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Outline

= Day 1: Adaptation and Personalization: Concepts and
Challenges

= Day 2: Adaptive Music Retrieval: An Overview

= Day 3: Adaptive Hierarchies: Constrained Clustering and
Utility
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Overview (Day 3)

= Motivation
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Personalized Structuring...

" How can we support a
user in structuring a
collection of objects,
such that the structure
reflects the classification
criteria of the user?
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iCollyzer (Interactive COLLection organiZER)

" |nteractive tool to explore image collections

File Windows Help
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= |nitial overview by
clustering (SOM)

= Personalization
during user
interaction (move
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= _earning: Adaptation

of similarity measure
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A. Nurnberger and A. Klose, Improving Clustering and Visualization of Multimedia Data Using Interactive User
Feedback, in: Proc. of 9th Intl. Conf. on Inform. Proc. and Management of Uncertainty in Knowledge-Based Systems
(IPMU 2002), pp. 993-999, 2002.
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iCollyzer (Interactive COLLection organiZER)
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iCollyzer (Interactive COLLection organiZ

" |nteractive tool to explore text collections
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A. Nurnberger and M. Detyniecki, Externally growing self-organizing maps and its application to e-mail database
visualization and exploration, Applied Soft Computing, 6:4, pp. 357-371, Elsevier Science, 2006.
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iCollyzer (Interactive COLLection organiZER)
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VideoSOM (based on iCollyzer)

" |nteractive tool to navigate in videos

Basic concepts:

= |nitial overview by
clustering of key
frames (1)

= Navigation
support by time
bar that visualizes
(adaptable) frame
similarities (2)

= Direct navigation
In video (3)

T. Barecke, E. Kijak, A. Nurnberger and M. Detyniecki, Video Navigation based on Self-Organizing Maps, in: Proc. of
Intl. Conf. on Image and Video Retrieval (CIVR 2006), pp. 340-349, Springer Verlag, 2006.
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AUCOMA (based on iCollyzer revision) [OFE

" |nteractive tool to navigate in music collections

contents of cell[5,0] ;
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contents of ceil[4,1]

Your Mother Should Know
Rocky Raccoon
Birthday

1 Will

HENET

S. Stober and A. Nurnberger, AUCOMA - Adaptive Nutzerzentrierte Organisation von Musikarchiven, in: Proc. of
Deutsche Jahrestagung fur Akustik (DAGA 2008), 2008.
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Adapting cluster structure

" Problem:

= When user moves (reassigns) objects, this has to be considered
by the system

" |dea:

= Adapt similarity measure such that reassigned objects are
correctly assigned / classified

= Approaches:
" Heuristics
® Quadratic optimization

A. Nurnberger and S. Stober, User Modelling for Interactive User-Adaptive Collection Structuring, in: Proc. of Intl.
Workshop on Adaptive Multimedia Retrieval (AMR 2007), 2007.
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Weighted similarity measure

= Feature weights w,to “personalize” similarity:

m
sim(x;,x,) = ij, W, - X,
" Cluster assignment =
= Document d assigned to cluster c:
sim(c_,d)<sim(c,,d) Vi#s
= Moving d to cluster c,:
sim(c,,d)<sim(c,,d) Vi#t
= Problem:

= change weights such that:

m m
ij, ‘W, -C, >ij, ‘W, -C, VS#t
=1 =1
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Quadratic Optimization

" minimize change of weight vector w
m

. 2
min 2 (w, 1)

= weights should be non-negative

w, >0 V1</<m

= sum of the weights should be m (dictionary size)

2wy =m
[=1

= keep all manually moved objects at their position

m m
ij, W, -C, > ij, -W,-C, Vs#t
/=1 I=1
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Experimental Setup

=  User study:
= expensive, time consuming, not objective

= Alternative way: simulate user actions

= 2 datasets:

= 1914 documents from a scientific news achive
represented by 800 index terms

= 10% (1000 documents) from the Banksearch dataset
represented by 800 index terms
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User Simulation

modify objects by adding random features
learn map on modified objects
repeat

select an object 0 to be moved
select most similar cell ¢ for 0 according to user
moveOtoC

until 0 could not be moved

cell selection

greedy random

greedy scenario 1 scenario 3

random scenario 2 scenario 4

—
e
5 5
DO
a o
O o

w
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Results for Experiment 1

= Top-N precision increased to 0.82-0.97 (mean 0.93)
= Moving ~1% of the collection was sufficient
= Random selection did not yield worse results

5 random features 10 random features 25 random features 50 random features 100 random features
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Weight changes (@ .
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Hierarchical Organization Y

