Dictionary learning: another approach to building topic models

Guillaume Obozinski

Sierra group - INRIA - ENS - Paris

RussIR 2012 Yaroslavl, August 6-10th 2012

Dealing with the large number of parameters in topic models

Alternative approaches

ullet Frequentist approach: regularize + optimize o o Dictionary Learning

$$\min_{\boldsymbol{\theta}_i} - \log p(\mathbf{x}_i | \boldsymbol{\theta}_i) + \lambda \Omega(\boldsymbol{\theta}_i)$$

ullet Bayesian approach: prior + integrate o Latent Dirichlet Allocation

$$p(\theta_i|\mathbf{x}_i,\alpha) \propto p(\mathbf{x}_i|\theta_i) p(\theta_i|\alpha)$$

• "Frequentist + Bayesian" \rightarrow integrate + optimize

$$\max_{\alpha} \prod_{i=1}^{M} \int p(\mathbf{x}_{i}|\theta_{i}) \, p(\theta_{i}|\alpha) \, d\theta$$

... called Empirical Bayes approach or Type II Maximum Likelihood

$$\min_{\boldsymbol{\theta}_i} \quad -\log p(\mathbf{x}_i|\boldsymbol{\theta}_i) \quad + \quad \lambda \Omega(\boldsymbol{\theta}_i)$$

$$\begin{split} & \min_{\boldsymbol{\theta}_i} & -\log p(\mathbf{x}_i|\boldsymbol{\theta}_i) + \lambda \Omega(\boldsymbol{\theta}_i) \\ & \min_{\boldsymbol{\theta}_i} & \frac{1}{2} \|\mathbf{x}_i - \mathbf{B}\boldsymbol{\theta}_i\|_2^2 + \lambda \Omega(\boldsymbol{\theta}_i) \text{ s.t. } \forall (i,k) \quad \theta_{ik} \geq 0, \end{split}$$

$$\begin{split} & \min_{\boldsymbol{\theta}_i} & -\log p(\mathbf{x}_i|\boldsymbol{\theta}_i) + \lambda \Omega(\boldsymbol{\theta}_i) \\ & \min_{\boldsymbol{\theta}_i} & \frac{1}{2} \|\mathbf{x}_i - \mathbf{B}\boldsymbol{\theta}_i\|_2^2 + \lambda \Omega(\boldsymbol{\theta}_i) \text{ s.t. } \forall (i,k) \quad \theta_{ik} \geq 0, \end{split}$$

$$\begin{split} & \min_{\boldsymbol{\theta}_i} & -\log p(\mathbf{x}_i|\boldsymbol{\theta}_i) + \lambda \Omega(\boldsymbol{\theta}_i) \\ & \min_{\boldsymbol{\theta}_i} & \frac{1}{2} \|\mathbf{x}_i - \mathbf{B}\boldsymbol{\theta}_i\|_2^2 + \lambda \Omega(\boldsymbol{\theta}_i) \quad \text{s.t.} \quad \forall \, (i,k) \quad \boldsymbol{\theta}_{ik} \geq 0, \end{split}$$

$$\begin{split} \sum_{i=1}^{M} \min_{\boldsymbol{\theta}_{i}} \left[\frac{1}{2} \| \mathbf{x}_{i} - \mathbf{B} \boldsymbol{\theta}_{i} \|_{2}^{2} + \lambda \Omega(\boldsymbol{\theta}_{i}) \right] \\ \text{s.t.} \qquad \forall (i, k), \qquad \theta_{ik} \geq 0, \end{split}$$

$$\begin{split} \min_{\boldsymbol{\theta}_i} & -\log p(\mathbf{x}_i|\boldsymbol{\theta}_i) + \lambda \Omega(\boldsymbol{\theta}_i) \\ \min_{\boldsymbol{\theta}_i} & \frac{1}{2} \|\mathbf{x}_i - \mathbf{B}\boldsymbol{\theta}_i\|_2^2 + \lambda \Omega(\boldsymbol{\theta}_i) \text{ s.t. } \forall (i,k) \quad \theta_{ik} \geq 0, \end{split}$$

$$\min_{\mathbf{B}} \qquad \sum_{i=1}^{M} \min_{\boldsymbol{\theta}_{i}} \left[\frac{1}{2} \| \mathbf{x}_{i} - \mathbf{B} \boldsymbol{\theta}_{i} \|_{2}^{2} + \lambda \Omega(\boldsymbol{\theta}_{i}) \right]$$
s.t.
$$\forall (i, k), \qquad \theta_{ik} \geq 0,$$

