consists of topics, which are distributions over words, and a
distribution over these topics for each document. On the left are three topics from a fifty topic LDA model
trained on articles from the New York Times. On the right is a simplex depicting the distribution over topics
associated with seven documents. The line from each document’s title shows the document’s position in the
topic space.

In this paper, we present a method for measuring the interpretatability of a topic model. We devise
two human evaluation tasks to explicitly evaluate both the quality of the topics inferred by the
model and how well the model assigns topics to documents. The first, word intrusion, measures
how semantically “cohesive” the topics inferred by a model are and tests whether topics correspond
to natural groupings for humans. The second, topic intrusion, measures how well a topic model’s
decomposition of a document as a mixture of topics agrees with human associations of topics with a
document. We report the results of a large-scale human study of these tasks, varying both modeling
assumptions and number of topics. We show that these tasks capture aspects of topic models not
measured by existing metrics and–surprisingly–models which achieve better predictive perplexity
often have less interpretable latent spaces.

2 Topic models and their evaluations

Topic models posit that each document is expressed as a mixture of topics. These topic proportions
are drawn once per document, and the topics are shared across the corpus. In this paper we will
consider topic models that make different assumptions about the topic proportions. Probabilistic
Latent Semantic Indexing (pLSI) [3] makes no assumptions about the document topic distribution,
treating it as a distinct parameter for each document. Latent Dirichlet allocation (LDA) [4] and the
correlated topic model (CTM) [5] treat each document’s topic assignment as a multinomial random
variable drawn from a symmetric Dirichlet and logistic normal prior, respectively.

While the models make different assumptions, inference algorithms for all of these topic models
build the same type of latent space: a collection of topics for the corpus and a collection of topic
proportions for each of its documents. While this common latent space has explored for over two
decades, its interpretability remains unmeasured.

Pay no attention to the latent space behind the model

Although we focus on probabilistic topic models, the field began in earnest with latent semantic
analysis (LSA) [6]. LSA, the basis of pLSI’s probabilistic formulation, uses linear algebra to decom-
pose a corpus into its constituent themes. Because LSA originated in the psychology community,
early evaluations focused on replicating human performance or judgments using LSA: matching
performance on standardized tests, comparing sense distinctions, and matching intuitions about
synonymy (these results are reviewed in [7]). In information retrieval, where LSA is known as latent
semantic indexing (LSI) [8], it is able to match queries to documents, match experts to areas of
expertise, and even generalize across languages given a parallel corpus [9].

2
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Probabilistic Latent Semantic Indexing (Hofmann, 2001)

Obtain a more expressive model by allowing several topics per document
in various proportions so that each word win gets its own topic zin drawn
from the multinomial distribution di unique to the i th document.

di

zin

win
B

Ni

M

di topic proportions in document i

zin ∼M(1,di )

(win|zink = 1) ∼M(1, (b1k , . . . , bdk))
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EM algorithm for pLSI
Denote j∗in the index in the dictionary of the word appearing in document
i as the nth word.

Expectation step

q
(t)
ink = p(zink = 1 | win ; d

(t−1)
i ,B(t−1)) =

d
(t−1)

ik
b

(t−1)

j∗ink
K∑

k ′=1

d
(t−1)

ik ′
b

(t−1)

j∗ink ′

Maximization step

d
(t)
ik =

N(i)∑

n=1

q
(t)
ink

N(i)∑

n

K∑

k ′=1

q
(t)
ink ′

=
Ñ

(i)
k

N(i)
and b

(t)
jk =

M∑

i=1

N(i)∑

n=1

q
(t)
ink winj

M∑

i=1

N(i)∑

n=1

q
(t)
ink

Guillaume Obozinski LSI, pLSI, LDA and inference methods 11/40



EM algorithm for pLSI
Denote j∗in the index in the dictionary of the word appearing in document
i as the nth word.

Expectation step

q
(t)
ink = p(zink = 1 | win ; d

(t−1)
i ,B(t−1)) =

d
(t−1)

ik
b

(t−1)

j∗ink
K∑

k ′=1

d
(t−1)

ik ′
b

(t−1)

j∗ink ′

Maximization step

d
(t)
ik =

N(i)∑

n=1

q
(t)
ink

N(i)∑

n

K∑

k ′=1

q
(t)
ink ′

=
Ñ
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Issues with pLSI

?