= Flat structures very often not sufficient

= Many systems/methods used for information organization can
be mapped to hierarchies:

= file systems, bookmark structures, (book)shelves by tree maps, ...
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Hierarchical Organization

® Hierarchies can support a user in
= Search, Exploration and Browsing

I”

® Problems of “manual” organization
= Categorization of objects very time consuming
= Creation of the hierarchy
" might even depend on user and/or context
®= Machine learning approaches that can be used
= Hierarchical classification/categorization:
= structure known
= automatic insertion of documents
® Hierarchical clustering:
® structure not or only partially known

" automatic creation of hierarchy
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Personalization...

" How can we use
information about the
way a user is structuring
collections in order to
support him in
structuring yet unknown
collections?
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Hierarchical clustering

" Problem:

= Automatically created structure of a data collection should reflect
(as good as possible) the structure that would be created by a

specific user,
but
= desired structure is only partially (or not at all) known

= Approach:
" Modeling structuring criteria of a user by constraints
® Transfer ideas of “flat” constrained-based clustering approaches
to hierarchical agglomerative clustering
= Use constraints in order to learn feature weights

K. Bade and A. Nurnberger, Personalized Hierarchical Clustering, in: Proc. of IEEE/WIC/ACM Intl. Conference on
Web Intelligence (WI-06), pp. 181-187, IEEE Computer Society Press, 2006.

K. Bade und A. Nurnberger, Creating a Cluster Hierarchy under Constraints of a Partially Known Hierarchy, in: Proc.
of 2008 SIAM International Conference on Data Mining, 2008.
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Task

= Given user hierarchy is a “guideline”
= Hierarchy refinement with

= New classes (sibling nodes to existing ones)
= New sub-classes (refinement in depth)

./\

soe
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Learning Scenario

= Classes c=C UC,

= Relations between classes (tree structure)
Ry Ry = {(lecz)e CxClc, 2, Cz}

" Documents

D=D, U D,
Tk:{(d,c)eDkak} Tuz{(d,c)eDuxCu}
= Two-fold notion of semi-supervised

= Partially labeled training data
= Not all classes are known

= Approach: Constrained Clustering...
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Overview (Day 3)

" Motivation
= Constrained Clustering
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Constrained Clustering

Clustering aims at uncovering a structure that could be be used
to organize data

Problem: There are often several different meaningful
structures

Examples:

= Movies structured by genre, actors, director, ...

* Photos structured by time, people shown, places, moods,
motives, ...

mThe same or a different cluster?
m“Sleepless in Seattle” — “You've Got Mail”
sSame cluster, because both films are very similar,
=€.g. romantic comedies with same director and same stars
=“Charlie and the Chocolate Factory” — “Nightmare on EIm Street”

=Different clusters, because both films are from different genres
sSame cluster, because both are directed by Johnny Depp
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Constrained Clustering

® Goal: Find the structure intended by the user
— “Need”-driven clustering

= “Need” might depend on
= User’s knowledge and background
= Current context / task

" Constrained clustering integrates domain knowledge into the

clustering process.
@_‘ [domain knowledge}

v

\

cluster 1 H cluster n H
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Available Domain Knowledge

= Some labeled training data

= Relations between objects
= Similar and distinct items
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Available Domain Knowledge

= (Cluster size/shape/number
= Number of clusters

o
k=3 @ k=2

= Balanced clusters = Minimum cluster variance

&
e .
(for k=3) @ (for k=3)

= Minimum/maximum cluster size
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Available Domain Knowledge

"= Negative background information
® Find a structure that is different from a given one
= Example for k=2

Given:
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Pairwise Constraints

= Pairwise specification of relations between objects
" Must-link constraints

= Pairs of items that belong to the same cluster
con_(x,y) KD

= Cannot-link constraints

= Pairs of items that belong to different clusters

con 1) W
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Pairwise Constraints

" Constraints are symmetric
Vx,y:con(x,y) — con(y, x)
= Must-link constraints are transitive

Vx,y,z:con_(x,y) Acon_[(y,z) — con_(x,z)

X X X X
X ;?( X xx —> X ;&Z( X %X
X X X X
" Cannot-link constraints are not transitive, but
Vx,y,z:con_(x,y)ncon_(y,z) = con,(x,2)
X % X X %

XX%( X wx T2 XX%WXX
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Hard vs. Soft Constraints