$$\begin{split} & \min_{\boldsymbol{\theta}_i} & -\log p(\mathbf{x}_i|\boldsymbol{\theta}_i) + \lambda \Omega(\boldsymbol{\theta}_i) \\ & \min_{\boldsymbol{\theta}_i} & \frac{1}{2} \|\mathbf{x}_i - \mathbf{B}\boldsymbol{\theta}_i\|_2^2 + \lambda \Omega(\boldsymbol{\theta}_i) \text{ s.t. } \forall (i,k) \quad \theta_{ik} \geq 0, \end{split}$$

$$egin{aligned} \min_{\mathbf{B}} & \sum_{i=1}^{M} \min_{oldsymbol{ heta}_i} \left[rac{1}{2} \| \mathbf{x}_i - \mathbf{B} oldsymbol{ heta}_i \|_2^2 + \lambda \Omega(oldsymbol{ heta}_i)
ight] \ & ext{s.t.} & orall_{(i,k)}, & heta_{ik} \geq 0, \ & orall_{(i,j)}, & \mathbf{B}_{ji} \geq 0 \ & orall_{i}, & \sum_{i=1}^{d} \mathbf{B}_{ji} = 1 \end{aligned}$$

$$\begin{split} \min_{\mathbf{B}} \quad & \sum_{i=1}^{M} \ \min_{\boldsymbol{\theta}_{i}} \left[\ \frac{1}{2} \| \mathbf{x}_{i} - \mathbf{B}\boldsymbol{\theta}_{i} \|_{2}^{2} + \lambda \Omega(\boldsymbol{\theta}_{i}) \right] \\ \text{s.t.} \quad & \forall (i,k), \quad \boldsymbol{\theta}_{ik} \geq 0, \quad \forall (i,j), \ \mathbf{B}_{ji} \geq 0, \quad \forall i, \ \sum_{i=1}^{d} \mathbf{B}_{ji} = 1 \end{split}$$

$$\begin{aligned} \min_{\mathbf{B}} & \min_{\mathbf{\Theta} = \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_M} \sum_{i=1}^{M} & \left[\frac{1}{2} \| \mathbf{x}_i - \mathbf{B} \boldsymbol{\theta}_i \|_2^2 + \lambda \Omega(\boldsymbol{\theta}_i) \right] \\ \text{s.t.} & \forall (i, k), \quad \boldsymbol{\theta}_{ik} \geq 0, \quad \forall (i, j), \; \mathbf{B}_{ji} \geq 0, \quad \forall i, \; \sum_{i=1}^{d} \mathbf{B}_{ji} = 1 \end{aligned}$$

Rewriting as matrix factorization problem:

$$\begin{aligned} \min_{\mathbf{B}} \; \min_{\mathbf{\Theta} = \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_M} \; \sum_{i=1}^M \; & \left[\; \frac{1}{2} \| \mathbf{x}_i - \mathbf{B} \boldsymbol{\theta}_i \|_2^2 + \lambda \Omega(\boldsymbol{\theta}_i) \right] \\ \text{s.t.} \quad & \forall (i, k), \quad \boldsymbol{\theta}_{ik} \geq 0, \quad \forall (i, j), \; \mathbf{B}_{ji} \geq 0, \quad \forall i, \; \sum_{i=1}^d \mathbf{B}_{ji} = 1 \end{aligned}$$

Rewriting as matrix factorization problem:

$$\begin{split} \min_{\mathbf{B}} \min_{\mathbf{\Theta} = \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_M} & \frac{1}{2} \| \mathbf{X} - \mathbf{B} \mathbf{\Theta} \|_F^2 + \lambda \sum_{i=1}^M \Omega(\boldsymbol{\theta}_i) \\ \text{s.t.} & \forall (i, k), \quad \theta_{ik} \geq 0, \quad \forall (i, j), \; \mathbf{B}_{ji} \geq 0, \quad \forall i, \sum_{i=1}^d \mathbf{B}_{ji} = 1 \end{split}$$

What happens if we remove the constraints and regularization?

$$\begin{aligned} \min_{\mathbf{B}} & \min_{\mathbf{\Theta} = \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_M} \sum_{i=1}^{M} & \left[\frac{1}{2} \| \mathbf{x}_i - \mathbf{B} \boldsymbol{\theta}_i \|_2^2 + \lambda \Omega(\boldsymbol{\theta}_i) \right] \\ \text{s.t.} & \forall (i, k), \quad \boldsymbol{\theta}_{ik} \geq 0, \quad \forall (i, j), \; \mathbf{B}_{ji} \geq 0, \quad \forall i, \sum_{i=1}^{d} \mathbf{B}_{ji} = 1 \end{aligned}$$

