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Outline €8) i

®= Day 1: Adaptation and Personalization: Concepts and
Challenges

= Day 2: Adaptive Music Retrieval: An Overview
= Day 3: Adaptive Hierarchies: Constrained Clustering and Utility
®= Day 4: Adaptive Music Similarity

*= Day 5: User Interfaces and Gamification: Design and
Evaluation
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Definition [}

Gamification is the use of game thinking and game
mechanics in a non-game context to engage users and

solve problems.
[wikipedia]
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CHALLENGE:

How can we use gamification for evaluation?
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Use of Gamification in MIR

a) to collect ground truth

b) to give test users a concrete task

c)
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Input Agreement Games (VB

MoodSwings: Score: 41 Time: 00:22
A Collaborative Game For Music T— I I
Mood Label Collection o ; als o !

Kim et al., ISMIR 2008 0 7] * = D
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Input Agreement Games [©

Major [

gew_user's score: Describe this clip

New clip Your tags: jazz, piano, drums -

Summary C) gs: jazz, piano, drums  rhythmic

Change password New clip Game summary

Logout . i : . - .
Tag colors: 2 points, 1 point, no points yet (but could be 2), 0 points.

Leaders

Search

Blog | Intro | FAQ | Contact | Privacy Policy

= 2008 Michael Mandel

[Michael Mandel 2007, no longer available online]
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Input Agreement Games

Score: O + 40

Round leaders:
'Use of the Song' RockinRay 60
Cornholio 40
Paula 20

best worst

o_o

& .
: 0_0
LN J errrra—

Pick the best AND worst 'Use of the Song' word!

[Douglas Turnbull 2007, no longer available online]
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Input Agreement Games
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TagATune — Music Annotation Game 3) i

= http://[tagatune.orqg/
play @ http://www.gwap.com/gwap/gamesPreview/tagatune/

Scorn

lr Timar
800 TagaTune 0112

Which tune is most different from the others?

Bm B Eﬁ

Describe the tune ...

0 s —— —
e

yoRr descripions:

= multiplayer
= describe music and find out whether same song
= bonus round for similarity judgments
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Example 1:

COMPARING SIMILARITY
ADAPTATION APPROACHES



Experimental Setup: Dataset

" Magnatagatune

= 25863 clips from 5405 source MP3s
(446 albums, 230 artists)

wMagna

S = extracted features

Ir —uk tagged by players (188 unique tags)
TagHgHI}'“e * similarity judgments (bonus round)
= 533 different clip-triples

* players vote for most different clip
(7650 votes in total)

" notes:
= used only global features and aggregated local ones
= added new EchoNest features “dancability” and “energy”
" added genre tags from Magnatagatune
" preprocessed tags
= similarity judgments inconsistent
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Experimental Setup: Dataset — Tags

" tag preprocessing:
1. merging of singular and plural forms
e.g., “guitar” and “guitars”

2. spelling correction
e.g., “harpsicord” = “harpsichord”

3. combination of semantically identical tags
e.g., “funk” and “funky”

4. creation of meta-tags with higher coverage for groups of tags
that express the same concept

e.g., “instrumental” = “instrumental” or “no vocal(s)” or “no
voice(s)” or “no singer(s)” or “no singing”

5. removal of unused tags
(w.r.t. the relevant subset of Magnatagatune)
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Experimental Setup: Features & Facets (€

feature dim.  value description #facets
key 1 0 to 11 (one of the 12 keys) or —1 (none)

mode 1 O (minor), 1 (major) or —1 (none)

loudness 1 overall value 1n decibel (dB)

tempo 1 in beats per minute (bpm) 1 each
time signature 1 3to7 (% to %), 1 (complex), or —1 (none)
danceability 1 between 0 (low) and 1 (high)

energy 1 between O (low) and 1 (high)

pitch mean 12 dimensions correspond to pitch classes 1112
pitch std. dev. 12 dimensions correspond to pitch classes 1112
timbre mean 12 normalized timbre PCA coefficients 1|12
timbre std. dev. 12 normalized timbre PCA coefficients 1112
tags 99 binary vector (very sparse) 14 ] 99
genres a4 binary vector (very sparse) 1

top: global features, middle: aggregated features, bottom: tags 26 | 155
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Experimental Setup: Constraints [}