Too many parameters → overfitting !

Not clear

Solutions or alternative approaches

Frequentist approach: regularize + optimize → Dictionary Learning

min
θi
− log p(xi |θi ) + λΩ(θi )

Bayesian approach: prior + integrate → Latent Dirichlet Allocation

p(θi |xi ,α) ∝ p(xi |θi ) p(θi |α)

“Frequentist + Bayesian” → integrate + optimize

max
α

M∏

i=1

∫
p(xi |θi ) p(θi |α) dθ

... called Empirical Bayes approach or Type II Maximum Likelihood
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Latent Dirichlet Allocation
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Latent Dirichlet Allocation (Blei et al., 2003)

α

θi

zin

win
B

Ni

M

K topics

α = (α1, . . . , αK ) parameter vector

θi = (θ1i , . . . , θKi ) ∼ Dir(α) topic proportions

zin topic indicator vector for nth word of i th

document:

z = (zin1, . . . , zinK )> ∈ {0, 1}K

zin ∼M(1, (θ1i , . . . , θKi ))

p(zin|θi ) =
K∏

k=1

[
θki
]zink

win | {zink =1} ∼ M(1, (b1k , . . . , bdk))

p(winj = 1 | zink = 1) = bjk
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LDA likelihood

p
((

win, zin
)

1≤m≤Ni
| θi
)

=

Ni∏

n=1

p
(
win, zin | θi

)

=

Ni∏

n=1

d∏

j=1

K∏

k=1

(bjk θki )
winj zink

p
((

win

)
1≤m≤Ni

| θi
)

=

Ni∏

n=1

∑

zin

p
(
win, zin | θi

)

=

Ni∏

n=1

d∏

j=1

[ K∑

k=1

bjkθki

]winj

,

so that win | θi i.i.d.∼ M(1,Bθi ) or xi | θi i.i.d.∼ M(Ni ,Bθi ).
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LDA as Multinomial Factorial Analysis

Eliminating zs from the model yields a conceptually simpler model in
which θi can be interpreted as latent factors as in factorial analysis.

α

θi

xi
B

M

Topic proportions for document i :
θi ∈ RK

θi ∼ Dir(α)

Empirical words counts for document i :
xi ∈ Rd

xi ∼M(Ni ,Bθi )
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LDA with smoothing of the dictionary

Issue with new words: they will have probability 0 if B is optimized over
the training data.

→ Need to smooth B e.g. via Laplacian smoothing.

α

θi

zin

win

B

η

Ni

M

α

θi

xi
B

η

M
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Learning with LDA
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How do we learn with LDA?

How do we learn for each topic its word distribution bk?

How do we learn for each document its topic composition θi?

How do we assign to each word of a document its topic zin ?

These quantities are treated in a Bayesian fashion, so the natural
Bayesian answer are

p(B|W) p(θi |W) p(zin|W)

or
E(B|W) E(θi |W) E(zin|W)

if point-estimates are needed.
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Monte Carlo

Principle of Monte Carlo integration

Let Z be a random variable, to compute E[f (Z )] we can sample

Z (1), . . . ,Z (B) i.i.d.∼ Z

and do the approximation

E[f (X )] ≈ 1

B

B∑

b=1

f (Z (b))

Problem: In most situations sampling exactly from the distribution of Z
is too hard, so this direct approach is impossible.
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Markov Chain Monte Carlo (MCMC)

If we can cannot sample exact from the distribution of Z , i.e. from some
q(z) = P(Z = z) or q(z) is the density of r.v. Z , then we can create a
sequence of random variables that approach the correct distribution.

