
06.08.2012

1

Indexing the Past

(1) Indexing and searching methods for
versioned document collections

142RuSSIR 2012

Time Travel?

• Time travel is easy (in IR)! You only need:
– The data

– The mechanisms to search
• indexing + query processing

– (And fasten your seat belts!)

Why Search the Past?

• Historical information needs (an analyst
working on the social reactions on the net
after 9/11)

• To find relevant resources that do not exist
anymore

• To discover trends, opinions, etc. for a
certain time period (what people think
about UFOs at the beginning of
millenium?)

Data: Preserving the Web

• Non-profit organizations:
– Internet archive, European archive,...

• Several EU projects
– Planets, PROTAGE, PrestoPRIME, Scape,

ENSURE, BlogForever, LiWA, LAWA,
ARCOMEM...

http://archive.org/http://archive.org/http://archive.org/http://archive.org/

06.08.2012

2

Data

• There are also other “versioned” data
collections
– Wikis (Wikipedia)

– Repositories (code, document, organization
intranets)

– RSS feeds, news, blogs etc. with continuous
updates

– Personal desktops

Collections including multiple versions of
each document with a different timestamp

Indexing

• Various earlier approaches:
– [Anick et al., SIGIR 1992], [Herscovici et al, ECIR 2007]

• Focus on recent work from two different
perspectives
– Indexing schemes that are more concentrated

on the partitioning-related issues
• [Berberich et al., SIGIR 2007; Anand et al. CIKM 2010; Anand et al.

SIGIR 2011]

– Indexing schemes that are more concentrated
on the index size

• [He et al., CIKM 2009; He et al., CIKM 2010; He et al., SIGIR 2011]

Time-travel Queries

• “Queries that combine the content and temporal
predicates” [Berberich et al., SIGIR 2007]

• Interesting query types
– Point-in-time

• “euro 2012 articles” @ 1/July/2012

– Interval
• “euro 2012 articles” between 01.06-01.07 2012

– Durability in a time interval [Hou U et al., SIGMOD 2010]:
• “search engine research papers” that are in top-10 results for

75% of the time between years 2000 and 2012

Time-point Queries: Indexing

• Formal model:
– For a document d, each version has

begin/end timestamps (validity interval):
• For the current version, de = ∞

• For d, all validity times are disjoint

t0 t1 t2 t3 ∞

d0: [t0, t1) d3: [t3, ∞)

[Berberich et al., SIGIR 2007]

06.08.2012

3

Indexing

• Key idea
– Keep “validity intervals” within posting lists

v <d, tf> <d, tf, db, de>

t0 t1 t2 t3 ∞

tf(v)=1 tf(v)=0 tf(v)=2 tf(v)=2

v <d, 1, t0, t1>

From

<d, 2, t2, t3> <d, 2, t3, ∞>

• Problem: Index size explodes!
– Even for Wikipedia, 9*109 entries

[Berberich et al., SIGIR 2007]

Remedy: Coalescing

• Combine adjacent postings with similar
pay-loads

v <d, 1, t0, t1> <d, 2, t2, t3> <d, 2, t3, ∞>

v <d, 1, t0, t1> <d, 2, t2, ∞>

[Berberich et al., SIGIR 2007]

Optimization Problem

[Berberich et al., SIGIR 2007]

ATC

• Linear-time approximate algorithm

[Berberich et al., SIGIR 2007]

06.08.2012

4

It works!

[Berberich et al., SIGIR 2007]

Temporal Partitioning (Slicing)

• Even after colescing, wasted I/O for
redundant postings that does not overlap
with query’s time point

v, [t0, t1) <d, 1, t0, t1>

<d, 2, t2, ∞>

Remark: Validity intervals still reside in the postings!

v, [t2, ∞)

[Berberich et al., SIGIR 2007]

Trade-off

• Optimal approaches
– Space-optimal

– Performance-optimal

• Trading off space and performance:
– Performance-Guarantee apparoach

– Space-Bound apparoach

[Berberich et al., SIGIR 2007]

Computational Complexity

• Performance-Guarantee Approach
– DP: time and space complexity O(n2)

• Space-Bound Approach
– DP solution is prohibitively expensive
– Approximate solution using simulated

annealing
• Time O(n2), Space O(n)
• Notice n is the number of all unique time interval

boundaries for a given term’s posting list

[Berberich et al., SIGIR 2007]

06.08.2012

5

Time-point Queries: Result

• Given a space-bound of 3 (i.e., 3x of the
optimal space), close-to-optimal
performance is achievable!
– (Reminder: Partitioning is not very cheap!)

