

Part IV: Personalization, Context-awareness, and Hybrid Methods

Markus Schedl Peter Knees

{markus.schedl, peter.knees}@jku.at

Department of Computational Perception Johannes Kepler University (JKU) Linz, Austria

Overview

1. Personalization and Context-awareness

2. Hybrid Methods

Computational Factors
Influencing Music
Perception and
Similarity

music content

Examples:

- rhythm
- timbre
- melody
- harmony
- loudness

Examples:

- mood
- activities
- social context
- spatio-temporal context
- physiological aspects

user context music perception and similarity

Examples:

- semantic labels
- song lyrics
- album cover artwork
- artist's background
- music video clips

music
context

(Schedl et al., JIIS 2013)

Examples:

- music preferences
- musical training
- musical experience
- demographics

user properties



Computational Factors
Influencing Music
Perception and
Similarity

Examples:

- mood
- activities
- social context
- spatio-temporal context
- physiological aspects

user context

personalized/contextaware methods: typically extend music content or music context with a user-category

Examples:

- rhythm
- timbre
- melody
- harmony
- loudness

Examples:

- semantic labels
- song lyrics
- album cover artwork
- artist's background
- music video clips

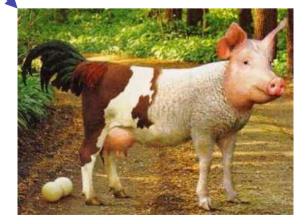
music context

(Schedl et al., JIIS 2013)

Examples:

- music preferences
- musical training
- musical experience
- demographics

user properties



Computational Factors
Influencing Music
Perception and
Similarity

Examples:

- mood
- activities
- social context
- spatio-temporal context
- physiological aspects

user context music

Examples:

- rhythm
- timbre
- melody
- harmony
- loudness

Examples:

- semantic labels
- song lyrics
- album cover artwork
- artist's background
- music video clips

music
context

(Schedl et al., JIIS 2013)

hybrid methods:

combine factors of at least two categories

Examples:

- music preferences
- musical training
- musical experience
- demographics

user properties

Basic Categorization

- Personalized systems/methods
 - incorporate aspects of the *user properties*, i.e. static attributes
 - take into account music genre preference, music experience, age, etc.
- Context-aware systems/methods
 - incorporate aspects of the *user context*, i.e. dynamic aspects
 - active user-awareness: new user context is automatically incorporated into the system, adaptively changing its behavior
 - passive user-awareness: application presents the new context to the user for later retrieval/incorporation

Typical Features used in CA

Temporal and spatial features

- temporal: weekday, time of day, season, month, etc.
- spatial: position (coordinates), location (country, city, district; home, office)

Physiological features

- heart rate, pace, body temperature, skin conductance, etc.
- application scenarios: music therapy [Liu, Rautenberg; 2009], sport trainer [Elliot, Tomlinson; 2006] [Moens et al.; 2010]
 - achieving and maintaining a healthy heart rate in music therapy
 - adapting music to pace of runner
 - selecting music suited to stimulate a particular running behavior, reach a performance level, or fit a training program

Gathering the User Context

Implicit

- sensors: GPS, heart rate, accelerometer, pressure, light intensity, environmental noise level (now available in abundance through smart phones)
- derived features: location + time → weather
- learned features (via ML): accelerometer, speed → user activity

Explicit

- via user involvement/feedback
- e.g., mood, activity, item ratings, skipping behavior [Pampalk et al.; 2005]

Overview

1. Personalization and Context-awareness

2. Hybrid Methods

- Music playlist generation using music content and music context
- #nowplaying approaches: music taste analysis,
 browsing the world of music on the microblogosphere
- Geospatial music recommendation
- User-Aware music recommendation on smart phones
- Matching places of interest and music

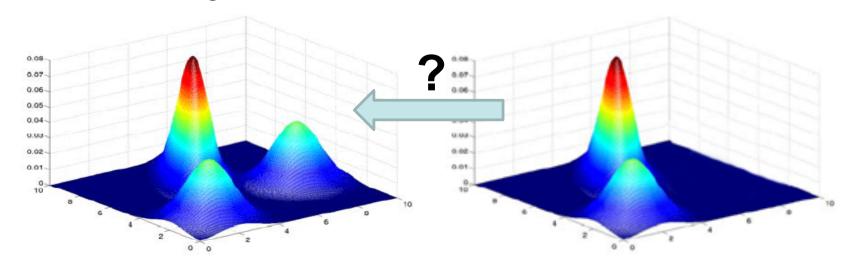
(Knees et al.; 2006)

- Idea: combine music content + music context features to improve and speed up playlist generation
- Application scenario: "The Wheel" create a circular playlist containing all tracks in a user's collection (consecutive tracks as similar as possible)
- Approach: use web features to confine search for similar songs (carried out on music content features)

Audio/content features:

- model song's distribution of MFCCs via Gaussian Mixture Models (GMM)
- estimate similarity between two songs A and B by sampling points from A's GMM and computing probability that points "belong to" GMM of B

(Knees et al.; 2006)



(Knees et al.; 2006)

- Web/music context features:
 - query Google for [artist "music"]
 - fetch 50 top-ranked web pages
 - remove HTML, stop words, and infrequent terms
 - for each artist's virtual document, compute tf-idf vectors:

$$w_{ta} = \begin{cases} (1 + \log_2 t f_{ta}) \log_2 \frac{N}{df_t} & \text{if } t f_{ta} > 0\\ 0 & \text{otherwise} \end{cases}$$

perform cosine normalization (different document length!)

We computed so far...

- > similarities based on music content (song level)
- > feature vectors (tf-idf) from web content (artist level)

(Knees et al.; 2006)

How to combine the two?

