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Dealing with the large number of parameters in topic
models

Alternative approaches

o Frequentist approach: regularize + optimize — Dictionary Learning
min — log p(xi[6)) + AQ(6)
o Bayesian approach: prior + integrate — Latent Dirichlet Allocation
p(8ilxi, c) o< p(xi|6;) p(6;|cx)

o “Frequentist + Bayesian” — integrate + optimize

M
max 1_[1 /p(x,-|0,-) p(0ila) dO

.. called Empirical Bayes approach or Type Il Maximum Likelihood
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From regularized pLSI (multinomial PCA) to ...
“dictionary learning”

min  —logp(xj|0;) + AQ(6;)

1
§||Xi—39i||3 + AQ0;) st V(i,k) 0k >0,

How to find the best B in this formulation?

M 1
min Z min [§||x,- — B, |2 + \Q(6))
s.t. v(i, k), Oik >0,

d
Vi, Z Bj=1
j=1



A link to LSI?...

M
. .11
min ; n(yin [EHX, —BO;|3+ )\Q(O;)}

d
st V(i.k), 0x>0, ¥(ij),B;>0 Vi) Bj=1
j=1
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M
1
i i > ~||x; — BO;||3 + AQ ,-}
mBm e:gll.r.].,oM pt [2||x Oill2 + X(67)

d
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M

. : 1 2
min e:g:’l.rLGM §HX —BO|: + )\; Q(6;)
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A link to LSI?...

1
i > ~||x; — BO;||3 + AQ ,-}
rT"Bln ngg,m.,@/v/ i—1 [ 2||X 0 ||2 + )\ (0 )

d
st. V(i,k), 0x>0, V(i,j),B;i>0, Vi,) Bj=1
Rewriting as matrix factorization problem:

i X — B@®
i N, 2H I

What happens if we remove the constraints and regularization?
We get back LSI: B = Uk and 6; = X;



Topic models and matrix factorization

o X € RY*M with columns x; corresponding to documents
@ B the matrix whose columns correspond to different topics

@ O the matrix of decomposition coefficients with columns 6;
associated each to one document and which encodes its “topic
content” .




Topic models and matrix factorization

o X € RY*M with columns x; corresponding to documents
@ B the matrix whose columns correspond to different topics

@ O the matrix of decomposition coefficients with columns 6;
associated each to one document and which encodes its “topic
content” .

X -

vy

How about sparsity in topics?...
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Ridge, penalization and sparsity

1
min - |xi — B, 3 + AQ(6))

A standard choice: Q(0 )— 1015

. 1 1
min  lix — BOJ3 + 1013

This called Ridge regression, the most standard form of regression for a
linear regression.

Can we choose 2 to obtain a sparse decomposition?
Define the pseudo ¢p-norm  ||0|lo = |{k | Ok # 0}|

. 1 1
min o lix — BOJ3 + 1013
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Relaxing the ¢y penalization

K
1010 = Z 19,20} ‘ 5
1

Assume 6y € [-1,1]

Relax

We obtain the ¢1-norm:

K

1011 = > 164

k=1

7/42



The LASSO (Tibshirani, 1996)

LASSO: Least Absolute Shrinkage and Selection operator

. 1
meln EHX — BB||§ + |01



Why /1-norm constraints leads to sparsity?

e Example: minimize quadratic function Q(w) subject to ||wlj; < T.
e coupled soft thresholding

o Geometric interpretation
o NB : penalizing is “equivalent” to constraining




Decomposition of signals on a dictionary

o dictionary D = (d, ..., d)) with d(¥) a dictionary element.

@ matrix A of loadings or decomposition coefficients vectors



Dictionary Learning

min ZHXU Dall HQ—i—)\ZHa 1 st Vk, [[d®, < 1.