[Berberich et al., SIGIR 2007]

Time-point Queries: Result

• Time-point queries can be handled like
this:

• Example

Time-interval Queries?

• When more than one partitions should be
accessed, wasted I/O due to repeated
postings! (e.g., 3x more postings in SB!)

• Example

[Anand et al., CIKM 2010]

Solution Approaches

Partition selection [Anand et al., CIKM 2010]

Can we avoid accessing all partitions related to a given query?

Document partitioning (sharding) [Anand et al., SIGIR 2011]

Can we partition postings in a list in a different way
i.e., other than using time information?

06.08.2012

6

Partition Selection

• Problem: Optimize result quality by
accessing a subset of “affected partitions”
without exceeding a given I/O upper-
bound

Optimization criterion: maximize the fraction of
original query results (relative recall).

Two types of constraints:
a) Size-based: allowed to read up to a fixed
number of postings (focus on sequential access)

b) Equi-cost: allowed to read up to a fixed
number of partitions (focus on random access)

[Anand et al., CIKM 2010]

Assumption

• Assume an oracle exists “providing us the
cardinalities of the individual partitions as
well as the result of their intersection/union”

• Later, KMV synopses will be employed as
an approximation

[Anand et al., CIKM 2010]

Single-term queries

• Size-based partition selection

• Equi-cost partition selection

• DP solutions exist, but expensive!

• Approximation
– Reduce the problem to budgeted max

coverage

N

[Anand et al., CIKM 2010]

GreedySelect Algorithm

• Cost(P):
– Size-based: no. of postings in the partition

– Equi-cost: 1

• Benefit(P):
– no of unread postings in P

• At each step:
– Select the partition with highest B(P) / C(P)

– Update benefits of the unselected partitions

Recall: we assume an oracle
providing these numbers!

[Anand et al., CIKM 2010]

06.08.2012

7

Example

Multi-term Queries

• Conjunctive semantics �intersect
partitions of query terms

• Optimization objective: increase the
coverage of postings that are in this
intersection space of partitions

Size-based

N

Equi-cost

[Anand et al., CIKM 2010]

Simple Math does the job!

• Compute “union of intersections”

• x: a tuple of intersection from each term

• x is a tuple from the Cartesian product of
partitions for each query term
– X = Pterm1 x Pterm2 x..... X Ptermk and then,

– x = {(Pterm1,i, Pterm2,j, ..., x Ptermk, l)}

Choose a partition from this term’s partitions

[Anand et al., CIKM 2010]

GreedySelect, again!

• Apply GreedySelect over X to pick x ϵ X

• C(x)
– Sum of the sizes of unselected partitions in x,

or, number of unselected partitions in x

• B(x)
– No of new documents that appear in the

intersection of the partitions in x

• Modify algorithm to update benefits and
costs after each picking a tuple x.

[Anand et al., CIKM 2010]

06.08.2012

8

Cartesian Product or Join?

• Problem: Set X might be very large!

• Remedy: Observe that partitions of
different terms that have no temporal
overlap cannot have any intersecting docs!

Apply the algorithm

over the t-join set!
[Anand et al., CIKM 2010]

Performance of Partition Selection

• Reletive recall: 50% of affected partitions
might be enough!
– 3 datasets, Wikipedia seems harder!

Wikipedia UKGOV NY Times

[Anand et al., CIKM 2010]

Performance of Partition Selection

• Compare query run times for:
– Unpartitioned index,

– No partition selection,

– Partition selection with I/O bound (all index
files are compressed!)