= Hard constraints
= Must be satisfied

= All constraints are equally important

= Soft constraints

= Additional weight: con(x,y,w), we[-1,1]
= Cannot-link constraint: w=-1

= Must-link constraint: w=1

= Specify the importance of constraint satisfaction
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Sources of Pairwise Constraints (1) ()R

= Partially labeled data
= Pairs of elements of the same class form a set of must-links
constraints

= Pairs of elements from different classes form a set of cannot-link
constraints

class 1
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Sources of Pairwise Constraints (2)

= User feedback

= Relative assignment of objects without knowing the true class
labels

= |ndication of cluster errors = critiquing a solution

= Active learning - ask the user for difficult objects before
presenting a solution

= Automatically through knowledge about the task
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Approaches

= Two main categories of methods to integrate pairwise
constraints in the clustering process can be distinguished:
= Instance-based

= Approaches enforcing constraints
= Approaches that allow violations

" Metric-based
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Instance-based Approaches

Direct use of constraints (similar to lazy learning)
During initialization, e.g.

= Use all components that are connected by must-link constraints
as starting points for HAC

= |nitialize cluster centers of k-means with the centroids of the
connected must-link components

Enforce constraints during clustering, e.g.
®= Do not cluster together objects that cannot link
* Do not separate objects that must link
Integrate constraints in objective function, e.g.

= Compute trade-off between constraint violations
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Metric-based Approaches

* |dea: Generalize knowledge from constraints

" Learning a metric

= |dentification of important features reflecting the intended
structure

= Distort the similarity/distance space accordingly, e.g. by feature
weighting
= Apply the metric during clustering

= Usually metric is learned based on the constraints before
clustering

= Alternatives:
= Adapt metric during clustering

= Advantage: integration of information about the distribution of
unlabeled objects
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Instance-based vs. Metric-based (€Y

* |nstance based approaches usually have rather local effects
= Strength of impact depends on the clustering algorithm and the
method of integration

= Constraint enforcement might not lead to a global benefit or
even decreased performance (although often performance
increase is reported)
®= Non-informative constraints
= Constraints violating the clustering objective

.
e
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Instance-based vs. Metric-based [OEER

= Metric based approaches have usually a more global influence
— Change in the underlying similarity measure

= Equal points should be handled equally

= Sufficient number of constraints is needed for a good
generalization
— overfitting
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Instance-based vs. Metric-based

Re-using constraints:
= Metric learning

= Can make use of an independent training set of constraints
= Metric can be applied to any future dataset
" |nstance-based approaches

= Data points in the constraint set must always be clustered
together with unlabeled data

® Future datasets must be added to the constraint objects
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Constrained Clustering Approaches

= Algorithms based on k-Means
= COP-k-Means
" PCK-Means
" MPCK-Means
Not discussed here...

= Hierarchical constrained clustering
= IHAC
" mHAC
In the following...
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Constrained Hierarchical Clustering 3) i

Clustering

Documents

:..;..........

H

B H - Directory
-1 1-1 = structure
constraints
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Constraints

" Absolute constraint formulation of must-link and cannot-link
constraints not appropriate

" |n hierarchical clustering
" |tems are linked over different hierarchy levels
= Constraints differ on different hierarchy levels

cannot-link
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Must-link-before Constraints

= QOrdering of item linkage

" Triples instead of pairs: (d,,d,,d,) ’
" d,andd, should be linked on a lower AN
hierarchy level than d, and d Q d
X 4 / yA
P
d, d,
(U LdXeC4,dyeC3,dzeCl)

(
@ B \dXeCz,dyeCz,dzng)
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Must-link-before Constr. (Properties)

" Every cluster containing d, and d, also contains d,

Ve:d, ecnd,ec—d, ec

" There is at least one cluster, which contains d, and d, but not d,

dc:d,ecnd, ecnd, ¢c

" Symmetry

(d,.d,,d,)~d d,,d,)

September, 2013
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Must-link-before Constr. (Properties)

" Transitivity inside a sub-tree

(d,.d,.d,)rld, d,.d,)>(d,,d,,d,)

" Transitivity between different hierarchy levels

(d,.d,.d,)rld, d,,4d,)—>d,,d,,d,)
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Hierarchical Agglomerative Cluster

HAC Algorithm:

= Initialize lowest dendrogram level with each item as a
separate cluster

= Repeat until a single cluster is left:
1. Merge closest two clusters from the current top-most partition
2. Add the new partition to the dendrogram
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Instance-based Constr. HAC (iHAC)