Rewriting as matrix factorization problem:

$$\min_{\mathbf{B}} \min_{\mathbf{\Theta} = \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_M} \frac{1}{2} \|\mathbf{X} - \mathbf{B}\mathbf{\Theta}\|_F^2$$

What happens if we remove the constraints and regularization?

$$\begin{aligned} \min_{\mathbf{B}} \; \min_{\mathbf{\Theta} = \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_M} \; \sum_{i=1}^M & \left[\; \frac{1}{2} \| \mathbf{x}_i - \mathbf{B} \boldsymbol{\theta}_i \|_2^2 + \lambda \Omega(\boldsymbol{\theta}_i) \right] \\ \text{s.t.} & \forall (i, k), \quad \boldsymbol{\theta}_{ik} \geq 0, \quad \forall (i, j), \; \mathbf{B}_{ji} \geq 0, \quad \forall i, \; \sum_{j=1}^d \mathbf{B}_{ji} = 1 \end{aligned}$$

Rewriting as matrix factorization problem:

$$\min_{\mathbf{B}} \min_{\mathbf{\Theta} = \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_M} \frac{1}{2} \| \mathbf{X} - \mathbf{B} \mathbf{\Theta} \|_F^2$$

What happens if we remove the constraints and regularization?

We get back LSI:
$$B = U_K$$
 and $\theta_i = \tilde{x}_i$

Topic models and matrix factorization

- $\mathbf{X} \in \mathbb{R}^{d \times M}$ with columns \mathbf{x}_i corresponding to documents
- B the matrix whose columns correspond to different topics
- Θ the matrix of decomposition coefficients with columns θ_i associated each to one document and which encodes its "topic content".

Topic models and matrix factorization

- $\mathbf{X} \in \mathbb{R}^{d \times M}$ with columns \mathbf{x}_i corresponding to documents
- B the matrix whose columns correspond to different topics
- Θ the matrix of decomposition coefficients with columns θ_i associated each to one document and which encodes its "topic content".

How about sparsity in topics?...

Ridge, penalization and sparsity

$$\min_{\boldsymbol{\theta}_i} \quad \frac{1}{2} \|\mathbf{x}_i - \mathbf{B}\boldsymbol{\theta}_i\|_2^2 + \lambda \Omega(\boldsymbol{\theta}_i)$$

A standard choice: $\Omega(oldsymbol{ heta}) = \frac{1}{2} \|oldsymbol{ heta}\|_2^2$

$$\min_{\boldsymbol{\theta}} \quad \frac{1}{2} \|\mathbf{x} - \mathbf{B}\boldsymbol{\theta}\|_2^2 + \lambda \frac{1}{2} \|\boldsymbol{\theta}\|_2^2$$

This called Ridge regression, the most standard form of regression for a linear regression.

Ridge, penalization and sparsity

$$\min_{\boldsymbol{\theta}_i} \quad \frac{1}{2} \|\mathbf{x}_i - \mathbf{B}\boldsymbol{\theta}_i\|_2^2 + \lambda \Omega(\boldsymbol{\theta}_i)$$

A standard choice: $\Omega(oldsymbol{ heta}) = rac{1}{2} \|oldsymbol{ heta}\|_2^2$

$$\min_{\boldsymbol{\theta}} \quad \frac{1}{2} \|\mathbf{x} - \mathbf{B}\boldsymbol{\theta}\|_2^2 + \lambda \frac{1}{2} \|\boldsymbol{\theta}\|_2^2$$

This called Ridge regression, the most standard form of regression for a linear regression.

Can we choose Ω to obtain a sparse decomposition?

Define the pseudo ℓ_0 -norm $\|\theta\|_0 = |\{k \mid \theta_k \neq 0\}|$

Ridge, penalization and sparsity

$$\min_{\boldsymbol{\theta}_i} \quad \frac{1}{2} \|\mathbf{x}_i - \mathbf{B}\boldsymbol{\theta}_i\|_2^2 + \lambda \Omega(\boldsymbol{\theta}_i)$$

A standard choice: $\Omega(oldsymbol{ heta}) = rac{1}{2} \|oldsymbol{ heta}\|_2^2$

$$\min_{\boldsymbol{\theta}} \quad \frac{1}{2} \|\mathbf{x} - \mathbf{B}\boldsymbol{\theta}\|_2^2 + \lambda \frac{1}{2} \|\boldsymbol{\theta}\|_2^2$$

This called Ridge regression, the most standard form of regression for a linear regression.

Can we choose Ω to obtain a sparse decomposition?