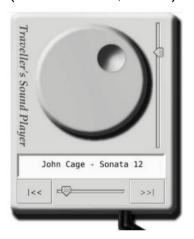
- adapt the content similarities according to web similarity
- penalize transitions (decrease similarity) between songs whose artists are dissimilar in terms of web features

To obtain the final, hybrid similarity measure:

Folk-Rock(4) Rap(4) Jazz(1) Punk-Rock(1)	Electronica(2)	Electronica(5)	Electronica(1)	Electronica(16) Acid Jazz(1)
Folk-Rock(1) Italian(1)	Electronica(1)	Acid Jazz(1)		Acid Jazz(1) Electronica(1)
Italian(3) Electronica(1)		Reggae(2) Italian(1)		Rap(2) A Cappella(1) Acid Jazz(1) Electronica(1)
Punk-Rock(4) Electronica(1)	Rap(4)		Blues(1)	Jazz(3)
Electronica(12) Punk-Rock(1)	Rap(1) Electronica(1)	Celtic(2) Reggae(1)	Celtic(3) A Cappella(1)	Jazz(5) Bossa Nova(4) Blues(3) A Cappella(2) Rap(1)

train Self-Organizing Map (SOM) on artist web features

(Knees et al.; 2006)



To obtain the final, hybrid similarity measure:

Folk-Rock(4) Rap(4) Jazz(1) Punk-Rock(1)	Electronica(2)	Electronica(5)	Electronica(1)	Electronica(16) Acid Jazz(1)
Folk-Rock(1) Italian(1)	Electronica(1)	Acid Jazz(1)		Acid Jazz(1) Electronica(1)
Italian(3) Electronica(1)		Reggae(2) Italian(1)		Rap(2) A Cappella(1) Acid Jazz(1) Electronica(1)
Punk-Rock(4) Electronica(1)	Rap(4)		Blues(1)	Jazz(3)
Electronica(12) Punk-Rock(1)	Rap(1) Electronica(1)	Celtic(2) Reggae(1)	Celtic(3) A Cappella(1)	Jazz(5) Bossa Nova(4) Blues(3) A Cappella(2) Rap(1)

- set to zero content-based similarity of songs by dissimilar artists (according to position in SOM)
- i.e., when creating playlists,
 consider as potential next
 track only songs by artists
 close together on SOM

(Knees et al.; 2006)

To obtain the final, hy

Folk-Rock(4) Rap(4) Jazz(1) Punk-Rock(1)	Electronica(2)	Electronica(5)	_	erpreti nce ma
Folk-Rock(1) Italian(1)	Electronica(1)	Acid Jazz(1)		man Pr ing het
Italian(3) Electronica(1)		Reggae(2) Italian(1)	appro	Acid Jazz(1) Electronica(1)
Punk-Rock(4) Electronica(1)	Rap(4)		Blues(1)	Jazz(3)
Electronica(12) Punk-Rock(1)	Rap(1) Electronica(1)	Celtic(2) Reggae(1)	Celtic(3) A Cappella(1)	Jazz(5) Bossa Nova(4) Blues(3) A Cappella(2) Rap(1)

The playlist is eventually created by interpreting the adapted distance matrix as Traveling Salesman Problem (TSP) and applying heuristics to approximate a solution.

consider as potential next track only songs by artists close together on SOM (Knees et al.; 2006)

Y

cording to

ased

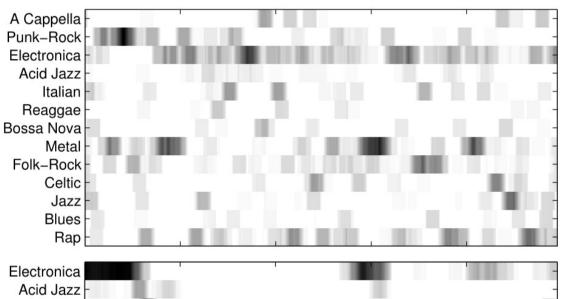
aylists,

Evaluation:

- dataset: 2,545 tracks from 13 genres, 103 artists
- performance measure: consistency of playlists (for each track, how many of its 75 consecutive tracks belong to a certain genre)

(Knees et al.; 2006)

(Knees et al.; 2006)



music content similarity only

Acid Jazz
Reaggae
A Cappella
Jazz
Bossa Nova
Blues
Celtic
Italian
Folk-Rock
Rap
Punk-Rock
Metal

1000

1500

2000

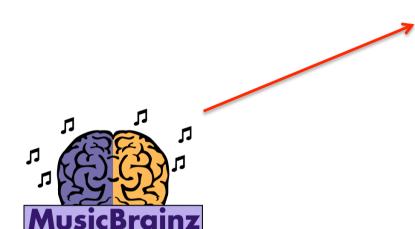
500

hybrid approach

#nowplaying approaches: Basics

(Schedl, ECIR 2013)

- Extract listening events from microblogs
- (a) Filter Twitter stream (#nowplaying, #itunes, #np, ...)
- (b) Multi-level, rule-based analysis (artists/songs) to find relevant tweets (MusicBrainz)
- (c) Last.fm, Freebase, Allmusic, Yahoo! PlaceFinder to annotate tweets