= “clip cis the most dissimilar of (a,b,c)” (1 vote)
||||»d(a’b) < d(a}c) & d(a,b) < d(b,C) (2 constraints)

" problem: contradictions

m oraph-based constraints filtering [McFee et al. ‘09]:

1. construct directed multigraph 15300 edges
" nodes = clip pairs (1598 unique)
" edges = relative distance constraints

= (a,b)—>(a,c) & constraint d(a,b) < d(a,c) exists
= 6898 edges

2. remove length 2 cycles (860 unique)

3. construct directed acyclic graph (randomized, greedy)
= start with no edges
= add edges in random order
= omit edges that introduce cycles m no change
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Experimental Setup: Algorithms (£

" |inear facet-based approaches using 26 and 155 facets
= Gradient Following
" Quadratic Programming ( sum(slack?) )
= linear SVM (LibLinear)*

®" Mahalanobis distance learners using raw feature vectors

= Linear SVM (SVM'ight)*
= restricted to diagonal W

= much like LibLinear, but features are point-wise squared difference
vectors, i.e. for constraint (s,a,b) : x = (s - b)? - (s — a)?

"= Metric Learning to Rank (MLR)
= diagonal Metric Learning to Rank (DMLR)

*soft weight constraints (may be violated)
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Experimental Setup: Data Partitioning (M

= generally: 10-fold cross-validation

= sampling variants:

A. random sampling of constraints
= 774 constraints for training, 86 for testing

B. random sampling of clips/triplets
= all constraints refering to the same clip belong to same bin
= effectively: sampling 337 graph components (triplets)
" bins of 33 or 34 triplets with 2 or 3 constraints per triplets
= 770-779 constraints for training, 81-90 for testing

" training sets are expanded exponentially starting with 13
constraints (A) or 5 triples (B)
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% of test constraints satisfied

75

70

65

60

—
—
—
—
—

—,
= o O
P —,
— 0 —

Y -~ o
’ N - — — —MLR 75.58%

= — m — - o SVMLIGHT 73.72%
—— LIBLINEAR 72.21%
----- GRADIENT 72.21%
QUADRATIC 71.74%

—

— % — DMLR 69.53%
|

0 100 200 300 400 500 600 700

avg. number of training constraints

= averaged over 20 folds on sampling A
" baseline (random facet weights, n=1000) @ 63%

Adaptivity in Audio and Music Retrieval - A. Nlrnberger and S. Stober September, 2013 18



Results — Details

% of constraints satisfied
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Observations [}

= effect of #facets:
= 155 facets much better on train but worse on test
= performance match only with many constraints
= classical over-fitting (simpler model generalizes quicker)
= for 26 facets, QP almost meets upper bound (train performance)

= 155 facets increase upper bound for QP by 5%

= effect of sampling:
" MLR preformance drops by 6% on sampling B!
= seems to be sensitive to sampling method

®= MLR maintains 100% on training data

"= QP copes best with constraint sets it cannot fulfil
(quick adaptation to a good trade-off)
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Future Directions [}

®= How can we combine the ability of simple models to quickly
generalize with superior adaptability of more complex ones?

= regularization
*" model blending

"= How can we support long-term (possibly life-long) adaptations?
= change of preferences
= decay of constraint importance

" How can we build better benchmarks?
= collect more and better groud truth data

" measure real user satisfaction
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Example 2:

EVALUATING THE ADAPTIVE
SPRINGLENS

eeeeeeeeeeeeeeee



Focus-Adaptive SpringlLens™ 3) i

" multi-focus fish-eye distortion highlights nearest neighbors

" primary lens
® controlled by user
. * enlarges region of interest
" more space for details
" preserves context

" secondary lenses
m G " data-driven
B . =highlight nearest neighbors
- | ' * show “wormholes”
" neighbors come closer

*based on SpringlLens non-linear distortion technique [Germer et al. ‘06]
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PhotoGalaxy (inverted color scheme)
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Variants of User Input Controls $3) i

1. Panning & Zooming (P&Z)
* |eft mouse (drag/pan), wheel (zoom)
= cursor (pan), +/- (zoom)
2. Adaptive SpringLens (SL)
* right mouse (click / hold&move), wheel (lens zoom)

common functions:

= change thumbnail size
= apply display filter:

sparse expand all
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Research Questions €8) i

1. How does the lens-based user-interface compare in terms of
usability to common panning & zooming techniques that are
very popular in interfaces using a map metaphor (such as
Google Maps)?