[Anand et al., CIKM 2010]

Real Life: KMV Synopses

• Instead of assuming an “oracle” for
cardinality estimation, use KMV synopses

• A KMV synopsis for a multiset S:
– Fix a hash function h

– Apply h to each distinct value in S

– k-smallest of the hashed values form KMV
[Beyer et al., SIGMOD 2007]

Effective sketches for sets supporting arbitrary
multiset operations: �, ∩, /

[Anand et al., CIKM 2010]

06.08.2012

9

Partition Selection with KMV

• For each partition of each term:
– create a flat file storing KMV synopses (5%

and 10% samples)

[Anand et al., CIKM 2010]

Partition Selection with KMV

• KMV is promising
– 5% is enough!

Wikipedia UKGOV NY Times

[Anand et al., CIKM 2010]

Document partitioning (Sharding)

• Another solution to avoid reading and
processing repeated postings with cross-
cutting validity intervals in temporal
partitioning

• Example

[Anand et al., SIGIR 2011]

Sharding

• Key idea:
– Instead of partitioning temporally, partition

postings based on doc-ids

– No repetition as in slicing

– Example

[Anand et al., SIGIR 2011]

06.08.2012

10

Sharding

• Entries in a shard are ordered according to
their begin time

• For each shard, an axuliary data structure:
– List of pairs: (query begin times, offset in shard)

– Maintain for practical granularities of begin
times (like, days) � can fit in memory!

– For a query with a begin time
• Seek to the offset position in the shard and then read

sequentially

[Anand et al., SIGIR 2011]

Why several shards?

• There can be still wasted disk I/O while reading a
shard:

• Problem is the postings with long validity intervals
(i.e., subsuming lot of other postings)

Query begin time

Earliest posting that includes
the query begin time!
This causes reading 5 useless
postings!

[Anand et al., SIGIR 2011]

Idealized Sharding

• For a given posting list L, find a minimal set of
shards that satisfy staircase property (SP)

if begin(p) ≤ begin(q)→ end(p) ≤ end(q)

• Greedy solution:
– For each posting p in L (in begin-time order)

• Add p in an exiting shard s if SP is satisfied

• Otherwise, start a new shard with p

[Anand et al., SIGIR 2011]

Merging Shards

• Idealized sharding can yield several
shards
– random access per shard is expensive!

• A greedy merging algortihm
– Penalty <= CostRan /CostSeq

– Penalty (pairwise): wasted sequential reads
for merging two shards

– Merge in ascending choice order and then
smallest size order

More on this later!

[Anand et al., SIGIR 2011]

06.08.2012

11

Performance

• Sharding improves query processing times
w.r.t. temporal partitioning or no
partitioning et al.

• Merging shards results shorter QP times

• Time measurements are taken on warm
caches!!!

[Anand et al., SIGIR 2011]

A Grand Summary

• A full posting list with validity intervals
– High sequential access + CPU cost
- 1 random access per query term

• Temporal partitioning (slicing)
– Reduce seq access (but, repetitions)
– Reduce CPU cost
– ≥1 random accesses per query term (with partition

selection)

• Document partitioning (sharding)
– Reduce seq access (no repetitions + time map)
– Reduce CPU cost (staircase property)
– ≥1 random accesses per query term (read all shards?!)

An Alternative Perspective

• Work from Polytechnique Ins. of NYU

• Focus on the index size
Approaches up to now consider each version
of a document separately: no special attention
on the overlap between versions

Index Compression

• Key ideas
– Small integers can be represented with

smaller codes

– Doc ids are not so small: instead, compress
the gaps between the ids

– Term frequencies are already small

– Example

06.08.2012

12

Indexing Versions

• Assume validity-intervals are stored separately
� Time-constraints @ post-processing

• Versions of di are represented as di,j

t0 t1 t2 t3 ∞

tf(v)=1 tf(v)=0 tf(v)=2 tf(v)=2

v <d1, 1, t0, t1> <d1, 2, t2, t3> <d1, 2, t3, ∞>

v <d11, 1> <d1,2, 2> <d1,3, 2>

Question: How can we reduce the storage space for such a representation?

[He et al., CIKM 2009]

Versions Are Similar

• There is a high overlap between versions!