"Alice Cooper" "BB King" "Prince" "Metallica" … {"id str":"142338125895696385", "place":null, "text": "#NowPlaying Christmas Tree-Lady Gaga", "in_reply_to_user_id":null, "favorited":false, "geo":null, "retweet coun t":0,"in reply to screen name":null,"in_reply_to_status_id_str":null,"source":"w eb", "retweeted": false, "in reply to user id str": null, "coordinates": null, "created at":"Thu Dec 01 20:23:48 +0000 2011","in reply to status id":null,"contributors ":null,"user":{"id str":"20209983","profile link color":"2caba5","screen name":" tamse77", "follow request sent":null, "geo enabled":false, "favourites count":26, "I ocation": "Maryland ", "following": null, "verified": false, "profile background color ":"e80e0e", "show all inline media": true, "profile background tile": true, "follower s count":309,"profile image url":"http:\/\/a1.twimg.com\/profile images\/1647613 274V392960 10150559294659517 793614516 11700077 1689597400 n normal.jpg", "description": being awesome since 1990. ", "is translator": false, "profile background i mage url https://wsi0.twimg.com/profile background images/359728130/ frames.gif", "friends count":148, "profile sidebar fill color": "ffffff", "default p rofile":false."listed count":3,"time zone":"Central Time (US & Canada)","contrib utors_enabled":false,"created_at":"Fri Feb 06 01:51:10 +0000 2009","profile_side bar border color":"f5f8ff","protected":false,"notifications":null,"profile use b ackground_image":true,"name":"Katie","default_profile_image":false,"statuses_cou nt":22172, "profile text color": "615d61", "url": null, "profile image url https": "ht tps:\/\si0.twimg.com/\profile images\/1647613274\/392960 10150559294659517 7936 14516 11700077 1689597400 n normal.jpg","id":20209983,"lang":"en","profile backg round image url": "http:\/\a2.twimg.com\/profile background images\/359728130\/f rames.gif","utc offset":-21600},"truncated":false,"id":142338125895696385,"entit ies":{"hashtags":[{"text":"NowPlaying","indices":[0,11]}],"urls":[],"user mentions":[]}}

#nowplaying approaches: Basics

(Schedl, ECIR 2013)

Annotate identified listening events and create a database

{"id str":"142338125895696385","place":null,"text":"#NowPlaying Christmas Tree-Lady Gaga", "in reply to user id":null, "favorited":false, "geo":null, "retweet coun t":0."in reply to screen name":null,"in_reply_to_status_id_str":null,"source":"w eb". "retweeted": false. "in reply to user id str": null. "coordinates": null. "created at":"Thu Dec 01 20:23:48 +0000 2011","in reply to status id":null,"contributors ":null,"user":{"id str":"20209983","profile link color":"2caba5","screen name":" tamse77", "follow request sent":null, "geo enabled":false, "favourites count":26, "I ocation": "Maryland ", "following": null, "verified": false, "profile background color ":"e80e0e", "show all inline media": true, "profile background tile": true, "follower s count":309,"profile image url":"http:\/\/a1.twimg.com/\/profile images\/1647613 274\/392960 10150559294659517 793614516 11700077 1689597400 n normal.jpg". "description": "being awesome since 1990. ", "is translator": false, "profile background i mage_url_https":"https:\/\si0.twimg.com\/profile_background_images\/359728130\/ frames.gif", "friends count":148, "profile sidebar fill color": "ffffff", "default p rofile":false, "listed count":3, "time zone": "Central Time (US & Canada)", "contrib utors enabled":false,"created_at":"Fri Feb 06 01:51:10 +0000 2009","profile_side bar border color":"f5f8ff","protected":false,"notifications":null,"profile use b ackground image":true,"name":"Katie","default_profile_image":false, statuses_cou nt":22172,"profile_text_color":"615d61","url":null,"profile_image_url_https":"ht tps:\//si0.twima.com/profile_images\/1647613274\/392960_10150559294659517_7936 14516 11700077 1689597400 n normal.jpg","id":20209983,"lang":"en","profile backg round image url": "http:\/\a2.twimg.com/profile background images\/359728130Vf rames.gif","utc offset":-21600},"truncated":false,"id":142338125895696385,"entit ies":{"hashtags":[{"text":"NowPlaying","indices":[0,11]}],"urls":[],"user mentions":[]}}

134243700380401664 127821914 11 2 106.83 -6.23 1 1 202085 3529910 0 1 .. 134243869201154048 174194590 11 2 -0.142 51.52 2 2 330061 5762915 1 0 ..

twitter-id user-id month weekday longitude latitude country-id city-id artist-id track-id <tag-ids>

"MusicMicro" dataset available:

http://www.cp.jku.at/datasets/musicmicro

Some statistics on spatial distribution

#nowplay	ring	#itune	s
country	tweets	country	tweets
Brazil	725,389	USA	78,460
USA	673,839	Japan	30,932
Japan	458,558	Mexico	23,047
Mexico	419,584	Brazil	16,390
Indonesia	284,082	UK	15,134
South Korea	251,132	Canada	11,266
China	183,178	South Korea	8,652
UK	128,744	Australia	5,119
Netherlands	121,134	China	4,492
Venezuela	110,336	Germany	3,157