Principle of MCMC

Construct a chain of random variables

Z (b,1), . . . ,Z (b,T ) with Z (b,t) ∼ pt(z(b,t) | Z (b,t−1) = z(b,t−1))

such that
Z (b,T ) D−→

T→∞
Z

We can then approximate:

E[f (Z )] ≈ 1

B

B∑

b=1

f
(

Z (b,T )
)
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MCMC in practice
Run a single chain:

E[f (Z )] ≈ 1

T

T∑

t=1

f
(

Z (T0+k·t)
)

T0 is the burn-in time

k is the thinning factor
→ Useful to take k > 1 only if almost i.i.d. samples are required.
→ To compute an expectation in which the correlation between Z (t)

and Z (t−1) would not interfere take k = 1

Main difficulties:

the mixing time of the chain can be very large

Assessing whether the chain has mixed or not is a hard problem

⇒ proper approximation only with T very large.

⇒ MCMC can be quite slow or just never converge and you will not
necessarily know it.
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Gibbs sampling

A nice special case of MCMC:

Principle of Gibbs sampling

For each node i in turn, sample the node
conditionally on the other nodes, i.e.

Sample Z
(t)
i ∼ p

(
zi | Z−i = z

(t−1)
−i

)

α

θi

zin

win

B

η

Ni

M

Markov Blanket

Definition: Let V be the set of nodes of the graph. The Markov blanket
of node i is the minimal set of nodes S (not containing i) such that

p(Zi | ZS) = p(Zi | Z−i ) or equivalently Zi ⊥⊥ZV \(S∪{i}) | ZS
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d-separation

Theorem

Let A,B and C three disjoint sets of nodes. The property XA⊥⊥XB |XC

holds if and only if all paths connecting A to B are blocked, which means
that they contain at least one blocking node. Node j is a blocking node

if there is no ”v-structure” in j and j is in C or

if there is a ”v-structure” in j and if neither j nor any of its
descendants in the graph is in C .

f

e b

a

c
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Markov Blanket in a Directed Graphical model

xi
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Markov Blankets in LDA?

α

θi

zin

win

B

η

Ni

M

Markov blankets for

θi → (zin)n=1...Ni

zin →win, θi and B

B → (win, zin)n=1...Ni ,i=1...,M

Guillaume Obozinski LSI, pLSI, LDA and inference methods 26/40



Markov Blankets in LDA?

α

θi

zin

win

B

η

Ni

M

Markov blankets for

θi →

(zin)n=1...Ni

zin →win, θi and B

B → (win, zin)n=1...Ni ,i=1...,M

Guillaume Obozinski LSI, pLSI, LDA and inference methods 26/40



Markov Blankets in LDA?

α

θi

zin

win

B

η

Ni

M

Markov blankets for

θi → (zin)n=1...Ni

zin →win, θi and B

B → (win, zin)n=1...Ni ,i=1...,M

Guillaume Obozinski LSI, pLSI, LDA and inference methods 26/40



Markov Blankets in LDA?

α

θi

zin

win

B

η

Ni

M

Markov blankets for

θi → (zin)n=1...Ni

zin →

win, θi and B

B → (win, zin)n=1...Ni ,i=1...,M

Guillaume Obozinski LSI, pLSI, LDA and inference methods 26/40



Markov Blankets in LDA?

α

θi

zin

win

B

η

Ni

M

Markov blankets for

θi → (zin)n=1...Ni

zin →win, θi and B

B → (win, zin)n=1...Ni ,i=1...,M

Guillaume Obozinski LSI, pLSI, LDA and inference methods 26/40



Markov Blankets in LDA?

α

θi

zin

win

B

η

Ni

M

Markov blankets for

θi → (zin)n=1...Ni

zin →win, θi and B

B →

(win, zin)n=1...Ni ,i=1...,M

Guillaume Obozinski LSI, pLSI, LDA and inference methods 26/40



Markov Blankets in LDA?

α

θi

zin

win

B

η

Ni

M

Markov blankets for

θi → (zin)n=1...Ni

zin →win, θi and B

B → (win, zin)n=1...Ni ,i=1...,M

Guillaume Obozinski LSI, pLSI, LDA and inference methods 26/40



Markov Blankets in LDA?