2. How much do users actually use the secondary focus or would
a common fish-eye distortion (i.e. only the primary focus) be
sufficient?

3. What interaction patterns do emerge?

4. What can be improved to further support the user and
increase user satisfaction?
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Experiment Outline [£)

" pre-experiment questionnaire
= general background of participants

" training under supervision until familiar with user-interface
= solving a retrieval task with different input controls:

group A: group B:

recorded:

1. only P&Z only SL - screen & control actions

2. onlySL only P&Z « audio (thln.k aloud protocol)
« webcam video

3. combination - gaze (Tobii TG0 eye tracker)

" post-experiment questionnaire
= usability judgments
= feedback for improvements
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Retrieval Task (Tagging Game) (£

" given
" animage collection

= with 5 topics, described by
= ashort text and

= 2-3 representative images

" find at least 5 images belonging to each topic

" notes:
" topics are non-overlapping

* relevance judgments fully up to the user’s point of view
® handouts for guidance

" no time limit

" 5 minutes of interaction sufficient
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Image Collections [£)

= 4 image collections from a personal collection*
= fixed order of presentation
= collection #1 for training (250 images)
= collections #2-4 labeled for evaluations (each 350 images)

" image resized to fit 600x600

= ground truth labels for collections #2-4
"= 5 non-overlapping topics each

= all images unknown to the participants (no bias)

* dataset can be provided under Creative Commons
Attribution-Noncommercial-Share Alike License
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Collection 2: Barcelona (350 images)

1. Tibidabo

2. Sagrada Familia

3. Stone Hallway in Park Guell

4. Beach & Sea

5. Casa Mila
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Collection 3: Japan (350 images)

1. Owils

2. Torii

3. Paintings

4. Osaka Aquarium

5. Traditional Clothing
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Collection 4: Western Australia (350 images)

1. Lizards

2. Aboriginal Art

3. Plants (Macro)

4. Birds

5. Ningaloo Reef
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Participants [EYE

= 30 graduate and post-graduate students
= between 19 and 32 years old (mean = 25.5)

= 40% female

= 70% studied computer science

= 35% had background in computer vision or Ul design
= 43% took photos on a regular basis

= 30% use software to manage their photo collection
= 77% were open to new user-interface concepts

= between 30 and 60 minutes per session
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Results: Usability Comparison (€Y

helpfulness simplicity Intuitivity

(AN T (A T 7

6/ | Eﬁ @ 6 Ej ﬂ © 6f | © © ®
S : °| | | °| | '
4119 : | 41 | + 41 | :
31 | + 3 - + 31| + |
17 17 17

P&Z  SL  both P&Z  SL  both P&Z  SL  both

" note: combined interface out of competition!

"= 50% rated SL as significantly more helpful than P&Z while
equally complicated in use

= intuitivity of SL slightly higher than P&Z (unexpected!)
= simplicity of BOTH highest (learning effect?)
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Results: Usefulness of Secondary Focus (M

= analysis of recorded information for collection #4 (BOTH)
" 914 image-label events

= classification of events by:
1. location of image when last spotted before labeling
2. topic w.r.t. to topic of image in primary focus

focus region | primary | ext. primary | secondary | none
same topic 37.75 4.27 30.74 4.38
other topic 4.49 13.24 2.08
no focus 3.06
total 37.75 8.75 43.98 9.52

(some combinations are impossible)
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Results: Search Strategies (collection #4)

= type 1: excessive P&Z
" |arger thumbnail size, deeper zoom level, a lot of panning
" gaze: sequential / zigzag scans

" type 2: “eagle eye”
" spot relevant images at high zoom level (dominant color?)

