
MUSIC CONTENT ANALYSIS 
AND SIMILARITY 

Part II 



Domain: 
–  Time domain 

consider signal in time/amplitude representation (“waveform”) 

–  Frequency domain 
consider signal in frequency/magnitude representation 

Transformation from time to frequency domain using, e.g., 
Fast Fourier Transform (FFT) 

Categorization of Content-Based Features 



Temporal scope: 
–  Instantaneous 

feature is valid for a “point in time” (NB: time resolution of 
ear is several msec!) 

–  Segment 
feature is valid for a segment, e.g., phrase, chorus (on a 
high level), or a chunk of n consecutive seconds in the 
audio signal 

–  Global 
feature is valid for whole audio excerpt or piece of music 

Categorization of Content-Based Features 



Level of abstraction: 
–  Low-level 

properties of audio signal (e.g., energy, zero-crossing-rate) 
–  Mid-level 

aggregation of low-level descriptors,  
applies psycho-acoustic models (cf. MFCC, FP); 
       typically the level used when estimating similarity 

–  High-level 
musically meaningful to listener, e.g., melody, themes, motifs; 
“semantic” categories, e.g., genre, time period, mood, … 
(cf. semantic tags learned from audio features) 

Categorization of Content-Based Features 



Possible idea: get features that describe music the way humans do 
and compute similar songs based on this information 
Unfortunately we are are not able to extract most of these features 
reliably (or at all…) 

–  even “simple” human concepts are difficult to model (“semantic gap”) 
–  even tempo estimation is very hard… 
–  NB: a human annotation approach is done in the Music Genome 

Project (cf. Pandora’s automatic radio station service) 

Furthermore some of these features are quite subjective (e.g., 
mood) 
Need to find computable descriptors that capture these 
dimensions somehow (…and work acceptably) 

How to Describe Audio Content? 



Acoustic property to describe: 
–  Loudness: perceived strength of sound; e.g., energy 
–  Pitch: frequency, psychoacoustic ordering of tones (on scale; 

from low to high); e.g., chroma-features 
–  Timbre: “tone color”, what distinguishes two sounds with 

same pitch and loudness; e.g., MFCCs  
–  Chords and harmony: simultaneous pitches 
–  Rhythm: pattern in time; e.g., FPs 
–  Melody: sequence of tones; combination of pitch and rhythm 

cf. (Casey et al.; 2008) 

Descriptors of Content 



Scheme of Content-Based Feature Extraction 

Pulse Code Modulation (PCM) analog signal 

sampling 
quantization fram

ing 

frame 1: e.g. sample 1...256 
frame 2: e.g. sample 129...384 
frame 3: e.g. sample 257...512 
... 
frame n 

time domain feature calculation 

windowing 

FFT 

frequency domain feature 
calculation 

aggregation, model building (mean, 
median, sum, GMM, HMM) feature value, vector, or matrix 



PCM: analog signal is sampled at equidistant 
intervals and quantized in order to store it in 
digital form (here with 4 bits) 

Problems that may occur in ADC: 

• Quantization error: difference 
between the actual analog value and 
quantized digital value 

•  Solution: finer resolution (use more 
bits for encoding), common choice in 
music encoding: 16 bits per channel 

•  Due to Nyquist–Shannon Sampling 
Theorem, frequencies above ½ of 
sampling frequency (Nyquist 
frequency) are discarded or heavily 
distorted 

•  Solution: choose a sampling 
frequency that is high enough (e.g. 
44,100 Hz for Audio CDs) 

Analog-Digital-Conversion (ADC) 



Framing 

In short-time signal processing, pieces of music are cut into 
segments of fixed length, called frames, which are processed one 
at a time; typically, a frame comprises 256 - 4096 samples. 

Signal 

Frame 1 

Frame 2 

Frame 3 

Hop size Frame width 

... 