Define the pseudo ℓ_0 -norm $\|\theta\|_0 = |\{k \mid \theta_k \neq 0\}|$

$$\min_{\boldsymbol{\theta}} \quad \frac{1}{2} \|\mathbf{x} - \mathbf{B}\boldsymbol{\theta}\|_2^2 + \lambda \frac{1}{2} \|\boldsymbol{\theta}\|_2^2$$

$$\|\theta\|_0 = \sum_{k=1}^K \mathbf{1}_{\{\theta_k \neq 0\}}$$

$$\|\theta\|_0 = \sum_{k=1}^K \mathbf{1}_{\{\theta_k \neq 0\}}$$

Assume $\theta_k \in [-1,1]$

$$\|\theta\|_0 = \sum_{k=1}^K \mathbf{1}_{\{\theta_k \neq 0\}}$$

Assume $\theta_k \in [-1,1]$

Relax

$$\|\boldsymbol{\theta}\|_0 = \sum_{k=1}^K \mathbf{1}_{\{\theta_k \neq 0\}}$$

Assume $\theta_k \in [-1,1]$

Relax

We obtain the ℓ_1 -norm:

$$\|\theta\|_1 = \sum_{k=1}^K |\theta_k|$$

The LASSO (Tibshirani, 1996)

LASSO: Least Absolute Shrinkage and Selection operator

$$\min_{\boldsymbol{\theta}} \quad \frac{1}{2} \|\mathbf{x} - \mathbf{B}\boldsymbol{\theta}\|_2^2 + \lambda \|\boldsymbol{\theta}\|_1$$

Why ℓ_1 -norm constraints leads to sparsity?

- Example: minimize quadratic function Q(w) subject to $\|w\|_1 \leqslant T$.
 - coupled soft thresholding
- Geometric interpretation
 - NB : penalizing is "equivalent" to constraining

Decomposition of signals on a dictionary

- dictionary $\mathbf{D} = (\mathbf{d}^{(1)}, \dots, \mathbf{d}^{(K)})$ with $\mathbf{d}^{(k)}$ a dictionary element.
- matrix A of loadings or decomposition coefficients vectors

Dictionary Learning

$$\min_{\substack{\mathbf{A} \in \mathbb{R}^{K \times M} \\ \mathbf{D} \in \mathbb{R}^{p \times K}}} \sum_{i=1}^{M} \|\mathbf{x}^{(i)} - \mathbf{D}\boldsymbol{\alpha}^{(i)}\|_2^2 + \lambda \sum_{i=1}^{M} \|\boldsymbol{\alpha}^{(i)}\|_1 \quad \text{s.t.} \quad \forall k, \ \|\mathbf{d}^{(k)}\|_2 \, \leq \, 1.$$

- e.g. overcomplete dictionaries for natural images
- sparse decomposition
- (Elad and Aharon, 2006)

Structured matrix factorizations - Many instances

- $\mathbf{X} = \mathbf{D}\mathbf{A}, \ \mathbf{D} \in \mathbb{R}^{p \times K} \ \text{and} \ \mathbf{A} \in \mathbb{R}^{K \times M}$
- Structure on D and/or α
 - Low-rank: **D** and A^{\top} have few columns
 - Dictionary learning / sparse PCA: D or A has many zeros
 - Clustering (k-means): $\mathbf{A} \in \{0,1\}^{K \times M}$, $\mathbf{A}\mathbf{1} = \mathbf{1}$
 - Pointwise positivity: non negative matrix factorization (NMF)
 - Specific patterns of zeros
 - etc.

Many applications

 e.g., source separation (Févotte et al., 2009), exploratory data analysis

Denoising result (Mairal et al., 2009b)

Denoising result (Mairal et al., 2009b)

Variant of Dictionary Learning for topic models

$$\begin{aligned} & \underset{\mathbf{D}, \mathbf{A}}{\text{min}} & & & \sum_{i=1}^{M} \|\mathbf{x}^{(i)} - \mathbf{D}\boldsymbol{\alpha}^{(i)}\|_{2}^{2} + \lambda \sum_{i=1}^{M} \|\boldsymbol{\alpha}^{(i)}\|_{1}. \\ & \text{s.t.} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

Algorithms for sparse matrix factorization (Mairal et al., 2009a)

Focus on previous formulation:

$$\min_{\mathbf{D},\mathbf{A}} \|\mathbf{X} - \mathbf{D}\mathbf{A}\|_F^2 + \lambda \sum_{k=1}^K \|\boldsymbol{\alpha}_k\|_1 \quad \text{s.t. } \|\mathbf{d}^{(k)}\|_2 \leq 1$$

• Problem is convex in **D** and **A** separately, but not jointly.