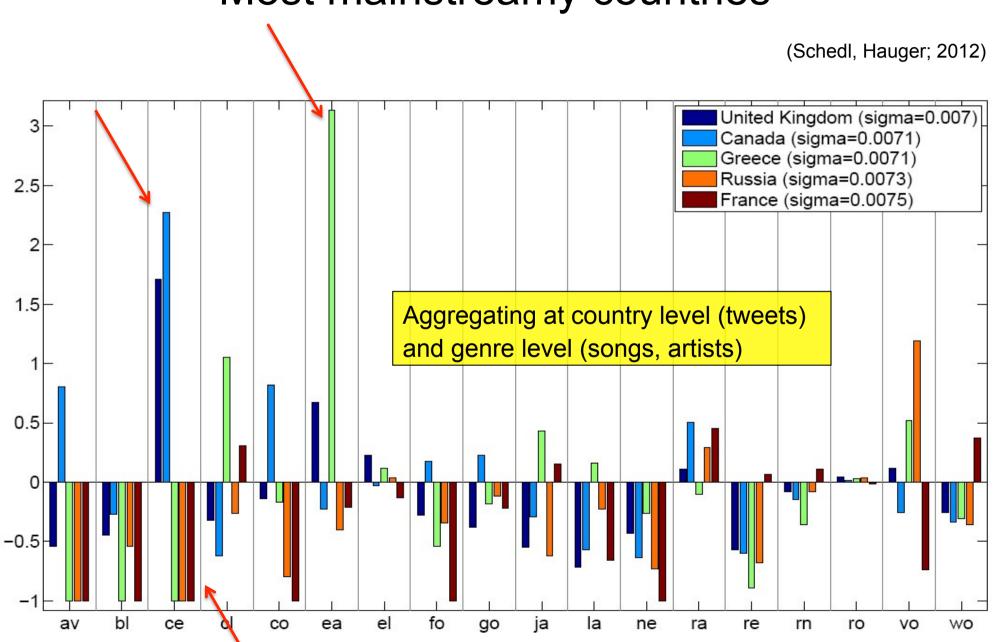
most active countries

Some statistics on artist distribution

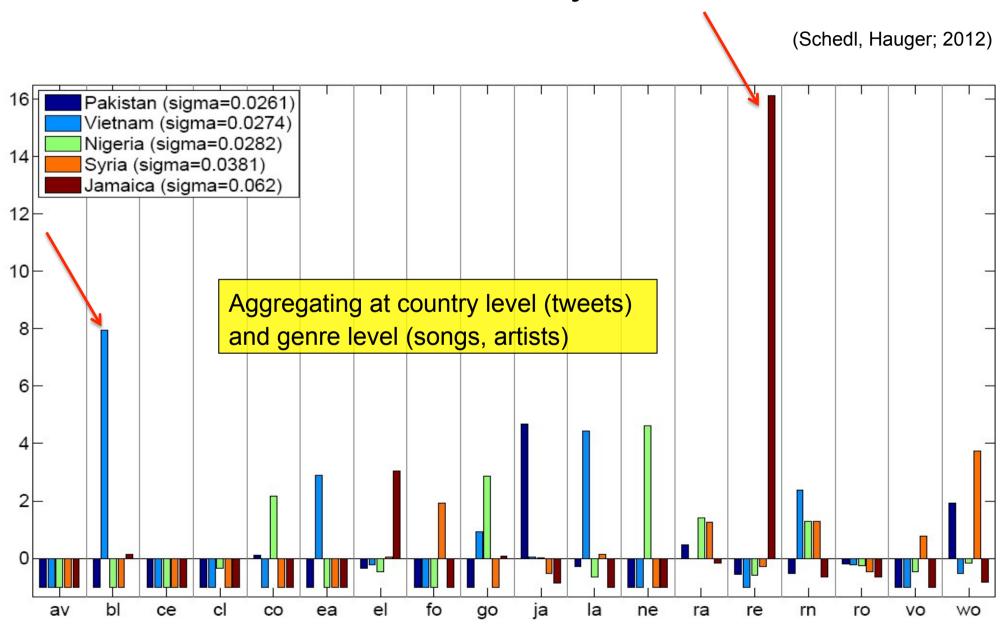
most frequently listened artists

#nowplaying		#itunes	
artist	tweets	artist	tweets
Paramore	9,066	The Beatles	939
Drake	7,697	Daft Punk	683
Katy Perry	6,998	Britney Spears	567
Bruno Mars	6,932	Adele	462
Lady Gaga	6,919	Coldplay	428
Coldplay	6,434	Bruno Mars	416
Eminem	6,352	Katy Perry	374
Rihanna	6,038	The Black Eyes Peas	373
Taylor Swift	5,844	Kanye West	367
Usher	5,445	Lady Gaga	358
Muse	5,383	Avril Lavigne	308
Justin Bieber	5,028	Arcade Fire	299
The Beatles	4,579	Radiohead	266
Michael Jackson	$4,\!476$	Kings of Leon	240
Linkin Park	4,285	Duran Duran	238
Oasis	4,190	Michael Jackson	229
Kanye West	4,013	Linkin Park	228
Chris Brown	3,943	Eminem	211
Avril Lavigne	3,780	Muse	209
Radiohead	3,756	The Black Keys	203