α

θi

zin

win

B

η

Ni

M

Markov blankets for

θi → (zin)n=1...Ni

zin →win, θi and B

B → (win, zin)n=1...Ni ,i=1...,M

Guillaume Obozinski LSI, pLSI, LDA and inference methods 26/40



Gibbs sampling for LDA with a single document

p(w, z,θ,B;α,η) =

[ N∏

n=1

p(wn|zn,B) p(zn|θ)

]
p(θ|α)

∏

k

p(bk |η)

∝
[ N∏

n=1

∏

j ,k

(bjkθk)wnj znk
] ∏

k

θ αk−1
k

∏

j ,k

b
ηj−1
jk

We thus have:

(zn | wn,θ) ∼M(1, p̃m) with p̃nk =
bj(n),k θk∑
k ′ bj(n),k ′ θk ′

.

(θ | (zn,wn)n,α) ∼ Dir(α̃) with α̃k = αk + Nk , Nk =
N∑

n=1

znk .

(bk | (zn,wn)n,η) ∼ Dir(η̃) with η̃j = ηj +
∑N

n=1 wnjznk .
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LDA Results (Blei et al., 2003)

LATENT DIRICHLET ALLOCATION

\Arts" \Budgets" \Children" \Education"

NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS

SHOW PROGRAM PEOPLE SCHOOLS

MUSIC BUDGET CHILD EDUCATION

MOVIE BILLION YEARS TEACHERS

PLAY FEDERAL FAMILIES HIGH

MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER

ACTOR NEW SAYS BENNETT

FIRST STATE FAMILY MANIGAT

YORK PLAN WELFARE NAMPHY

OPERA MONEY MEN STATE

THEATER PROGRAMS PERCENT PRESIDENT

ACTRESS GOVERNMENT CARE ELEMENTARY

LOVE CONGRESS LIFE HAITI

TheWilliam Randolph HearstFoundationwill give $1.25 million to Lincoln Center,Metropoli-
tan Opera Co.,New York PhilharmonicandJuilliard School. “Our board felt that we had a
real opportunity to make a mark on thefuture of theperforming arts with thesegrants anact
everybit asimportant as ourtraditional areasof support in health, medicalresearch,education
and thesocial services,” Hearst Foundation PresidentRandolph A. Hearst saidMonday in

announcingthegrants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists andprovide new public facilities. TheMetropolitan Opera Co. and
New York Philharmonicwill receive $400,000each. TheJuilliard School, wheremusic and
theperforming arts aretaught, will get $250,000. TheHearst Foundation,a leading supporter
of the Lincoln Center Consolidated CorporateFund, will make its usualannual $100,000

donation, too.

Figure 8: An example article from the AP corpus. Each color codes a different factor from which
the word is putatively generated.
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Reading Tea leaves: word precision (Boyd-Graber et al., 2009)

Table 1: Two predictive metrics: predictive log likelihood/predictive rank. Consistent with values reported in the
literature, CTM generally performs the best, followed by LDA, then pLSI. The bold numbers indicate the best
performance in each row.

CORPUS TOPICS LDA CTM PLSI

NEW YORK TIMES
50 -7.3214 / 784.38 -7.3335 / 788.58 -7.3384 / 796.43

100 -7.2761 / 778.24 -7.2647 / 762.16 -7.2834 / 785.05
150 -7.2477 / 777.32 -7.2467 / 755.55 -7.2382 / 770.36

WIKIPEDIA
50 -7.5257 / 961.86 -7.5332 / 936.58 -7.5378 / 975.88

100 -7.4629 / 935.53 -7.4385 / 880.30 -7.4748 / 951.78
150 -7.4266 / 929.76 -7.3872 / 852.46 -7.4355 / 945.29
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Figure 3: The model precision (Equation 1) for the three models on two corpora. Higher is better. Surprisingly,
although CTM generally achieves a better predictive likelihood than the other models (Table 1), the topics it
infers fare worst when evaluated against human judgments.

Web interface. No specialized training or knowledge is typically expected of the workers. Amazon
Mechanical Turk has been successfully used in the past to develop gold-standard data for natural
language processing [22] and to label images [23]. For both the word intrusion and topic intrusion
tasks, we presented each worker with jobs containing ten of the tasks described in Section 3. Each
job was performed by 8 separate workers, and workers were paid between $0.07 – $0.15 per job.

Word intrusion As described in Section 3.1, the word intrusion task measures how well the inferred
topics match human concepts (using model precision, i.e., how well the intruders detected by the
subjects correspond to those injected into ones found by the topic model).