Algorithms for sparse matrix factorization (Mairal et al., 2009a)

Focus on previous formulation:

$$\min_{\mathbf{D},\mathbf{A}} \|\mathbf{X} - \mathbf{D}\mathbf{A}\|_F^2 + \lambda \sum_{k=1}^K \|\boldsymbol{\alpha}_k\|_1 \quad \text{s.t. } \|\mathbf{d}^{(k)}\|_2 \leq 1$$

- Problem is convex in D and A separately, but not jointly.
 - \rightarrow Alternating scheme: optimize **D** and **A** in turn.

$$\min_{\mathbf{D},\mathbf{A}}\|\mathbf{X}-\mathbf{D}\mathbf{A}\|_F^2 + \lambda \sum_{k=1}^K \|\alpha_k\|_1 \quad \text{s.t. } \|\mathbf{d}^{(k)}\|_2 \leq 1$$

- Problem is convex in D and A separately, but not jointly.
 - → Alternating scheme: optimize **D** and **A** in turn.
- Even better: use simple column updates (Lee et al., 2007; Witten et al., 2009):

$$\min_{\mathbf{D},\mathbf{A}} \|\mathbf{X} - \mathbf{D}\mathbf{A}\|_F^2 + \lambda \sum_{k=1}^K \|\boldsymbol{\alpha}_k\|_1 \quad \text{s.t. } \|\mathbf{d}^{(k)}\|_2 \leq 1$$

- Problem is convex in D and A separately, but not jointly.
 - → Alternating scheme: optimize **D** and **A** in turn.
- Even better: use simple column updates (Lee et al., 2007; Witten et al., 2009):

With
$$\widetilde{\mathbf{X}} = \mathbf{X} - \sum_{j' \neq j} \mathbf{d}^{(k)} \alpha_k$$
,

$$\min_{\mathbf{D},\mathbf{A}} \|\mathbf{X} - \mathbf{D}\mathbf{A}\|_F^2 + \lambda \sum_{k=1}^K \|\boldsymbol{\alpha}_k\|_1 \quad \text{s.t. } \|\mathbf{d}^{(k)}\|_2 \leq 1$$

- Problem is convex in D and A separately, but not jointly.
 - → Alternating scheme: optimize **D** and **A** in turn.
- Even better: use simple column updates (Lee et al., 2007; Witten et al., 2009):

With
$$\widetilde{\mathbf{X}} = \mathbf{X} - \sum_{j' \neq j} \mathbf{d}^{(k)} \alpha_k$$
, we have $\mathbf{d}^{(k)} \leftarrow \frac{\mathbf{X} \alpha_k^\top}{\|\widetilde{\mathbf{X}} \alpha_k^\top\|}$

$$\min_{\mathbf{D},\mathbf{A}} \|\mathbf{X} - \mathbf{D}\mathbf{A}\|_F^2 + \lambda \sum_{k=1}^K \|\boldsymbol{\alpha}_k\|_1 \quad \text{s.t. } \|\mathbf{d}^{(k)}\|_2 \leq 1$$

- Problem is convex in D and A separately, but not jointly.
 - \rightarrow Alternating scheme: optimize **D** and **A** in turn.
- Even better: use simple column updates (Lee et al., 2007; Witten et al., 2009):

With
$$\widetilde{\mathbf{X}} = \mathbf{X} - \sum_{j' \neq j} \mathbf{d}^{(k)} \alpha_k$$
, we have $\mathbf{d}^{(k)} \leftarrow \frac{\widetilde{\mathbf{X}} \alpha_k^\top}{\|\widetilde{\mathbf{X}} \alpha_k^\top\|}$ and $\alpha_k^\top \leftarrow \operatorname{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^M} \|\mathbf{X}^\top \mathbf{d}^{(k)} - \boldsymbol{\alpha}\|_2^2 + \lambda \|\boldsymbol{\alpha}\|_1$

$$\min_{\mathbf{D},\mathbf{A}}\|\mathbf{X}-\mathbf{D}\mathbf{A}\|_F^2 + \lambda \sum_{k=1}^K \|\boldsymbol{\alpha}_k\|_1 \quad \text{s.t. } \|\mathbf{d}^{(k)}\|_2 \leq 1$$

- Problem is convex in D and A separately, but not jointly.
 - \rightarrow Alternating scheme: optimize **D** and **A** in turn.
- Even better: use simple column updates (Lee et al., 2007; Witten et al., 2009):

With
$$\widetilde{\mathbf{X}} = \mathbf{X} - \sum_{j' \neq j} \mathbf{d}^{(k)} \alpha_k$$
, we have $\mathbf{d}^{(k)} \leftarrow \frac{\widetilde{\mathbf{X}} \alpha_k^\top}{\|\widetilde{\mathbf{X}} \alpha_k^\top\|}$ and $\alpha_k^\top \leftarrow \operatorname{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^M} \|\mathbf{X}^\top \mathbf{d}^{(k)} - \boldsymbol{\alpha}\|_2^2 + \lambda \|\boldsymbol{\alpha}\|_1$

- requires no matrix inversion
- + can take advantage of efficient algorithms for Lasso
- can use warm start + active sets

Algorithms for large databases

For large database it is significantly more efficient to use **online** algorithms and not batch algorithms.