Scheme of Content-Based Feature Extraction 

Pulse Code Modulation (PCM) analog signal 

sampling 
quantization fram

ing 

frame 1: e.g. sample 1...256 
frame 2: e.g. sample 129...384 
frame 3: e.g. sample 257...512 
... 
frame n 

time domain feature calculation 

windowing 

FFT 

frequency domain feature 
calculation 

aggregation, model building (mean, 
median, sum, GMM, HMM) feature value, vector, or matrix 



s(k)...amplitude of kth sample in time domain 
K...frame size (number of samples in each frame) 

Low-Level Feature: Zero Crossing Rate 

Scope: time domain 

Calculation: 
     

Description: 
number of times the amplitude value changes its sign within frame t 

Remarks: 
commonly used as part of a low-level descriptor set 
+ might be used as an indicator of pitch 
+ sometimes stated to be an approximate measure of the signal’s noisiness 
– in general, low discriminative power 



Zero Crossing Rate: Illustration 



s(k)...amplitude of kth sample in time domain 
K...frame size (number of samples in each frame) 

Low-Level Feature: Amplitude Envelope 

Scope: time domain 

Calculation: 
     

Description: 
maximum amplitude value within frame t 

Remarks: 
similar to RMS energy (see next), but less stable 
+ important for beat-related feature calculation, e.g. for beat detection 
– discriminative power not clear 
– sensitive to amplitude outliers 

AEt = max
k=t⋅K

(t+1)⋅K−1
s(k)



Amplitude Envelope: Illustration 



s(k)...amplitude of kth sample in time domain 
K...frame size (number of samples in each frame) 

Low-Level Feature: RMS Energy 

Root-Mean-Square Energy (aka RMS power, RMS level, RMS amplitude) 

Scope: time domain 
Calculation: 

   

Remarks:  
+ beat-related feature, can be used for beat detection 
+ related to perceived intensity 
+ good loudness estimation 
– discriminative power not clear 



RMS Energy: Illustration 



Scheme of Content-Based Feature Extraction 

Pulse Code Modulation (PCM) analog signal 

sampling 
quantization fram

ing 

frame 1: e.g. sample 1...256 
frame 2: e.g. sample 129...384 
frame 3: e.g. sample 257...512 
... 
frame n 

time domain feature calculation 

windowing 

FFT 

frequency domain feature 
calculation 

aggregation, model building (mean, 
median, sum, GMM, HMM) feature value, vector, or matrix 



Fourier Transform 

Transformation of the signal 
   from time domain (time vs. amplitude) 
   to frequency domain (frequency vs. magnitude) 
•  Theorem: any continuous periodic function with a 
period of 2π can be represented as the sum of sine and/
or cosine waves (of different frequencies)  
•  Implication: any audio signal can be decomposed into 
an infinite number of overlapping waves when periodic 

Jean Baptiste 
Joseph Fourier 

•  Periodicity is achieved by multiplying the PCM magnitude values of each 
frame with a suited function, e.g., a Hanning window (windowing) 
•  In our case: Discrete Fourier Transform (DFT) 
•  In practice efficiently calculated via Fast Fourier Transform (FFT)  
  (Cooley, Tukey; 1965) 



Concepts and Terminology (4) 



Representation as STFT 



Mt(n)...magnitude in frequency domain at 
frame t and frequency bin n 
N...number of highest frequency band 

Low-Level Feature: Spectral Centroid 

Scope: frequency domain 
Calculation: 

Description: center of gravity of the magnitude spectrum of the DFT, 
i.e. the frequency (band) region where most of the energy is 
concentrated 

Remarks: 
used as measure of sound sharpness (strength of high frequency energy) 
– sensitive to low pass filtering (downsampling) as the high frequency 
bands are given  more weight 
– sensitive to white noise (for the same reason) 



Spectral Centroid: Illustration 



Mt(n)...magnitude in frequency domain at 
frame t and frequency bin n 
N...number of highest frequency band 
Ct…Spectral Centroid 

Low-Level Feature: Bandwidth 

Scope: frequency domain 
Calculation: 

Description: describes the spectral range of the interesting parts of the 
signal 

Remarks: 
+ average bandwidth of a piece of music may serve as indicator of 
aggressiveness 
– no information about perceived rhythmic structure 
– not suited to distinguish different parts of a piece of music 
   (cf. vocal part in metal piece not visible) 