Let ωm
k be the index of the intruding word among the words generated from the kth topic inferred by

model m. Further let imk,s be the intruder selected by subject s on the set of words generated from the
kth topic inferred by model m and let S denote the number of subjects. We define model precision
by the fraction of subjects agreeing with the model,

MPm
k =

∑
s 1(i

m
k,s = ωm

k )/S. (1)

Figure 3 shows boxplots of the precision for the three models on the two corpora. In most cases, LDA
performs the best. Although CTM gives better predictive results on held-out likelihood, it does not
perform as well on human evaluations. This may be because CTM finds correlations between topics
and correlations within topics are confounding factors; the intruder for one topic might be selected
from another highly correlated topic. The performance of pLSI degrades with larger numbers of
topics, suggesting that overfitting (a problem discussed in [4]) might affect interpretability as well as
predictive power.

Figure 4 (left) shows examples of topics with high and low model precisions from the NY Times
data fit with LDA using 50 topics. In the example with high precision, the topic words all coherently
express a painting theme. For the low precision example, “taxis” did not fit in with the other political
words in the topic, as 87.5% of subjects chose “taxis” as the intruder.

6

Precision of the identification of word outliers,
by humans and for different models.
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Reading Tea leaves: topic precision (Boyd-Graber et al., 2009)
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Figure 6: The topic log odds (Equation 2) for the three models on two corpora. Higher is better. Although CTM
generally achieves a better predictive likelihood than the other models (Table 1), the topics it infers fare worst
when evaluated against human judgments.

m and let jmd,∗ denote the “true” intruder, i.e., the one generated by the model. We define the topic
log odds as the log ratio of the probability mass assigned to the true intruder to the probability mass
assigned to the intruder selected by the subject,

TLOm
d = (

∑
s log θ̂

m
d,jmd,∗

− log θ̂md,jmd,s
)/S. (2)

The higher the value of TLOm
d , the greater the correspondence between the judgments of the model

and the subjects. The upper bound on TLOm
d is 0. This is achieved when the subjects choose

intruders with a mixture proportion no higher than the true intruder’s.

Figure 6 shows boxplots of the topic log odds for the three models. As with model precision, LDA and
pLSI generally outperform CTM. Again, this trend runs counter to CTM’s superior performance on
predictive likelihood. A histogram of the TLO of individual Wikipedia documents is given in Figure 4
(right) for the fifty-topic LDA model. Documents about very specific, unambiguous concepts, such as
“Lindy Hop,” have high TLO because it is easy for both humans and the model to assign the document
to a particular topic. When documents express multiple disparate topics, human judgments diverge
from those of the model. At the low end of the scale is the article “Book” which touches on diverse
areas such as history, science, and commerce. It is difficult for LDA to pin down specific themes in
this article which match human perceptions.

Figure 5 (bottom row) shows that, as with model precision, increasing predictive likelihood does
not imply improved topic log odds scores. While the topic log odds are nearly constant across
all numbers of topics for LDA and pLSI, for CTM topic log odds and predictive likelihood are
negatively correlated, yielding the surprising conclusion that higher predictive likelihoods do not lead
to improved model interpretability.

5 Discussion

We presented the first validation of the assumed coherence and relevance of topic models using
human experiments. For three topic models, we demonstrated that traditional metrics do not capture
whether topics are coherent or not. Traditional metrics are, indeed, negatively correlated with the
measures of topic quality developed in this paper. Our measures enable new forms of model selection
and suggest that practitioners developing topic models should thus focus on evaluations that depend
on real-world task performance rather than optimizing likelihood-based measures.

In a more qualitative vein, this work validates the use of topics for corpus exploration and information
retrieval. Humans are able to appreciate the semantic coherence of topics and can associate the same
documents with a topic that a topic model does. An intriguing possibility is the development of
models that explicitly seek to optimize the measures we develop here either by incorporating human
judgments into the model-learning framework or creating a computational proxy that simulates human
judgments.

8

Precision of the identification of topic outliers,
by humans and for different models.
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Reading Tea leaves: log-likelihood on held out data
(Boyd-Graber et al., 2009)

Table 1: Two predictive metrics: predictive log likelihood/predictive rank. Consistent with values reported in the
literature, CTM generally performs the best, followed by LDA, then pLSI. The bold numbers indicate the best
performance in each row.