For online algorithms for dictionary learning see: Mairal et al. (2009a)

For an online algorithm for variational Latent Dirichlet allocation: see Hoffman et al. (2010)

Structured Dictionary Learning and Structured Topic Models

Sparsity inducing norms

$$\min_{\mathbf{w} \in \mathbb{R}^p} \overbrace{f(\mathbf{w})}^{\text{data fitting term}} + \lambda \underbrace{\Omega(\mathbf{w})}_{\text{sparsity-inducing norm}}$$

The most common choice for Ω :

- The ℓ_1 norm, $\|\mathbf{w}\|_1 = \sum_{j=1}^p |\mathbf{w}_j|$.
- Only cardinality is controlled!

Another common choice for Ω :

ullet The ℓ_1 - ℓ_q norm (Yuan and Lin, 2007), with q=2 or $q=\infty$

$$\sum_{g \in \mathcal{G}} \|\mathbf{w}_g\|_q \text{ with } \mathcal{G} \text{ a partition of } \{1, \dots, p\}.$$

• The ℓ_1 - ℓ_q norm sets to zero groups of variables

Hierarchical Norms (Zhao et al., 2009; Bach, 2008)

(Jenatton, Mairal, Obozinski and Bach, 2010a)

- Dictionary element selected only after its ancestors
- ullet Structure on codes lpha (not on individual dictionary elements ${f d}_i$)

Hierarchical Norms (Zhao et al., 2009; Bach, 2008)

(Jenatton, Mairal, Obozinski and Bach, 2010a)

- Dictionary element selected only after its ancestors
- Structure on codes α (not on individual dictionary elements \mathbf{d}_i)
- Hierarchical penalization: $\Omega(\alpha) = \sum_{g \in \mathcal{G}} \|\alpha_g\|_2$ where groups g in \mathcal{G} are equal to set of descendants of some nodes in a tree

Hierarchical Dictionary Learning

Efficient Optimization

$$\min_{\substack{\mathbf{A} \in \mathbb{R}^{K \times M} \\ \mathbf{D} \in \mathbb{R}^{p \times K}}} \sum_{i=1}^{M} \|\mathbf{x}^{(i)} - \mathbf{D}\boldsymbol{\alpha}^{(i)}\|_2^2 + \lambda \Omega(\boldsymbol{\alpha}^{(i)}) \text{ s.t. } \forall k, \ \|\mathbf{d}^{(k)}\|_2 \leq 1.$$

$$\begin{aligned} & \underset{\mathbf{D},\mathbf{A}}{\min} & & & \sum_{i=1}^{M} \|\mathbf{x}^{(i)} - \mathbf{D}\boldsymbol{\alpha}^{(i)}\|_{2}^{2} + \lambda \sum_{i=1}^{M} \Omega(\boldsymbol{\alpha}^{(i)}) \\ & \text{s.t.} & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\$$

• Can we solve these efficiently?

Hierarchical Dictionary Learning

Efficient Optimization

$$\min_{\substack{\mathbf{A} \in \mathbb{R}^{K \times M} \\ \mathbf{D} \in \mathbb{R}^{p \times K}}} \sum_{i=1}^{M} \|\mathbf{x}^{(i)} - \mathbf{D}\boldsymbol{\alpha}^{(i)}\|_2^2 + \lambda \Omega(\boldsymbol{\alpha}^{(i)}) \text{ s.t. } \forall k, \ \|\mathbf{d}^{(k)}\|_2 \leq 1.$$

$$\begin{aligned} & \underset{\mathbf{D},\mathbf{A}}{\min} & & & \sum_{i=1}^{M} \|\mathbf{x}^{(i)} - \mathbf{D}\boldsymbol{\alpha}^{(i)}\|_{2}^{2} + \lambda \sum_{i=1}^{M} \Omega(\boldsymbol{\alpha}^{(i)}) \\ & \text{s.t.} & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\$$