#nowplaying approaches: Music taste analysis Most mainstreamy countries

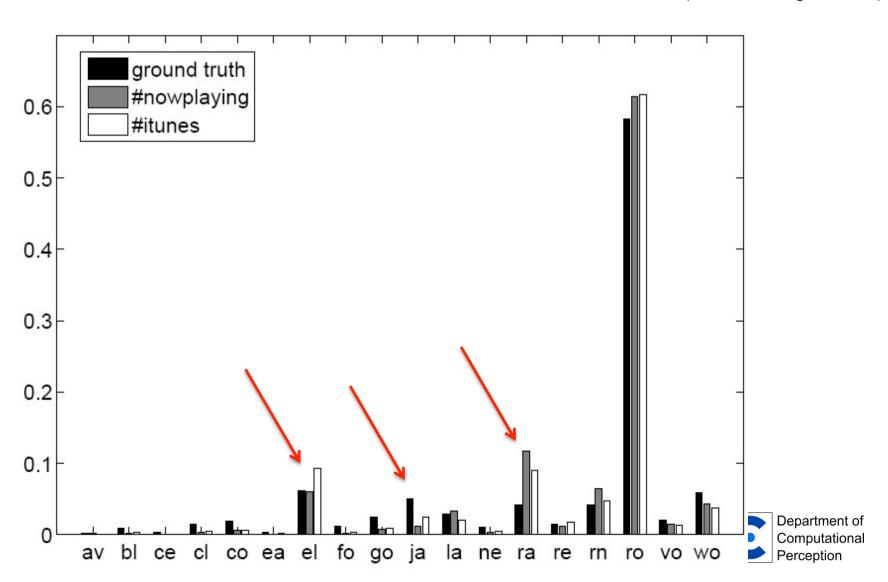


#nowplaying approaches: Music taste analysis Least mainstreamy countries



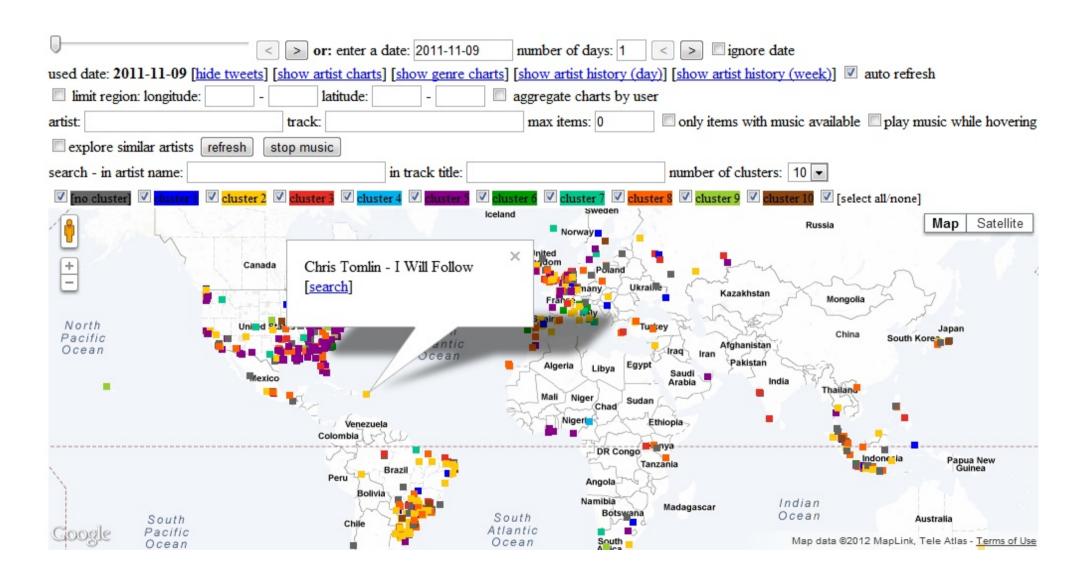
#nowplaying approaches: Music taste analysis Usage of specific products

(Schedl, Hauger; 2012)

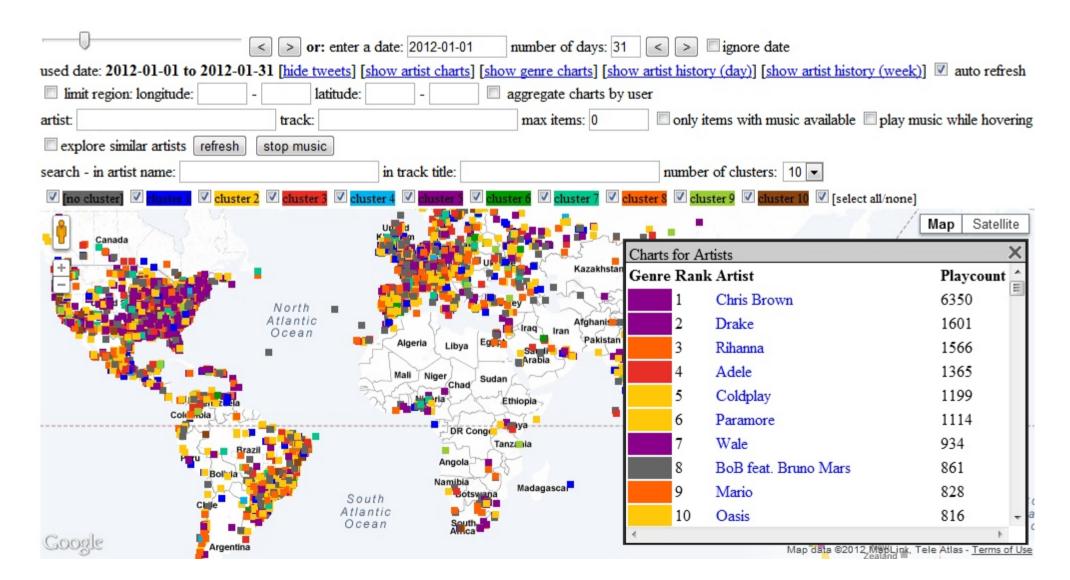


- "MusicTweetMap"
 - Info: http://www.cp.jku.at/projects/MusicTweetMap
 - App: http://songwitch.cp.jku.at/cp/maps/tweetMapOverlay.php
 - Features:
 - browse by specific date/day or time range
 - show similar artists (based on co-occurrences in tweets)
 - restrict to country, state, city, and longitude/latitude coordinates
 - metadata-based search (artist, track)
 - clustering based on Non-negative Matrix Factorization (NMF) on Last.fm tags → genres
 - artist charts, genre charts
 - artist histories on plays

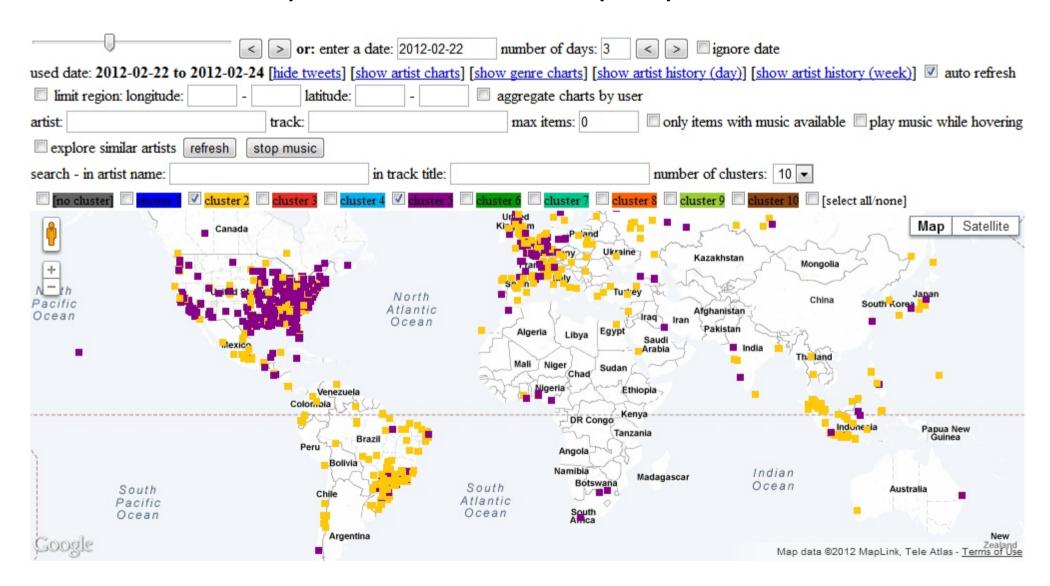
Visualization and browsing of geospatial music taste