CORPUS TOPICS LDA CTM PLSI

NEW YORK TIMES
50 -7.3214 / 784.38 -7.3335 / 788.58 -7.3384 / 796.43

100 -7.2761 / 778.24 -7.2647 / 762.16 -7.2834 / 785.05
150 -7.2477 / 777.32 -7.2467 / 755.55 -7.2382 / 770.36

WIKIPEDIA
50 -7.5257 / 961.86 -7.5332 / 936.58 -7.5378 / 975.88

100 -7.4629 / 935.53 -7.4385 / 880.30 -7.4748 / 951.78
150 -7.4266 / 929.76 -7.3872 / 852.46 -7.4355 / 945.29
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Figure 3: The model precision (Equation 1) for the three models on two corpora. Higher is better. Surprisingly,
although CTM generally achieves a better predictive likelihood than the other models (Table 1), the topics it
infers fare worst when evaluated against human judgments.

Web interface. No specialized training or knowledge is typically expected of the workers. Amazon
Mechanical Turk has been successfully used in the past to develop gold-standard data for natural
language processing [22] and to label images [23]. For both the word intrusion and topic intrusion
tasks, we presented each worker with jobs containing ten of the tasks described in Section 3. Each
job was performed by 8 separate workers, and workers were paid between $0.07 – $0.15 per job.

Word intrusion As described in Section 3.1, the word intrusion task measures how well the inferred
topics match human concepts (using model precision, i.e., how well the intruders detected by the
subjects correspond to those injected into ones found by the topic model).

Let ωm
k be the index of the intruding word among the words generated from the kth topic inferred by

model m. Further let imk,s be the intruder selected by subject s on the set of words generated from the
kth topic inferred by model m and let S denote the number of subjects. We define model precision
by the fraction of subjects agreeing with the model,

MPm
k =

∑
s 1(i

m
k,s = ωm

k )/S. (1)

Figure 3 shows boxplots of the precision for the three models on the two corpora. In most cases, LDA
performs the best. Although CTM gives better predictive results on held-out likelihood, it does not
perform as well on human evaluations. This may be because CTM finds correlations between topics
and correlations within topics are confounding factors; the intruder for one topic might be selected
from another highly correlated topic. The performance of pLSI degrades with larger numbers of
topics, suggesting that overfitting (a problem discussed in [4]) might affect interpretability as well as
predictive power.

Figure 4 (left) shows examples of topics with high and low model precisions from the NY Times
data fit with LDA using 50 topics. In the example with high precision, the topic words all coherently
express a painting theme. For the low precision example, “taxis” did not fit in with the other political
words in the topic, as 87.5% of subjects chose “taxis” as the intruder.

6

Log-likelihoods of several models including LDA, pLSI and CTM
(CTM=correlated topic model)
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Variational inference for LDA
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Principle of Variational Inference

Problem: it is hard to compute:

p(B,θi , zin|W), E(B|W), E(θi |W), E(zin|W).

Idea of Variational Inference:

Find a distribution q which is

as close as possible to p(·|W)

for which it is not too hard to compute Eq(B), Eq(θi ), Eq(zin).

Usual approach:

1 Choose a simple parametric family Q for q.

2 Solve the variational formulation min
q∈Q

KL
(
q ‖ p(·|W)

)

3 Compute the desired expectations: Eq(B), Eq(θi ), Eq(zin).
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Variational Inference for LDA (Blei et al., 2003)

Assume B is a parameter, assume there is a single document, and focus
on the inference on θ and (zn)n. Choose q in a factorized form (mean
field approximation)

q(θ, (zn)n) = qθ(θ)
N∏

n=1

qzn(zn)

with

qθ(θ) =
Γ(
∑

k γk)∏
k Γ(γk)

∏

k

θγk−1
k and qzn(zn) =

∏

k

φ znk
nk .