= w/o focus

" type 3: continuous PF = quick scan with lens
" no or little zoom, small thumbnails
" main attention on (extended) PF (eyes guide lens)
" moderate attention on SF
" occasional “freezes” to scan whole region
= type 4: “jumping” focus (one SF becomes PF)
" |ike navigating an invisible neighborhood graph
" main attention on SF
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Results: User Feedback [}

= overcrowded PF in dense regions

= workaround: temporarily zoom into the region which lets the
images drift further apart

" possible solution: force-based spreading on hover

" SF mostly useless at deep zoom levels (off-screen)
= off-screen visualization, navigation shortcuts

= avoid increasing “empty space” at deep zoom levels

= automatically increase thumbnail size

= optional (temporary) re-arrangement into grid layout

=» better integrate P&Z and SL

Adaptivity in Audio and Music Retrieval - A. Nlrnberger and S. Stober September, 2013
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Results: User Feedback (2) [£)

feature requests:

= visualize already explored regions (“fog of war”)
"= undo / reverse “playback”
= advanced filters
= e.g. by dominant color
= generate SF for a set of images

= goal: query with already labeled images to find more relevant
ones (bootstrapping classifier)

= tested in simulation experiment

published at the 8 Int. Workshop on Adaptive Multimedia
Retrieval (AMR’10), Linz, Austria, Aug. 2010.
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Example 3:

DYNAMIC VISUALIZATIONS FOR
EVOLVING MUSIC COLLECTIONS

eeeeeeeeeeeeeeee



Challenge [£)

= go far:
= static music collection (dataset)

" inreality:
= collections change (mostly grow)
" maps may quickly become outdated

"= problem:

" re-computing a map from scratch may confuse the user

" try to modify the existing map a little as possible to accommodate
changes
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The Candidates () i

= Multidimensional Scaling (MDS)
" compute a new map and try to align it with the previous one

-> Procrustes Analysis (translation, rotation & uniformly scaling)
Initial

3 Translatio Rotation & Scaling
configurations e Re flection

X \'
IR ANIAN

% : B i
[http://www.sensorysociety.org/ssp/wiki/Generalized_Procrustes_Analysis/]

" Landmark Multidimensional Scaling (LMDS)

= use only a sample of all points (“landmarks”) to compute the map
= initial songs

= place all other points w.r.t. their distances to the landmarks

= new songs
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The Candidates (2) [£)

= Growing Self-Organizing Maps (GSOM)
= SOM structure adapts to accommodate new data
" new cells may be added as needed at the boundary

value extrapolation

direct neighbors of added cell

border cell with maximum error

added cell

= problem: requires vector space representation of data
(e.g., through MDS vectorization)
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The Candidates (3)

" Stochastic Neighbor Embedding (SNE)
= goal: preserve the probabilities of points being neighbors

= use Kullback-Leibler divergence as cost function
(compares probability distributions)

pj| input space probabilities

Dgr(pi,qi) = E Dijli lugq—-
y ' tput spac babilities
i j|-uu put space probabilities

How to support change?

= use current map as initial solution
(with random positions for new songs)
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The Candidates (4) [}

= Neighbor Retrieval Visualizer (NeRV)
= goal: consider both, visualization precision and recall
= use Kullback-Leibler divergence both ways for cost function:

cost of missing a neighbor

E = )\ZDKL(Z%%;) + (1= A) ZDKL(%]%‘)

cost of retrieving dissimilar objects
= with A € [0, 1] as trade-off control

" reducestoSNEforA=1

How to support change?

= use current map as initial solution
(with random positions for new songs)

Adaptivity in Audio and Music Retrieval - A. Nlrnberger and S. Stober September, 2013
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Two-fold Evaluation [}

"= compare performance measures:
" continuity
" trustworthiness
" (mean smoothed) precision & recall

" mean position change

" 3sk users

= ...to play a memory game
= .. torate the different visualizations

= benchmark dataset:

= 12 official alboums of The Beatles, added in order of relase
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Performance Measure Comparison
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Performance Measure Comparison (2)

m.s. rank-b. precision

m.s. rank-b. recall

— GSOM
----- - MDS
...... eennt Landmark MDS
------------ o NeRV
SNE

1 3 5 7 9 11
number of albums in collection
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Performance Measure Comparison (3)
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Memory Game

prev With The Beatles [1963]