Snapshot@
May 15

Snapshot@
June 15

Snapshot@
July 15

How to Exploit?

• Simplest idea:
– Assign consecutive doc IDs to consecutive

versions of the same document

– Allows small d-gaps for overlapping terms
among the versions

<d1000, 1> <d3000, 2> <d6000, 2>

russir <d1, 1> <d2, 2> <d3, 2>

d1: http://romip.ru/russir2012/, [May 15, June 15]
d2: http://romip.ru/russir2012/, [June 15, July 15]
d3: http://romip.ru/russir2012/, [July 15, Aug 15]

russir Random ids

Consecutive ids

[He et al., CIKM 2009]

MSA Approach

• Multiple Segment Alignment [Herscovici et al., ECIR’07]

– Given d with some versions, a virtual
document Vi,j is all terms occuring in (only)
versions i through j

– Reduces the number of postings but
increases the document space! (theoretically,
up to N2 virtual documents!)

[He et al., CIKM 2009]

06.08.2012

13

MSA: Example

Herscovici et al., ECIR 2007]

Indexing the Differences

• DIFF approach [Anick et al., SIGIR’92]

– For every pair of consecutive versions di and
di+1; create a virtual document that is the
symmetric difference between these versions.

[He et al., CIKM 2009]

DIFF: Example

• Example:

• QP

Performance

• Two index compression schemes
– Interpolative coding (IPC)

– PForDelta with optimizations (PFD)

• Two datasets: Wiki, Ireland
Wikipedia Ireland

Random-IPC 4957 2908
Random-PFD 5499 3289Index sizes for doc ids

Query processing times (in-memory): Sorted is the best!

[He et al., CIKM 2009]

06.08.2012

14

Two-level Indexing: Roots

• Assume we have clusters of documents

t1

t2

d1

d2 2 d4 2

1 d2 2 d3 6

C1

d1
d2

d3

d4

C2

C3

• We have queries restricted to clusters:
– {t1, t2} in C3 � intersect lists � d2, d4 � d4

d4 1

Cluster-skipping index

• Skip redundant postings during QP
– Reduce decompression cost [Altingovde et al., TOIS 2008]

• Skipping is widely used for QP in practice

t1

t2

C1 d1 1 C2 d2 2 d3 6

C2 d2 2 C3 d4 2

C3 d4 1

[Altingovde et al., TOIS 2008]

Two-level indexing

• Apply the same idea for versions:
– First level index: document ids

– Second level index: a bitvector for versions

No need for indexing seperate ids for each
version � implicit from the bicvector.

[He et al., CIKM 2009]

Two-level indexing

• In actual implementation, group blocks of
doc ids and bitvectors of versions

• Bitvectors best compressed by hierarchical
Huffman coding!

russir <d1, 1> <d2, 2> <d3, 2>

russir <d> 1 1 1 0 0/1: First three versions include “russir”

russir <d> 1 2 2 0 TFs: Actual term frequencies

[He et al., CIKM 2009]

06.08.2012

15

Two-level indexing: HUFF

• Query Processing: Decompress bitvectors
of documents that are in the intersection

of query terms

russir <d1> 1 2 2 0 <d2> 1 1 2 0 <d4> 1 0 1 0

schedule <d3> 1 2 2 1 <d4> 1 2 2 0 <d5> 1 3 2 1

Final result: d4,1 and d4,3

[He et al., CIKM 2009]

Two level indexing

• Same idea can be applied to MSA and
DIFF
– For virtual documents, create bitvectors as

before

– Compress first level IPC, second level PFD

• Even better compression performance

[He et al., CIKM 2010]

Index sizes for doc ids

HUFF 213 577

Two level indexing: QP

• Queries without temporal constaints

[He et al., SIGIR 2011]

Two level indexing: QP

• Queries with temporal constaints
– Post-processing

[He et al., SIGIR 2011]

06.08.2012

16

Two level indexing: QP

• Queries with temporal constaints
– Partitioning, again!