KL
(
q ‖ p(·|W)

)
= Eq

[
log

q(θ, (zn)n)

p(θ, (zn)n |W)

]
= Eq

[
log qθ(θ) +

∑

n

log qzn(zn)

. . .− log p(θ|α)−
∑

n

(
log p(zn|θ) + log p(wn|zn,B)

)]
− p
(
(wn)n

)

Guillaume Obozinski LSI, pLSI, LDA and inference methods 34/40



Variational Inference for LDA (Blei et al., 2003)

Assume B is a parameter, assume there is a single document, and focus
on the inference on θ and (zn)n. Choose q in a factorized form (mean
field approximation)

q(θ, (zn)n) = qθ(θ)
N∏

n=1

qzn(zn) with

qθ(θ) =
Γ(
∑

k γk)∏
k Γ(γk)

∏

k

θγk−1
k

and qzn(zn) =
∏

k

φ znk
nk .

KL
(
q ‖ p(·|W)

)
= Eq

[
log

q(θ, (zn)n)

p(θ, (zn)n |W)

]
= Eq

[
log qθ(θ) +

∑

n

log qzn(zn)

. . .− log p(θ|α)−
∑

n

(
log p(zn|θ) + log p(wn|zn,B)

)]
− p
(
(wn)n

)

Guillaume Obozinski LSI, pLSI, LDA and inference methods 34/40



Variational Inference for LDA (Blei et al., 2003)

Assume B is a parameter, assume there is a single document, and focus
on the inference on θ and (zn)n. Choose q in a factorized form (mean
field approximation)

q(θ, (zn)n) = qθ(θ)
N∏

n=1

qzn(zn) with

qθ(θ) =
Γ(
∑

k γk)∏
k Γ(γk)

∏

k

θγk−1
k and qzn(zn) =

∏

k

φ znk
nk .

KL
(
q ‖ p(·|W)

)
= Eq

[
log

q(θ, (zn)n)

p(θ, (zn)n |W)

]
= Eq

[
log qθ(θ) +

∑

n

log qzn(zn)

. . .− log p(θ|α)−
∑

n

(
log p(zn|θ) + log p(wn|zn,B)

)]
− p
(
(wn)n

)

Guillaume Obozinski LSI, pLSI, LDA and inference methods 34/40



Variational Inference for LDA (Blei et al., 2003)

Assume B is a parameter, assume there is a single document, and focus
on the inference on θ and (zn)n. Choose q in a factorized form (mean
field approximation)

q(θ, (zn)n) = qθ(θ)
N∏

n=1

qzn(zn) with

qθ(θ) =
Γ(
∑

k γk)∏
k Γ(γk)

∏

k

θγk−1
k and qzn(zn) =

∏

k

φ znk
nk .

KL
(
q ‖ p(·|W)

)
= Eq

[
log

q(θ, (zn)n)

p(θ, (zn)n |W)

]
= Eq

[
log qθ(θ) +

∑

n

log qzn(zn)

. . .− log p(θ|α)−
∑

n

(
log p(zn|θ) + log p(wn|zn,B)

)]
− p
(
(wn)n

)

Guillaume Obozinski LSI, pLSI, LDA and inference methods 34/40



Variational Inference for LDA (Blei et al., 2003)

Assume B is a parameter, assume there is a single document, and focus
on the inference on θ and (zn)n. Choose q in a factorized form (mean
field approximation)

q(θ, (zn)n) = qθ(θ)
N∏

n=1

qzn(zn) with

qθ(θ) =
Γ(
∑

k γk)∏
k Γ(γk)

∏

k

θγk−1
k and qzn(zn) =

∏

k

φ znk
nk .

KL
(
q ‖ p(·|W)

)
=

Eq

[
log

q(θ, (zn)n)

p(θ, (zn)n |W)

]
=

Eq

[
log qθ(θ) +

∑

n

log qzn(zn)

. . .− log p(θ|α)−
∑

n

(
log p(zn|θ) + log p(wn|zn,B)

)]
− p
(
(wn)n

)

Guillaume Obozinski LSI, pLSI, LDA and inference methods 34/40



Variational Inference for LDA (Blei et al., 2003)

Assume B is a parameter, assume there is a single document, and focus
on the inference on θ and (zn)n. Choose q in a factorized form (mean
field approximation)

q(θ, (zn)n) = qθ(θ)
N∏

n=1

qzn(zn) with

qθ(θ) =
Γ(
∑

k γk)∏
k Γ(γk)

∏

k

θγk−1
k and qzn(zn) =

∏

k

φ znk
nk .