" Cluster merges only in accordance to constraints

" Forall(d,d,d,): the cluster containing d, can only be merged
with a cluster containing both, d, and dy, or neither

oA AT

ddd,d.d,d, d,dd,d.d,d, ddd,d,d,d,

u-v-w u-v-—w

" |f no merge is possible due to constraints
= Stop early or

= Merge clusters violating the least constraints
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Instance-based Constr. HAC (iHAC)

iHAC(D)

Initialize dendrogram DG by adding the lowest level Cy = {¢q, ..., ¢, } with

Vd;, € D :¢c; = {dz}

for l=1ton do
Choose two clusters ¢, ¢2 € Cj_1 and merge them: ¢, = ¢; U s, whereby the
merge of ¢y and ¢z violates the fewest constraints and from all cluster pairs
satisfying this condition ¢; and ¢ are closest
Cr=(Cioi\ e ep) Ul
Add ¢ to DG

end for

return DG
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Metric-based Constr. HAC (mHAC)

= Parameterized cosine similarity

d/wd, ———
sim(d,,d,, W)= G d| =Vd'wd
= W —symmetric positive definite matrix
" Here: diagonal matrix /\/VTI\
W=w" 1w =(w, ..w, )1
= Required properties: \\m/

Vw.:w,; 20 ZW,:n
i

= All weights 1 is standard similarity
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Metric-based Constr. HAC (mHAC)

" Constraints interpretation
d,.d,d,)=sim(d,,d )>sim(d,,d,)

= Weight learning through gradient descent approach
= |nitialize weights with 1 (standard similarity)
= Repeat until convergence:
For each violated constraint:

o(sim(d,,d,)—sim(d,,d,))
ow,

/

W, < W, +17]

i.e. make d, and d, more similar and d, and d, more dissimilar
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Metric-based Constr. HAC (mHAC)

" Metricis learned before clustering

= Similarity matrix for HAC is initialized with new metric

" HAC clustering can be replaced by iHAC
— Combination of both approaches
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Overview (Day 3)

" Motivation
= Constrained Clustering
= A Utility based Approach
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Hierarchical classification £}

" |dea:

"= Improving performance of hierarchical classifier depending on
the way a user is accessing the hierarchy, i.e.

= objects are inserted/classified such that a user is still able to
retrieve them even if the classification is highly uncertain

" Realization:

= Representation of user behavior (its way to access the structure)
by a utility-function

= (Classification as decision problem

K. Bade, E. Hullermeier and A. Nurnberger, Hierarchical Classification by Expected Utility Maximization, in: Proc. of
IEEE International Conference on Data Mining (ICDM 2006), pp. 43-52, IEEE Computer Society Press, 2006.
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Modeling of utility-function (1)

= Utility function defines utility of assigning an object to a
specific class (even a wrong class!)

*= Here: In a hierarchy a “wrong” classification on the users
search/retrieval path might still have a high utility!

= Definition for hierarchy H and classes c::

= Retrieval path:

rp. :{c, € H|c, =2, c}

" Hierarchical distance dist,(c; c)): o
Number of nodes from c; to ; @ @

OGS
© @
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Modeling of utility-function (2)

= Different utilities of classes (depending on user):
" Correct class: Maximal utility util =1

= (Class in retrieval path: Usage decreases on the way to the root node:
util € [0;1]

= Class not in the retrieval path: util =0

= Hierarchical utility:
i exp(— y -dist,,(¢,c)) ifc=,c,
util(¢|c)= .
otherwise.
= v defines “laziness” of a user
= y— o0 : only the correct class has a utility util >0

= v =0:all nodes have similar (maximal) utility (Remark: in this case
it would be best to predict always the root node)
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Decision problem (1)

= @Given:
® Hierarchy H
®" Training data D

= Remark: inner nodes can be empty!
= Utility function util as defined above
= Still required:
" Probability estimates p, = P(c;|d)
— train probabilistic classifier C
®= Here: Naive Bayes and SVM
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Decision problem (2)

" Decision is prediction of class c;, undefined state is c; and utility
is defined by util(c;| c)):

J| P P2 Pn

J G G C,
G U U2 U n
G U U5 U
Cm um] um2 umn

= Prediction of class ¢, for a document d if the expected utility

EU is maximal:

C,..; =argmaxEU(c; | d)=argmax ZP(cj |d)-util(c,; | c;)

J
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Estimation of parameters

®= How to obtain parameter yand L?
" |dea:

= Use of a second utility function!
= First utility function models User

= used to train and evaluate the model
" fixed parameters
= Parameters of second utility function are learned:
= utility function adapts to data
= possibility to adapt to poor classifiers
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Algorithm HUClass