[He et al., SIGIR 2011]

QP Performance

[He et al., SIGIR 2011]

Grand Summary

Partition-focused

– Time information kept
in postings

– Redundancy solved
by partitioning

• Process only relevant
partitions

– Lossy compression of
versions (coalescing)

Size-focused

– Time information kept
separately

– Redundancy solved by
2-level compression

• Process compact blocks

• Hierarchical partitions

– Lossless compression
of versions

References
• [Altingovde et al., TOIS 2008] Ismail Sengör Altingövde, Engin Demir, Fazli Can, Özgür Ulusoy:

Incremental cluster-based retrieval using compressed cluster-skipping inverted files. ACM Trans.
Inf. Syst. 26(3): (2008)

• [Anand et al., CIKM 2010] Avishek Anand, Srikanta J. Bedathur, Klaus Berberich, Ralf Schenkel:
Efficient temporal keyword search over versioned text. CIKM 2010: 699-708

• [Anand et al., SIGIR2011] Avishek Anand, Srikanta J. Bedathur, Klaus Berberich, Ralf Schenkel:
Temporal index sharding for space-time efficiency in archive search. SIGIR 2011: 545-554

• [Anick et al., SIGIR 1992] Peter G. Anick, Rex A. Flynn: Versioning a Full-text Information
Retrieval System. SIGIR 1992: 98-111

• [Berberich et al., SIGIR 2007] Klaus Berberich, Srikanta J. Bedathur, Thomas Neumann,
Gerhard Weikum: A time machine for text search. SIGIR 2007: 519-526

• [Beyer et al., SIGMOD 2007] Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis
Sismanis, Rainer Gemulla: On synopses for distinct-value estimation under multiset operations.
SIGMOD Conference 2007: 199-210

• [He et al., CIKM 2009] Jinru He, Hao Yan, Torsten Suel: Compact full-text indexing of versioned
document collections. CIKM 2009: 415-424

• [He et al., CIKM 2010] Jinru He, Junyuan Zeng, Torsten Suel: Improved index compression
techniques for versioned document collections. CIKM 2010: 1239-1248

• [He et al., SIGIR 2011] Jinru He, Torsten Suel: Faster temporal range queries over versioned
text. SIGIR 2011: 565-574

• [Herscovici et al, ECIR 2007] Michael Herscovici, Ronny Lempel, Sivan Yogev: Efficient Indexing
of Versioned Document Sequences. ECIR 2007: 76-87

• [Hou U et al., SIGMOD 2010] Leong Hou U, Nikos Mamoulis, Klaus Berberich, Srikanta J.
Bedathur: Durable top-k search in document archives. SIGMOD Conference 2010: 555-566

06.08.2012

17

Thank you!

Questions???

Retrieval and Ranking Models

(1)Searching the past

(2)Searching the future

• Problem statements
– Time must be explicitly modeled in order to

increase the effectiveness
– Time uncertainty should be taken into account

• Two temporal expressions can refer to the same time
period even though they are not equally written

• Example
– Given the query “Independence Day 2011”, a

retrieval model relying on term-matching will fail to
retrieve documents mentioning “July 4, 2011”

Searching the past

Current approach

• Previous time-aware ranking methods
follow two main approaches
1. Mixture model: linearly combining textual and

temporal similarity

2. Probabilistic model: generating a query from the
textual part and temporal part of a document
independently

06.08.2012

18

Models of document, query, time

• A temporal query q is composed of keywords q_text and
temporal expressions q_time.

• A document d consists of the textual part d_text, i.e., a bag of
words, and the temporal part d_time composed of:
– Publication time PubTime(d) of d
– Temporal expressions ContentTime(d) mentioned in d

• A model for time (content or publication time) is represented as
a quadruple: (tbl, tbu, tel, teu)
– tbl and tbu are the lower and upper bound for the begin boundary
– tel and teu are the lower and upper bound for the end boundary

[Berberich et al., ECIR 2010]

Ranking model

• Mixture model: linearly combine textual
and temporal similarity

– α indicates the importance of S'(q_text, d_text) and
S''(q_time, d_time)

• Scores are normalized before combining

– S'(q_text, d_text) is keyword-based ranking
• E.g., TF-IDF or language modeling