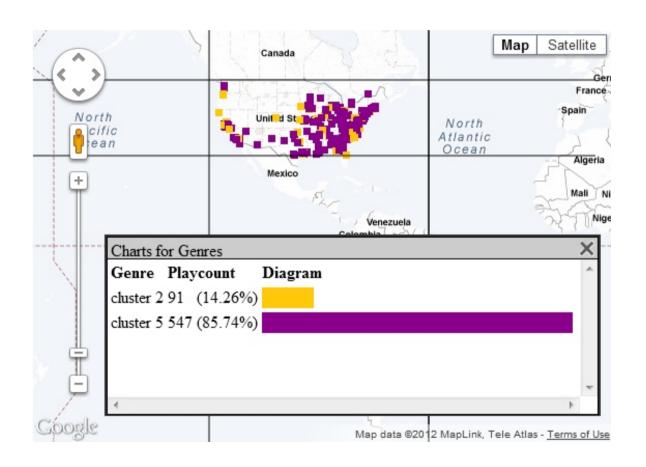
Investigating geospatial music taste: 1 month



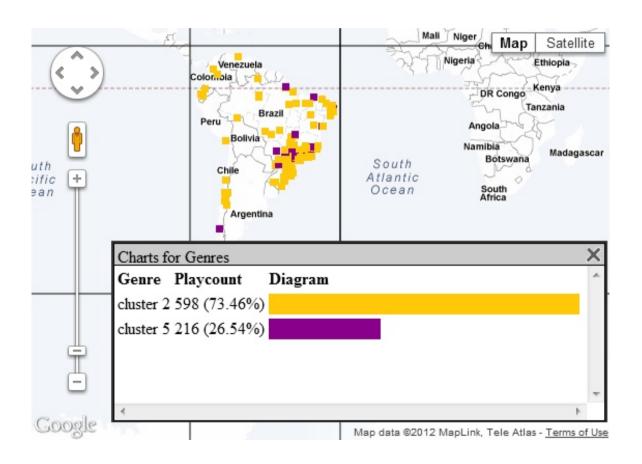
Geospatial music taste: "hip-hop" vs. "rock"



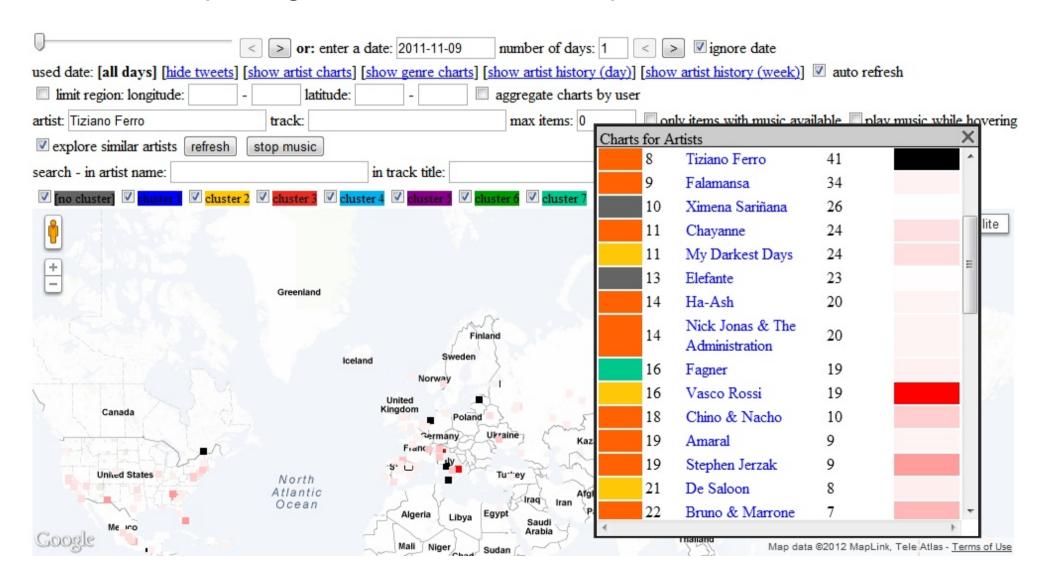
Geospatial music taste: "hip-hop" vs. "rock" (USA)