Bandwidth: Illustration 



Nt...frame-by-frame normalized 
frequency distribution in frame t 
N...number of highest frequency band 

Low-Level Feature: Spectral Flux 

(aka Delta Spectrum Magnitude) 
Scope: frequency domain 
Calculation: 

Description:  
measures the rate of local spectral change, big spectral change from 
frame t-1 to t  → high Ft value 

Remarks: 
•  commonly used as part of a low-level descriptor set 
+ may be used to distinguish between aggressive and calm music 
+ may serve as speech detector 



Spectral Flux: Illustration 
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Mid-level feature extraction and similarity calculation 

Pitch Class Profiles: related to Western music tone 
scale, melodic retrieval 

MFCCs: related to timbral properties 
Block-Level Features 
- Fluctuation Patterns: related to rhythmic/periodic properties 

- Correlation Patterns: temporal relation of frequencies 

- Spectral Contrast Patterns: related to “tone-ness” 

Throughout: Examples and Applications 

Outline 



Convert signal to frequency domain, e.g., 
using an FFT 
(Psycho)acoustic transformation 
(Mel-scale, Bark-scale, Cent-scale, ...): 
mimics human listening process 
(not linear, but logarithmic!), 
removes aspects not perceived by humans, 
emphasizes low frequencies 
Extract features 

–  Block-level 
(large time windows, e.g., 6 sec) 

–  Frame-level 
(short time windows, e.g., 25 ms) 
needs feature distribution model 

Mid-level Feature Processing Overview 
“Block” “Frames” 
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Figure 2.2: Comparison of auditory scales.

on the y-axis (the frequency in Mel) have equal bandwidth, while on the x-axis

(linear frequency resolution) the size of intervals is logarithmically increasing. The

weighting of the bins for both hard and soft mapping are illustrated in the upper

and the lower plot. For the soft mapping triangular filters are used, while for the

hard mapping all bins are equally weighted as illustrated in figure 2.3. It is worth

mentioning that this mapping of linear to logarithmic frequency scale could also be

realized directly via designing a specific filter bank of FIR or IIR filters. However,

it is common practice in MIR to first compute the linear FFT and then perform

this mapping onto a logarithmic auditory scale for performance reasons.

Up to this point the spectrum of audio signal as a whole has been discussed. In the

following Time-Frequency Representations (TFR) are introduced, which represent

the time-localized, short-time frequency content of an audio signal.

Acoustic Scales 



(aka chroma vectors) 
•  Transforming the frequency activations into well known musical 

system/representation/notation 
•  Mapping to the equal-tempered scale (each semitone equal to one 

twelfth of an octave) 
•  For each frame, get intensity of each of the 12 semitone (pitch) 

classes 

Pitch Class Profiles 
(Fujishima; 1999) 



Mapping Frequencies to Semitones  



Map data to semitone scale to  
represent (western) music 
Frequency doubles for each octave 

–  e.g. pitch of A3 is 220 Hz,  
compared to 440 Hz of A4 

Mapping, e.g., using filter bank  
with triangular filters 

–  centered on pitches 
–  width given by neighboring pitches 
–  normalized by area under filter 

Semitone Scale 
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Sum up activations that belong to the same class of pitch 
(e.g., all A, all C, all F#) 

Results in a 12-dimensional feature vector for each frame 

PCP feature vectors describe tonality 
–  Robust to noise (including percussive sounds) 
–  Independent of timbre (~ played instruments) 
–  Independent of loudness 

Pitch Class Features 

+ 



Pitch Class Profiles in Action 

Sonic Visualizer by QMUL, C4DM; http://www.sonicvisualiser.org 



Real-Time Score Following 

Tracks the position of a piano 
player in the score while playing 
• Uses a combination of spectral flux 

and PCPs as features 
• Dynamic Time Warping (DTW) to 

match recorded live performance 
with dead-pan synthesized version  

(Arzt, Widmer; 2010) 



Application: Automatic Page Turner 
(Arzt, Widmer; 2010) 