- Can we solve these efficiently?
- → Proximal methods

Hierarchical dictionary for image patches

Application to inpainting

- ullet Reconstruction of 100,000 8 imes 8 natural images patches
 - Remove randomly subsampled pixels
 - Reconstruct with matrix factorization and structured sparsity

noise	50 %	60 %	70 %	80 %	90 %
flat	19.3 ± 0.1	26.8 ± 0.1	36.7 ± 0.1	50.6 ± 0.0	72.1 ± 0.0
tree	18.6 ± 0.1	25.7 ± 0.1	35.0 ± 0.1	48.0 ± 0.0	65.9 ± 0.3

Hierarchical Topic Models for text corpora

Flat Topic Model

Each document $\mathbf{x}^{(i)}$ is modeled through word counts: $x_{ij} = \text{nb}$ of occurrences of word j in document i, $\mathbf{1}^{\top}\mathbf{x}^{(i)} = N_i$, $\boldsymbol{\theta}$ =topic proportions, \mathbf{B} =topic word frequencies

Model
$$x_i$$
 as. $x_i \sim \mathcal{M}(\mathbf{B}\boldsymbol{\theta}, N_i)$

- Low-rank matrix factorization of word-document matrix
- Multinomial PCA (Buntine and Perttu, 2003)
- Bayesian approach: Latent Dirichlet Allocation (Blei et al., 2003)

Hierarchical Model: Organise the topics in a tree?

- Previous approaches: non-parametric Bayesian methods (Hierarchical Chinese Restaurant Process and nested Dirichlet Process): Blei et al. (2004)
- Can we obtain a similar model with structured matrix factorization?

Tree of Topics

NIPS abstracts

- 1714 documents
- 8274 words

Classification based on topics

Comparison on predicting newsgroup article subjects

• 20 newsgroup articles (1425 documents, 13312 words)

First-order/proximal methods

$$\min_{\mathbf{w} \in \mathbb{R}^p} f(\mathbf{w}) + \lambda \Omega(\mathbf{w})$$

- f is strictly convex and differentiable with a Lipschitz gradient.
- Generalizes the idea of gradient descent

$$\mathbf{w}^{k+1} \leftarrow \underset{\mathbf{w} \in \mathbb{R}^p}{\operatorname{arg\,min}} \underbrace{\frac{f(\mathbf{w}^k) + \nabla f(\mathbf{w}^k)^\top (\mathbf{w} - \mathbf{w}^k)}{\operatorname{linear\,approximation}}} + \underbrace{\frac{L}{2} \|\mathbf{w} - \mathbf{w}^k\|_2^2}_{\operatorname{quadratic\,term}} + \lambda \Omega(\mathbf{w})$$

$$\leftarrow \underset{\mathbf{w} \in \mathbb{R}^p}{\operatorname{arg\,min}} \underbrace{\frac{1}{2} \|\mathbf{w} - (\mathbf{w}^k - \frac{1}{L} \nabla f(\mathbf{w}^k))\|_2^2 + \frac{\lambda}{L} \Omega(\mathbf{w})}_{\operatorname{quadratic\,term}}$$

When $\lambda = 0$, $\mathbf{w}^{k+1} \leftarrow \mathbf{w}^k - \frac{1}{L} \nabla f(\mathbf{w}^k)$, this is equivalent to a classical gradient descent step.

First-order/proximal methods

They require solving efficiently the proximal operator

$$\min_{\mathbf{w} \in \mathbb{R}^p} \ \frac{1}{2} \|\mathbf{u} - \mathbf{w}\|_2^2 + \lambda \Omega(\mathbf{w})$$

• For the ℓ_1 -norm, this reduces to *soft-thresholding*:

$$\mathbf{w}_i^* = (\mathbf{u}_i - \lambda)_+ \operatorname{sign}(\mathbf{u}_i).$$

• For the ℓ_1/ℓ_2 with **disjoint** groups, this reduces to group-soft-thresholding

$$\mathbf{w}_{\mathsf{g}}^{\star} = (\|\mathbf{u}_{\mathsf{g}}\| - \lambda)_{+} \frac{\mathbf{u}_{\mathsf{g}}}{\|u_{\mathsf{g}}\|_{2}}$$

- There exist accelerated versions based on Nesterov optimal first-order method (gradient method with "extrapolation") (Beck and Teboulle, 2009; Nesterov, 2007)
- suited for large-scale experiments.