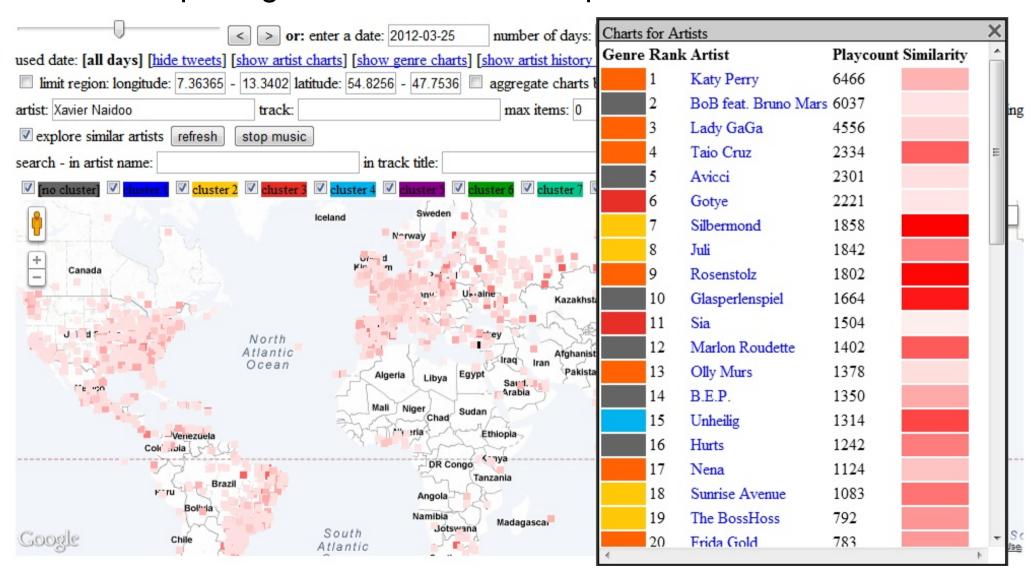
Geospatial music taste: "hip-hop" vs. "rock" (South America)



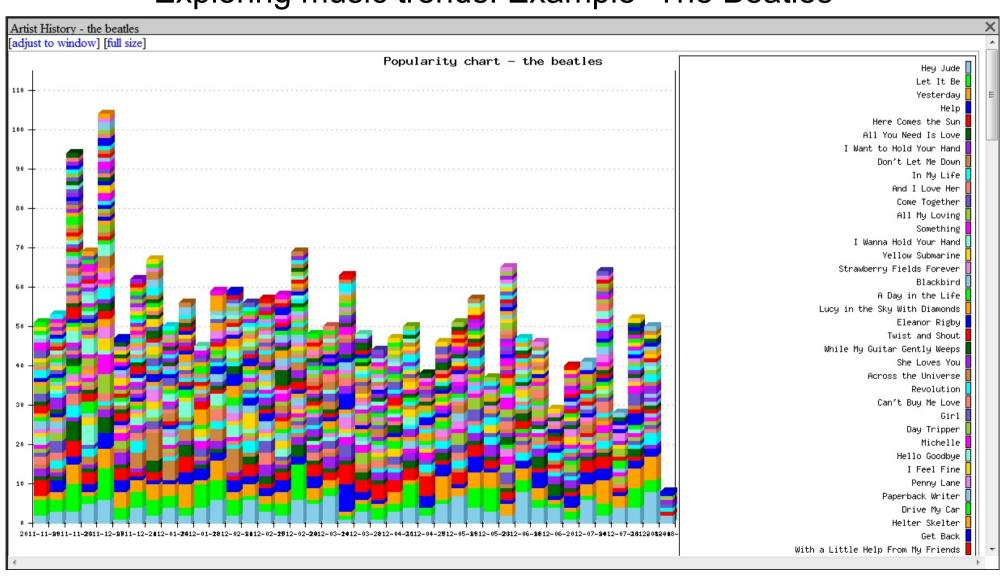
Exploring similar artists: Example "Tiziano Ferro"



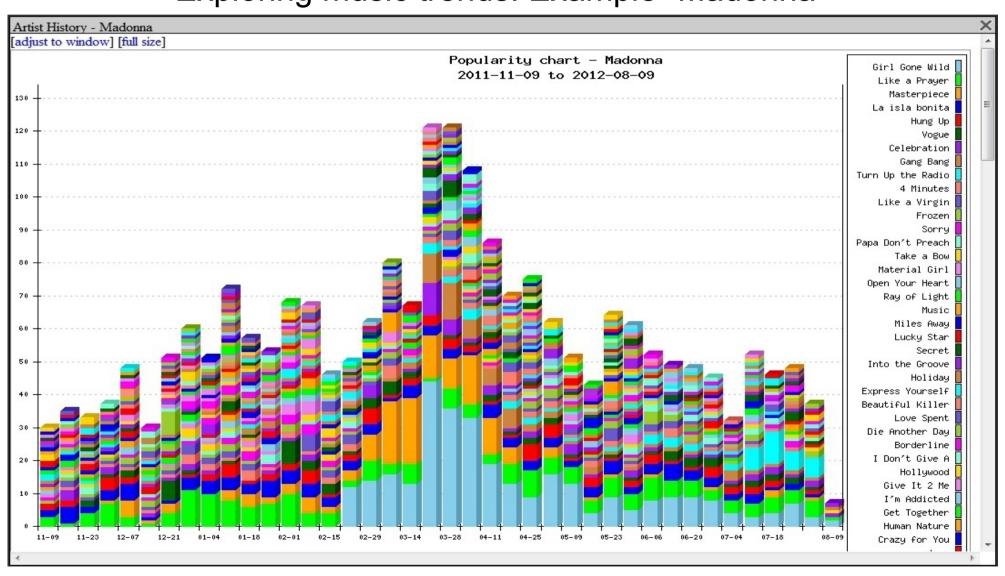
Exploring similar artists: Example "Xavier Naidoo"



Exploring music trends: Example "The Beatles"



Exploring music trends: Example "Madonna"



Geospatial Music Recommendation

(Schedl, Schnitzer; SIGIR 2013)

- Combining music content + music context features
 - audio features: PS09 award-winning feature extractors (rhythm and timbre)
 - text/web: TFIDF-weighted artist profiles from artist-related web pages
- Using collection of geo-located music tweets (cf. (Schedl; ECIR 2013))
- Aims:
 - (i) determining ideal combination of music content and –context
 - (ii) ameliorate music recommendation by user's location information

Ideal combination of music content and context

(Schedl, Schnitzer; SIGIR 2013)