HUClass(d, classi fier, v, L)
For each ¢; € H:
Compute probability estimate P(c;|d) by
classi fier
Chest — null
Foreach ¢; € H:
Compute expected utility EU(¢;|d)
If EU(c;|d) > EU(cpest|d)
Chest — Ci
Return cpeqt
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Evaluation (1)

= Data: Banksearch Data
= 11,000 classified web pages
= 11 classes, 2 level hierarchy
" Training:

= 300 documents from each class

Root
Banking Programming Science Sport
0/0 0/0 0/0 555 / 605
CB BS Java C/C++ VB Asit Bio. Soccer MS
0/0 0/0 3/2 1/0 0/0 2/21/0 18/13 13/6 74/89
classification of banksearch “sports documents”
with naive Bayes / HUClass(NB)
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Evaluation (1)

" FEvaluation measures:

®= Number of documents classified correctly

= Hierarchical Accuracy, Precision, Recall und F-Measure

®= Number of documents in and aside of retrieval path

= |n case of NB classification a user would have almost 700
(searched!) documents more in retrieval path

Naive Bayes

HUC]lass(NB, 3.4, —350)

SVM

HUClass(SVM, 0.6, 0)

acey, 0.8278 £ 0.0055 0.8460 4 0.0031 0.9301 + 0.0014 0.9323 + 0.0014

precy 0.8469 £ 0.0057 0.9135 = 0.0049 0.9305 £ 0.0013 0.9435 = 0.0019

recy, 0.8277 4 0.0056 0.8462 £ 0.0032 0.9300 £ 0.0014 0.9323 £ 0.0014

In 0.8372 £ 0.0051 0.8786 + 0.0039 0.9303 + 0.0013 0.9379 + 0.0016

Hn, 6281.4 == 41.46 5839.2 £ 34.64 7079.6 &£ 10.05 6994.8 £ 11.65
#n. (ml(n.)) 42.8 £ 3.43 1198.2 £ 103.16 12.6 £ 3.38 209.6 £ 13.75
(1.0 £ 0.0) (1.42 £0.04) (1.0 £ 0.0) (1.36 £ 0.04)
#n. (ml(n.)) || 12954 +41.75 582.2 £+ 72.10 527.4 £ 9.50 415.2 = 12.17
(1.40 + 0.03) (1.31 £ 0.37) (1.40 £ 0.02) (1.39 £+ 0.02)
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Evaluation (2)

= 8123 web pages

= Results:

" Open Directory Dump

®= Upto 4 levels in hierarchy, 2-17 leave nodes

= Bigger performance improvements than for banksearch ds

= Reasons: more complex structure and noisy classes

Naive Bayes

HUClass(NB, 0.6, —615 000)

SVM

HUClass(SVM, 1.0, 0)

0.4556 + 0.0096

0.5078 £ 0.0096

0.6632 £ 0.0047

0.6786 £+ 0.0082

0.5753 £ 0.0243

0.6986 £ 0.0170

0.7146 £ 0.0148

0.7820 £ 0.0075

0.3119 £ 0.0089

0.4007 £ 0.0096

0.5225 4+ 0.0061

0.5508 4 0.0038

0.4044 4+ 0.0120

0.5092 4 0.0106

0.6035 £ 0.0069

0.6463 + 0.0050

HNe

1118.2 £+ 25.69

898.6 + 8.89

1725.0 £ 17.15

1524.4 £+ 34.49

H#n. (ml(n.))

195.0 £ 23.57

1196.4 £+ 76.06

104.2 + 10.61

543.0 £ 25.98

(1.25 £ 0.04) 2.11 + 0.08) (1.21 + 0.05) (1.23 £ 0.02)
#n. (ml(n.)) || 1376.4 £ 32.04 594.6 £ 78.72 859.6 £ 10.21 621.4 £ 12.71
(1.95 £ 0.03) (1.87 + 0.18) (1.73 £ 0.01) (1.78 £ 0.02)
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Personalized hierarchical classification

" Open questions:
= What are possible user (access) models?
® What user models really make sense?
*" How to obtain parameters of user model?

= Parameter currently strongly dependent on underlying data (above:
optimized for data!)

" |s it possible to learn parameters during user interaction?
" |s it possible to detect (automatically) typical user classes?

What visualization methods are appropriate?

Adaptivity in Audio and Music Retrieval - A. Nurnberger and S. Stober September, 2013 | 66



o770 VON Gu(llslt

Y3 WACoEaURG
¢/
X/

The End

THANKS A LOT FOR LISTENING!
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