KL
(
q ‖ p(·|W)

)
= Eq

[
log

q(θ, (zn)n)

p(θ, (zn)n |W)

]
= Eq

[
log qθ(θ) +

∑

n

log qzn(zn)

. . .− log p(θ|α)−
∑

n

(
log p(zn|θ) + log p(wn|zn,B)

)]
− p
(
(wn)n

)

Guillaume Obozinski LSI, pLSI, LDA and inference methods 34/40



Variational Inference for LDA II

E
[

log qθ(θ)−log p(θ|α)+
∑

n

(
log qzn(zn)−log p(zn|θ)−log p(wn|zn,B)

)]

Eq

[
log qθ(θ)

]
= Eq

[
log Γ(

∑
k γk)−∑k log Γ(γk) +

∑
k

(
(γk−1) log(θk)

)]

= log Γ(
∑

k γk)−∑k log Γ(γk) +
∑

k

(
(γk−1)Eq[log(θk)]

)

Eq[p(θ|α)] = E[(αk − 1) log(θk)] + cst = (αk − 1)Eq[log(θk)] + cst

Eq[log qzn(zn)− log p(zn)] = Eq

[∑

k

(
znk log(φnk)− znk log(θk)

)]

=
∑

k

Eq[znk ]
(

log(φnk)− Eq[log(θk)]
)

Eq[log p(wn|zn,B)] = Eq

[∑

j ,k

znkwnj log(bjk)
]

=
∑

j ,k

Eq[znk ] wnj log(bjk)
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VI for LDA: Computing the expectations
The expectation of the logarithm of a Dirichlet r.v. can be computed
exactly with the digamma function Ψ:

Eq[log(θk)] = Ψ(γk)−Ψ(
∑

k γk), with Ψ(x) :=
∂

∂x

(
log Γ(x)

)
.

We obviously have Eq[znk ] = φnk .

The problem min
q∈Q

KL
(
q ‖ p(·|W)

)
is therefore equivalent to

min
γ,(φn)n

D(γ, (φn)n) with

D(γ, (φn)n) = log Γ(
∑

k

γk)−
∑

k

log Γ(γk) +
∑

n,k

φnk log(φnk)

−
∑

n,k

φnk
∑

j

wnj log(bjk)−
∑

k

((αk +
∑

n φnk − γk)
(
Ψ(γk)−Ψ(

∑
k γk)

)
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VI for LDA: Solving for the variational updates
Introducing a Lagrangian to account for the constraints

∑K
k=1 φnk = 1:

L(γ, (φn)n) = D(γ, (φn)n) +
N∑

n=1

λn
(
1−∑k φnk

)

Computing the gradient of the Lagrangian:

∂L
∂γk

= −(αk +
∑

n

φnk − γk)(Ψ′(γk)−Ψ′(
∑

k γk))

∂L
∂φnk

= log(φnk) + 1−
∑

j

wnj log(bjk)− (Ψ(γk)−Ψ(
∑

k γk))− λn

Partial minimizations in γ and φnk are therefore respectively solved by

γk = αk +
∑

n

φnk and φnk ∝ bj(n),k exp(Ψ(γk)−Ψ(
∑

k γk)),

where j(n) is the one and only j such that wnj = 1.
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Variational Algorithm

Algorithm 1 Variational inference for LDA

Require: W,α,γinit, (φn,init)n
1: while Not converged do
2: γk ← αk +

∑
n φnk

3: for n=1..N do
4: for k=1..K do
5: φnk ← bj(n),k exp(Ψ(γk)−Ψ(

∑
k γk))

6: end for
7: φn ← 1∑

k φnk
φn

8: end for
9: end while

10: return γ, (φn)n

With the quantities computed we can approximate:

E[θk |W] ≈ γk∑
k ′ γk ′

and E[zn|W] ≈ φn
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Polylingual Topic Model (Mimno et al., 2009)

Generalization of LDA to documents available simultaneously in several

languages such as Wikipedia articles, which are not literal translations of one

another but share the same topics.
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