[Kanhabua et al., SIGIR 2011]

Ranking model (cont’)

• Temporal expression tq ϵ q_time is
generated independently from each other
– Using a two-step generative model

– Linear interpolation smoothing is applied to P(tq|td)
for an unseen temporal expression tq in d

– P(tq|td) will be determined wrt. a ranking method

[Kanhabua et al., SIGIR 2011]

• Five time-aware ranking methods
– LMT [Berberich et al., ECIR 2010]

– LMTU [Berberich et al., ECIR 2010]

– TS [Kanhabua et al., ECLD 2010]

– TSU [Kanhabua et al., ECLD 2010]

– FuzzySet [Kalczynski et al., Inf. Process. 2005]

Comparison of time-aware ranking

[Kanhabua et al., SIGIR 2011]

06.08.2012

19

• Experiment
– NYT Corpus and 40 temporal queries

• Result
– TSU outperforms other methods significantly for most

metrics

• Conclusions
– Although TSU gains the best performance, it is limited

for a document collection with no time metadata

– LMT, LMTU can be applied to any collection without
time metadata, but extraction of temporal expressions
is needed

Discussion

[Kanhabua et al., SIGIR 2011]

Searching the future

• Searching the future
– Extract temporal expressions from news articles
– Retrieve future information using a probabilistic

model, i.e., multiplying term similarity and a time
confidence

• Supporting analysis of future-related
information in news and Web
– Extract future mentions from news snippets obtained

from search engines
– Summarize and aggregate results using clustering

methods, but no ranking

[Baeza-Yates SIGIR Forum 2005; Jatowt et al., JCDL 2009]

Drawback: a user must specify a query in advance using
“predefined” entities

Recorded Future

[http://www.recordedfuture.com/]

Drawback: No ranking or performance evaluation is done.

Yahoo! Time Explorer

[Matthews et al., HCIR 2010]

06.08.2012

20

Ranking news predictions

• Motivations
– People are naturally curious about the future
– What will happen to EU economies in next 5 years?
– What will be potential effects of climate changes?
– Over 32% of 2.5M documents from Yahoo! News (July

2009 to July 2010) contain at least one prediction

• A new task called ranking related news predictions
[Kanhabua 2011c]
– Retrieve predictions related to a news story in news

archives
– Rank them according to their relevance to the news story

[Kanhabua et al., SIGIR 2011a]

Related news predictions

[Kanhabua et al., SIGIR 2011a]

• Four classes of features
– Term similarity, entity-based similarity, topic

similarity and temporal similarity

• Rank predictions using a learning-to-rank
technique

• Evaluate using dataset with over 6000
judgments from the NYT Annotated Corpus

Approach

[Kanhabua et al., SIGIR 2011a]

• Step 1: Document annotation.
– Extract temporal expressions using

time and event recognition.
– Normalize them to dates so they can

be anchored on a timeline.
– Output: sentences annotated with

named entities and dates, i.e.,
predictions.

• Step 2: Retrieving predictions.
– Automatically generate a query from

a news article being read.
– Retrieve predictions that match the

query.
– Rank predictions by relevance. A

prediction is “relevant” if it is about
the topics of the article.

System architecture

[Kanhabua et al., SIGIR 2011a]

06.08.2012

21

• Capture the term-similarity between q and p
1. retScore(q,p) Lucene’s TF-IDF scoring function

• Problem: keyword matching, short texts
• Predictions not match with query terms

2. bm25f(q,p) field-aware ranking function

• Extend a sentence by surrounding sentences
• Search CONTEXT in addition to TEXT

Term similarity

[Kanhabua et al., SIGIR 2011a]

• Measure the similarity
between q and p using
annotated entities in dp, p, q
– Only applicable for QE, QC

– Features commonly
employed in entity ranking

– Time distance captures the
relatedness of term and time

Entity-based similarity

[Kanhabua et al., SIGIR 2011a]

• Compute the similarity between q and p on topic
– Latent Dirichlet allocation [Blei 2003] for modeling

topics
1. Train a topic model
2. Infer topics
3. Compute topic similarity

Topic similarity

[Kanhabua et al., SIGIR 2011a]