RKXM
DGRPXK i=1

@ e.g. overcomplete dictionaries for natural images
@ sparse decomposition
o (Elad and Aharon, 2006)



Structured matrix factorizations - Many instances

o X =DA, D € RP*K and A € RF*M
e Structure on D and/or o

Low-rank: D and AT have few columns

Dictionary learning / sparse PCA: D or A has many zeros
Clustering (k-means): A € {0,1}}>*M A1 =1

Pointwise positivity: non negative matrix factorization (NMF)
Specific patterns of zeros

etc.

e Many applications
e e.g., source separation (Févotte et al., 2009), exploratory data
analysis



Inpainting a 12-Mpixel photograph
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Denoising result (Mairal et al., 2009b)
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Denoising result (Mairal et al., 2009b)
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Variant of Dictionary Learning for topic models

M M
- () _ Dal)|2 0
in ;IIX DaV(3+ A [lel];.

i=1

o3

st. o) eRK
dWer?, d'1=1.
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K
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@ Problem is convex in D and A separately, but not jointly.
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o Even better: use simple column updates (Lee et al., 2007; Witten
et al., 2009):

Youl
Ko
X |

With X = X—Zd(k)ak, we have d) «
J#S
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Algorithms for sparse matrix factorization (Mairal et al., 2009a)
Focus on previous formulation:
K
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Algorithms for sparse matrix factorization (Mairal et al., 2009a)
Focus on previous formulation:
K

min HX DAZ+ A lloulr st [d¥)x <1
k=1

@ Problem is convex in D and A separately, but not jointly.
—  Alternating scheme: optimize D and A in turn.

o Even better: use simple column updates (Lee et al., 2007; Witten

et al., 2009):
- Xal
With X = X—> d®ay, wehave d*) ~a§
2 Koy
and a] «— argmingegm [XTd5 — a3 + A

@ requires no matrix inversion
e —+ can take advantage of efficient algorithms for Lasso

@ can use warm start 4 active sets
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Algorithms for large databases

For large database it is significantly more efficient to use online
algorithms and not batch algorithms.

For online algorithms for dictionary learning see: Mairal et al. (2009a)

For an online algorithm for variational Latent Dirichlet allocation: see
Hoffman et al. (2010)



Structured Dictionary Learning
and

Structured Topic Models
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Sparsity inducing norms

data fitting term

. - N

min flw) + X Q(w)

weRP ~——
sparsity-inducing norm

The most common choice for Q:
© The ¢y norm, |lw|l; = 3% w;l.
@ Only cardinality is controlled!
Another common choice for Q:
e The ¢1-/, norm (Yuan and Lin, 2007), with g =2 or g = o0

ZngHq with G a partition of {1,..., p}.
geg

@ The ¢1-4 norm sets to zero groups of variables
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Hierarchical Norms (zhao et al., 2009; Bach, 2008)

(Jenatton, Mairal, Obozinski and Bach, 2010a)
@ Dictionary element selected only after its ancestors

@ Structure on codes ¢ (not on individual dictionary elements d;)
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Hierarchical Norms (zhao et al., 2009; Bach, 2008)

(Jenatton, Mairal, Obozinski and Bach, 2010a)
@ Dictionary element selected only after its ancestors
@ Structure on codes ¢ (not on individual dictionary elements d;)

o Hierarchical penalization: Q(at) = 3_, ¢ [|ag|l, where groups g in
G are equal to set of descendants of some nodes in a tree



Hierarchical Dictionary Learning

Efficient Optimization

M

M
' (i) _ (1)2 (1)
min ;Hx Da ||2+)\ZQ(a

i=1
i K
s.t. al) e RY,
d eRr?, d'1=1

@ Can we solve these efficiently?
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Hierarchical Dictionary Learning

Efficient Optimization

M

M
' (i) _ (1)2 (1)
min ;Hx Da ||2+)\ZQ(a

i=1
i K
s.t. al) e RY,
d eRr?, d'1=1

@ Can we solve these efficiently?

— Proximal methods
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Hierarchical dictionary for image patches




Application to inpainting

@ Reconstruction of 100,000 8 x 8 natural images patches

e Remove randomly subsampled pixels
e Reconstruct with matrix factorization and structured sparsity

noise| 50 % 60 % 70 % 80 % 90 %
flat {19.3 +0.1{26.8 +0.1{36.7 = 0.1/50.6 & 0.0{72.1 £ 0.
tree [18.6 £0.125.7 £ 0.1{35.0 + 0.1|48.0 + 0.0|65.9 £+ 0.