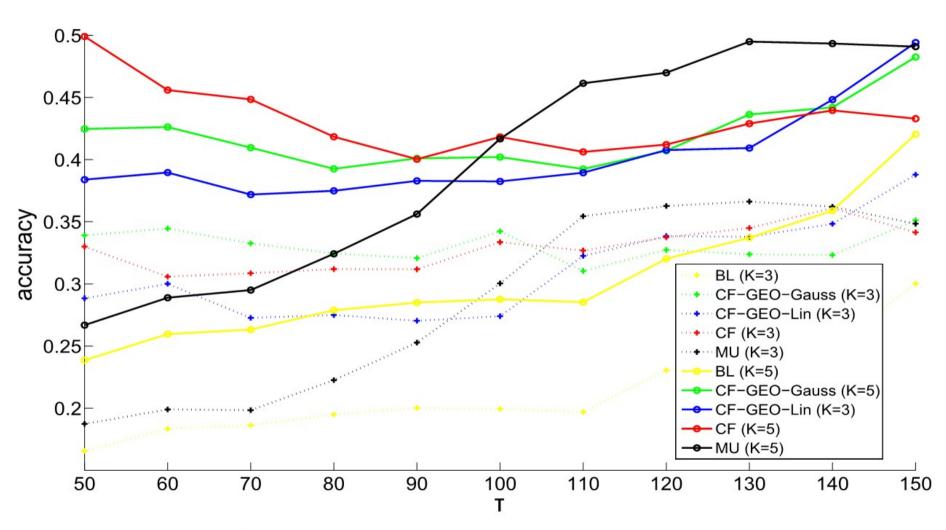
ξ	K=1	K = 3	K = 5
${ m web\ only-0.00}$.5829	.5753	.5774
.05	.6421	.6280	.6257
.15	.6432	.6286	.6261
.25	.6433	.6275	.6258
.35	.6430	.6275	.6257
.45	.6408	.6266	.6252
.55	.6394	.6259	.6244
.65	.6379	.6255	.6232
.75	.6368	.6234	.6221
.85	.6330	.6202	.6188
.95	.6215	.6083	.6059
audio only -1.00	.5436	.5302	.5247

Adding user context (different approaches)

(Schedl, Schnitzer; SIGIR 2013)

Abbreviation	Description	
BL	random baseline	
MU	hybrid music model	
CF	collaborative filtering model	
CF-GEO-Lin	CF model: geospatial user weighting	
	using linear spatial distances	
CF-GEO-Gauss	CF model: geospatial user weighting	
	weighting using a Gauss kernel	

Evaluation Results



T: minimum number of distinct artists a users must have listened to to be included

User-Aware Music Recommendation on Smart Phones

(Breitschopf; 2013)

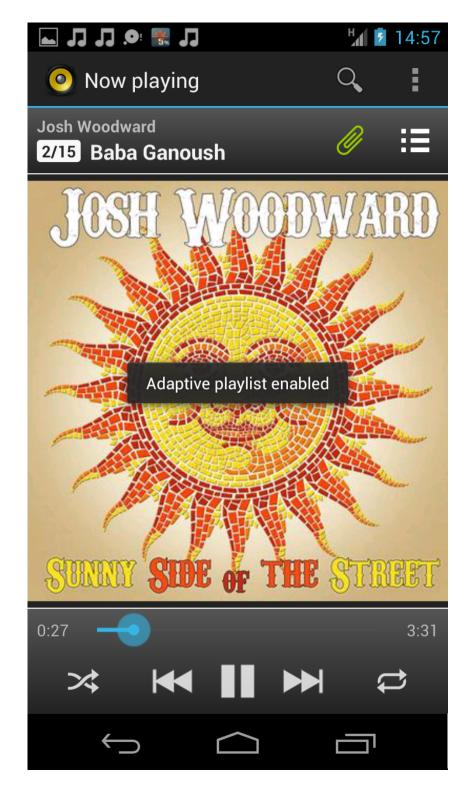
"Mobile Music Genius": music player for the Android platform

- collecting user context data while playing
- adaptive system that learns user taste/preferences from implicit feedback (player interaction: play, skip, duration played, playlists, etc.)
- ultimate aim: dynamically and seamlessly update the user's playlist according to his/her current context

Mobile Music Genius: Approach

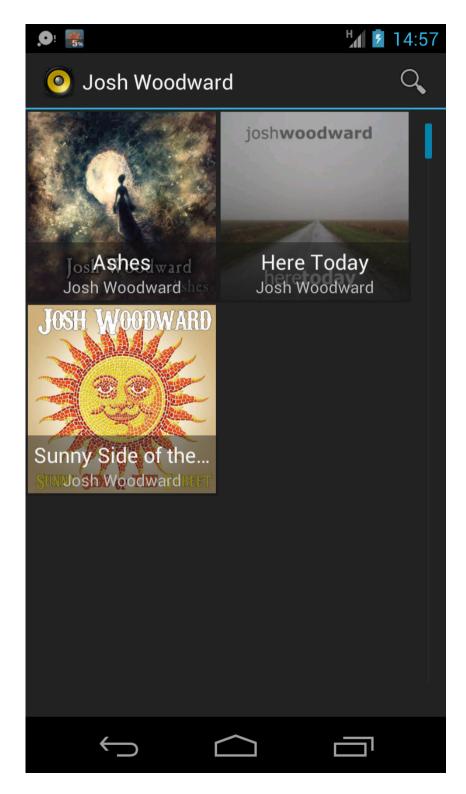
"Mobile Music Genius": music player for the Android platform

- standard, non-context-aware playlists are created using Last.fm tag features (weighted tag vectors on artists and tracks); cosine similarity between linear combination (of artist and track features) used for playlist generation
- learning and adapting a user model via relations {user context – music preference}
 on the level of genre, mood, artist, and song
- playlist is adapted when change in similarity between current user context and earlier user context is above threshold



Mobile Music Genius

Music player in adaptive playlist generation mode



Mobile Music Genius

Album browser in cover view