Tree-structured groups

Proposition (Jenatton et al., 2011)

• If $\mathcal G$ is a *tree-structured* set of groups, i.e., $\forall g,h\in\mathcal G$,

$$g \cap h = \emptyset$$
 or $g \subset h$ or $h \subset g$

• For q=2 or $q=\infty$, we define Prox_g and $\operatorname{Prox}_\Omega$ as

$$\begin{split} \operatorname{Prox}_g: & \mathbf{u} \to \operatorname*{arg\,min}_{\mathbf{w} \in \mathbb{R}^p} \frac{1}{2} \| \mathbf{u} - \mathbf{w} \| + \lambda \| \mathbf{w}_g \|_q, \\ \operatorname{Prox}_\Omega: & \mathbf{u} \to \operatorname*{arg\,min}_{\mathbf{w} \in \mathbb{R}^p} \frac{1}{2} \| \mathbf{u} - \mathbf{w} \| + \lambda \sum_{g \in \mathcal{G}} \| \mathbf{w}_g \|_q, \end{split}$$

• If the groups are sorted from the leaves to the root, then

$$\mathsf{Prox}_{\Omega} = \mathsf{Prox}_{g_m} \circ \ldots \circ \; \mathsf{Prox}_{g_1}.$$

→ Tree-structured regularization : Efficient linear time algorithm.

SPAMS: SPArse Modeling Software

SPAMS (SPArse Modeling Software) is an optimization toolbox for solving various sparse estimation problems.

- Dictionary learning and matrix factorization
- Solving sparse decomposition problems
- Solving structured sparse decomposition problems

http://www.di.ens.fr/willow/SPAMS/

Conclusions: Theory of Graphical Models

- Graphical models provide a nice and precise framework to construct and think about models of data.
- Can be used with frequentists estimation techniques
 - Maximum Likelihood Techniques
 - Expectation-Maximization algorithm
- Can be used with Bayesian estimation techniques
 - Computing posterior distribution over parameters, or computing posterior expectations
- In both cases, one needs to compute expectations (unless the data is completely observed). This is called the inference problem.
- Many inference algorithms:
 - Exact algorithms
 - Sum-product/ Belief propagation
 - Junction tree algorithm
 - Approximate algorithms
 - Gibbs sampling
 - Variational Inference (Mean field, loopy belief propagation)

Conclusions: PGM for IR...

- Some nice models (UM, pLSI, LDA)
- Still need more understanding
- Parallel approaches with matrix factorization and dictionary learning
- Still many structures in IR that could be modelled with PGMs and ML...

References I

- Bach, F. (2008). Exploring large feature spaces with hierarchical multiple kernel learning. In *Advances in Neural Information Processing Systems*.
- Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM Journal on Imaging Sciences*, 2(1):183–202.
- Blei, D., Griffiths, T., Jordan, M., and Tenenbaum, J. (2004). Hierarchical topic models and the nested Chinese restaurant process. *Advances in neural information processing systems*, 16:106.
- Blei, D., Ng, A., and Jordan, M. (2003). Latent dirichlet allocation. *The Journal of Machine Learning Research*, 3:993–1022.
- Buntine, W. and Perttu, S. (2003). Is multinomial PCA multi-faceted clustering or dimensionality reduction. In *International Workshop on Artificial Intelligence and Statistics (AISTATS)*.
- Elad, M. and Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. *IEEE Transactions on Image Processing*, 15(12):3736–3745.
- Févotte, C., Bertin, N., and Durrieu, J.-L. (2009). Nonnegative matrix factorization with the itakura-saito divergence. with application to music analysis. *Neural Computation*, 21(3).
- Hoffman, M., Blei, D., and Bach, F. (2010). Online learning for latent dirichlet allocation. *Advances in Neural Information Processing Systems*, 23:856–864.
- Jenatton, R., Mairal, J., Obozinski, G., Bach, F., et al. (2011). Proximal methods for hierarchical sparse coding. *Journal of Machine Learning Research*, 12:2297–2334.

References II

- Lee, H., Battle, A., Raina, R., and Ng, A. (2007). Efficient sparse coding algorithms. In *Advances in Neural Information Processing Systems (NIPS)*.
- Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2009a). Online learning for matrix factorization and sparse coding. Technical report, arXiv:0908.0050.
- Mairal, J., Bach, F., Ponce, J., Sapiro, G., and Zisserman, A. (2009b). Non-local sparse models for image restoration. In *International Conference on Computer Vision (ICCV)*.
- Nesterov, Y. (2007). Gradient methods for minimizing composite objective function. *Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, Tech. Rep*, 76.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *Journal of The Royal Statistical Society Series B*, 58(1):267–288.
- Witten, D., Tibshirani, R., and Hastie, T. (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. *Biostatistics*, 10(3):515–534.
- Yuan, M. and Lin, Y. (2007). On the non-negative garrotte estimator. *Journal of The Royal Statistical Society Series B*, 69(2):143–161.
- Zhao, P., Rocha, G., and Yu, B. (2009). Grouped and hierarchical model selection through composite absolute penalties. *Annals of Statistics*, 37(6A):3468–3497.