80

(=}

w

70

60

50

16 21 31 41 61 81 121 161 181 241 301 321 401



Hierarchical Topic Models for text corpora
Flat Topic Model

Each document x() is modeled through word counts:
xjj = nb of occurrences of word j in document /, 17x() = N;,
O=topic proportions, B=topic word frequencies

Model x; as. x; ~ M(B@,N;)
@ Low-rank matrix factorization of word-document matrix

e Multinomial PCA (Buntine and Perttu, 2003)
@ Bayesian approach: Latent Dirichlet Allocation (Blei et al., 2003)

Hierarchical Model: Organise the topics in a tree ?

@ Previous approaches: non-parametric Bayesian methods
(Hierarchical Chinese Restaurant Process and nested Dirichlet

Process): Blei et al. (2004)
@ Can we obtain a similar model with structured matrix
factorization?
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Tree of Topics
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Classification based on topics

Comparison on predicting newsgroup article subjects
@ 20 newsgroup articles (1425 documents, 13312 words)

100

Bl PCA + SVM
B NMF + SVM
[ JLDA + SVM
I SpDL + SVM
Il SpHDL + SVM

90

80

70

Classification Accuracy (%)

60

3 7 15 31 63
Number of Topics



First-order /proximal methods

min, f(w) + AQ(w)

o f is strictly convex and differentiable with a Lipschitz gradient.

o Generalizes the idea of gradient descent

L
wXt L arg min £(w" )+ VF(w) " (w — wk)+§\|w —wh |2+ 2Q(w)

weRP - - - <
linear approximation quadratic term
1 1l oA
< argmin = |lw — (W — =VFf(w"))||5 + = Q(w)
weRP 2 L L

When A = 0, wkt1 < wk — 1Vf(wk), this is equivalent to a
classical gradient descent step.



First-order /proximal methods

@ They require solving efficiently the proximal operator

Zu— Q
min >~ w3+ AQ(w)

@ For the ¢1-norm, this reduces to soft-thresholding:
w; = (u; — \); sign(u;)).
e For the /1 /¢, with disjoint groups, this reduces to
group-soft-thresholding
ug

wy = ([lugll = A)+
¢ £ lugll2

@ There exist accelerated versions based on Nesterov optimal
first-order method (gradient method with “extrapolation™) (Beck
and Teboulle, 2009; Nesterov, 2007)

@ suited for large-scale experiments.
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Tree-structured groups
Proposition (Jenatton et al., 2011)
o If G is a tree-structured set of groups, i.e., Vg,h € G,

gNh=@ or gCh or hCg

@ For g = 2 or g = oo, we define Proxgz and Proxq as

1
Proxg :u — argmin - [lu — w|| + X|lwg |4,
weRrp 2

1
Proxg u — argmin = [lu — w|| + A [wgllq,
weRP 2 gcG

o If the groups are sorted from the leaves to the root, then

Proxqg = Proxg, o...o Proxg,.

— Tree-structured regularization : Efficient linear time algorithm.
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SPAMS: SPArse Modeling Software

SPAMS (SPArse Modeling Software) is an optimization toolbox for
solving various sparse estimation problems.

o Dictionary learning and matrix factorization
@ Solving sparse decomposition problems

@ Solving structured sparse decomposition problems

http://www.di.ens.fr/willow/SPAMS/


http://www.di.ens.fr/willow/SPAMS/

Conclusions: Theory of Graphical Models

@ Graphical models provide a nice and precise framework to construct
and think about models of data.
o Can be used with frequentists estimation techniques
o Maximum Likelihood Techniques
o Expectation-Maximization algorithm
Can be used with Bayesian estimation techniques
o Computing posterior distribution over parameters, or computing
posterior expectations

@ In both cases, one needs to compute expectations (unless the data
is completely observed). This is called the inference problem.
@ Many inference algorithms:
e Exact algorithms
@ Sum-product/ Belief propagation
@ Junction tree algorithm
o Approximate algorithms

o Gibbs sampling
o Variational Inference (Mean field, loopy belief propagation)



Conclusions: PGM for IR...

@ Some nice models (UM, pLSI, LDA)
o Still need more understanding
o Parallel approaches with matrix factorization and dictionary learning

@ Still many structures in IR that could be modelled with PGMs and
ML...
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