MDS memor) please click on a cover to play the song

" n=19 participants
= 12 albums (11 steps)

try the demo at:

http://demos.dke-research.de/
beatles-history-explorer/
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Memory Game — Results

" errors per round:

2 oH ©© MDS
= GSOM
1 51 0= NeRV

1.0

O
0.0 '

| < J
0.5/~
-

A
3

=g l*

i [ /17 T ‘
_,A'. * |

-

2

4

6 8 10

number of albums in collection

" task gets harder

= MDS visualization appears to be easiest to follow
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Memory Game — Results

" errors accumulated:

1.6—— . .
1.4
1.2
v 1.0
20.8
0.6
0.4
0.2
0.0

MDS GSOM NeRV
algorithm

" mean memorization errors over all transitions
and confidence intervals (a = 0.05)

" MDS visualization appears to be easiest to follow
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Future Directions

= test with other datasets

" test more algorithms

" modify NeRV to better support incremental collection changes

= add another term to the cost function
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Wrap-up: Use of Gamification in MIR

a) to collect ground truth
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issues: may require further processing!
Do not blindly trust your data!

b) to give test users a concrete task
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issues: game task may differ from real-world scenario
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Part 4:

FROM USER-ADAPTIVE ORGANIZATION

OF MUSIC COLLECTIONS
TO BISOCIATIVE MUSIC DISCOVERY
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Challenge (9

How can we make music recommendations
more interesting?

"= increase serendipity



Approach [EME

leverage the effect of bisociations

" create an environment where serendipitous
recommendations become more likely
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Bisociations [}

= Arthur Kostler: The Act of Creation (1964)

“the perceiving of a situation or idea, L, in two self-consistent but

habitually incompatible frames of reference, M, and M.,.
The event L, in which the two intersect, is made to vibrate simultaneously

on two different wavelengths, as it were. While this unusual situation
lasts, L is not merely linked to one associative context but bisociated with

V4

two.

"+ simultaneous mental association of an idea or object with two
fields / frames of reference ordinarily not regarded as related

= combine two different views on a music collection
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Combining Orthogonal Similarity Spaces

Agapshaty in Audio and

projection weights

dynamics
rhythm

timbre

distortion weights

dynamics
rhythm

timbre

0.0
1.0
0.0

1.0
0.0
1.0
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Bisociations in Graphs [}

" bridging concepts
= established by ambiguous terms or metaphors

= word-plays (context switching leads to a surprising outcome often
perceived as joke)

= bridging graphs

= connect concepts from different domains by inducing one or
multiple paths between those concepts.

= either the two concepts must lie in different domains or the path
must contain at least one vertex in a different domain

= structural similarity

= common structures in the context of each concept, i.e., similar
subgraphs

" may lead to same / very similar abstraction of both concepts
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Bisociations by Bridging Graphs [€}

= path that connects ideas or objects
a) of different domains (ordinarily not regarded as related)
b) by incorporating another domain

domain, domain, domain, domain,
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Similarity Space + Linked Data (Graph)

nearest neighbors:
graph traversal

projection:
content-based similarity
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Linking Tracks and Metadata

audio recording
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The MusicBrainz Universe

Examples:

= The song The Rockafeller Skank by Fatboy 5lim includes a sample from the Just
Brothers song Slicea Tomato.

" Paul Di'Anno was a member of Iron Maiden from 1977 until 1981.

=  The Metallica album 5t. Anger was produced by Bob Rock & Metallica.
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Relevance Measure for Traversal? €8) i

* should capture likelihood of serendipity

= possible simple heuristics:

= prefer tracks that are projected far away from the primary focus
(and thus most likely sound very different)

= prefer tracks that the user has not listened to a lot or for a long
time (and probably is no longer aware of)

= prefer tracks of different artists and/or albums

= edge weights
" inverse frequency weighting
= similar to idf weights
= favors rare ARLs

" Jearn weights from feedback

" multiple paths = aggregation method needed
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The End

THANKS A LOT FOR LISTENING!
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