• Hypothesis I. Predictions that are more recent to the
query are more relevant

Temporal similarity

• Hypothesis II. Predictions extracted from more
recent documents are more relevant

[Kanhabua et al., SIGIR 2011a]

06.08.2012

22

• Learning-to-rank: Given an unseen (q, p), p is
ranked using a model trained over a set of labeled
query/prediction

– SVM-MAP [Yue et al., SIGIR 2007]
– RankSVM [Joachims, KDD 2002]
– SGD-SVM [Zhang, ICML 2004]
– PegasosSVM [Shalev-Shwartz et al., ICML 2007]
– PA-Perceptron [Crammer et al., J. Mach. Learn. 2006]

Ranking method

[Kanhabua et al., SIGIR 2011a]

• 42 future-related topics

Relevance judgments

[Kanhabua et al., SIGIR 2011a]

• NYT Corpus
– More than 25% contain at least one prediction

• Annotation process uses several language processing
tools
– OpenNLP for tokenizing, sentence splitting, part-of-

speech tagging, shallow parsing
– SuperSense tagger for named entity recognition
– TARSQI for extracting temporal expressions

• Apache Lucene for indexing and retrieving.
– 44,335,519 sentences and 548,491 predictions
– 939,455 future dates (avg. future date/prediction is 1.7)

Experiments

[Kanhabua et al., SIGIR 2011a]

• Results
– Topic features play an important role in ranking
– Features in top-5 features with lowest weights are

entity-based features

• Open issues
– Extract predictions from other sources, e.g.,

Wikipedia, blogs, comments, etc.
– Sentiment analysis for future-related information

Discussion

[Kanhabua et al., SIGIR 2011a]

06.08.2012

23

References
• [Baeza-Yates SIGIR Forum 2005] Ricardo A. Baeza-Yates: Searching the future. SIGIR workshop MF/IR 2005

• [Berberich et al., ECIR 2010] Klaus Berberich, Srikanta J. Bedathur, Omar Alonso, Gerhard Weikum: A Language
Modeling Approach for Temporal Information Needs. ECIR 2010: 13-25

• [Crammer et al., J. Mach. Learn. 2006] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, Yoram
Singer: Online Passive-Aggressive Algorithms. Journal of Machine Learning Research 7: 551-585 (2006)

• [Jatowt et al., JCDL 2009] Adam Jatowt, Kensuke Kanazawa, Satoshi Oyama, Katsumi Tanaka: Supporting
analysis of future-related information in news archives and the web. JCDL 2009: 115-124

• [Joachims, KDD 2002] Thorsten Joachims: Optimizing search engines using clickthrough data. KDD 2002: 133-
142

• [Kalczynski et al., Inf. Process. 2005] Pawel Jan Kalczynski, Amy Chou: Temporal Document Retrieval Model for
business news archives. Inf. Process. Manage. 41(3): 635-650 (2005)

• [Kanhabua et al., SIGIR 2011] Nattiya Kanhabua, Kjetil Nørvåg: A comparison of time-aware ranking methods.
SIGIR 2011: 1257-1258

• [Kanhabua et al., SIGIR 2011a] Nattiya Kanhabua, Roi Blanco, Michael Matthews: Ranking related news
predictions. SIGIR 2011: 755-764

• [Matthews et al., HCIR 2010] Michael Matthews, Pancho Tolchinsky, Roi Blanco, Jordi Atserias, Peter Mika, Hugo
Zaragoza: Searching through time in the new york times. HCIR workshop 2010

• [Shalev-Shwartz et al., ICML 2007] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, Andrew Cotter: Pegasos:
primal estimated sub-gradient solver for SVM. Math. Program. 127(1): 3-30 (2011)

• [Yue et al., SIGIR 2007] Yisong Yue, Thomas Finley, Filip Radlinski, Thorsten Joachims: A support vector method
for optimizing average precision. SIGIR 2007: 271-278

• [Zhang, ICML 2004] Tong Zhang: Solving large scale linear prediction problems using stochastic gradient descent
algorithms. ICML 2004

Question?

