v Save as playlist

Name of playlist
Similar to Through The Fire And Flame

Size of playlist 30

_ @ +

v Include seed track

Include tracks of seed artist

v Randomize

Cancel Create

Mobile Music Genius

Automatic playlist
generation based on
music context (features
and similarity computed
based on Last.fm tags)
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© User context

Network

NetworkContext [mobileAvailable=true,
mobileConnected=true, wifiEnabled=false,
wifiAvailable=false, wifiConnected=false,
activeNetworkType=0, activeNetworkSubtype=8,
activeNetworkRoaming=false, wifiBssid=null,
wifiSsid=null, wifilpAddress=0, wifiLinkSpeed=-1,
wifiRss1=-9999, bluetoothAvailable=true,
bluetoothEnabled=false]

Ambient

LightContext [light=426.0, lightStdDev=3.7]
ProximityContext [proximity=5.0, proximityStdDev=0.0]
No temperature context

PressureContext [pressure=979.0,
pressureStdDev=0.1]

NoiseContext [noise=75.0, noiseStdDev=3.4]

Motion

AccelerationContext [acceleration=0.3,
accelerationStdDev=0.4]

OrientationContext [orientationUser=3,
orientationDevice=3]

RotationContext [rotation=0.2, rotationStdDev=0.14]

Player

PlayerContext [repeatMode=0, shuffleMode=0,
apmMode=1]

SoundEffectContext [equalizerEnabled=true,
equalizerPreset=0, bassBoostEnabled=true,
bassBoostStrength=443, virtualizerEnabled=false,

e Y i IR e |

Mobile Music Genius

Some user context
features gathered while

playing
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User Context Features from Android Phones

Time:  timestamp, time zone

Personal:userID/eMail, gender, birthdate

Device: devidelD (IMEI), sw version, manufacturer, model, phone state, connectivity, storage,
battery, various volume settings (media, music, ringer, system, voice)

Location:longitude/latitude, accuracy, speed, altitude

Place:  nearby place name (populated), most relevant city

Weather: wind direction, speed, clouds, temperature, dew point, humidity, air pressure

Ambient: light, proximity, temperature, pressure, noise, digital environment (WiFi and BT
network information)

Activity: acceleration, user and device orientation, screen on/off, running apps

Player: artist, album, track name, track id, track length, genre, plackback position, playlist
name, playlist type, player state (repeat, shuffle mode),
audio output (headset plugged)

mood and activity (direct user feedback)

Department of
® | Computational
»

Perception




Preliminary Evaluation

= collected user context data from 12 participants over a period of 4 weeks
= age: 20-40 years, gender: male

= user context vectors recoded whenever a “sensor” records a change

= ]66k data points

= assess different classifiers (Weka) for the task of predicting artist/track/genre/mood
given a user context vector: k-nearest neighbor (kNN), decision tree (C4.5),
Support Vector Machine (SVM), Bayes Network (BN)

= cross-fold validation (10-CV)

To be analyzed:
(1)  Which granularity/abstraction level to choose for representation/learning?
(i1) Which user context features are the most important to predict music preference?

Department of
® | Computational
»

Perception




Preliminary Evaluation: Results

(1)  Which granularity/abstraction level to choose for representation/learning?

Predicting class
track

Results barely above
baseline.

Predicting particular
tracks is hardly
feasible with the
amount of data
available.

Dataset 0-R || KNN | C4.5 | SVM | BN || Max.rel. | Avg.rel.
Time 1.13 1.26 0.90 1.30 | 1.31 116.04% 105.84%
Location 1.13 1.40 1.57 1.42 | 1.58 139.76% | 132.06%
Location - state 1.13 1.36 | 1.69 0.96 | 0.82 150.26% | 107.28%
Location - place || 1.13 1:31:| 1.47 1.46 | 2.23 197.49% | 143.46%
Weather 1.13 1.17 | 0.91 1.19 | 1.07 105.25% 96.21%
Ambient 1:13 0.79 | 0.63 1.08 | 1.12 98.97% 79.99%
Ambient - no n. 1.13 0.64 | 0.63 0.97 | 1.10 97.49% 73.97%
Ambient - noise 1.13 0.45 0.67 1.28 | 1.11 113.38% 77.77%
Motion 1.13 0.54 0.97 1.06 | 1.32 117:15% 86.25%
Motion - acc. 1.13 0.58 | 0.58 1.39 | 1.10 123.50% 80.75%
Motion - orient. 113 1.09 1.33 094 | 1.41 124.76% | 105.78%
Task 1:13 1.43 1.96 1.57 | 1.73 173.61% 148.36%
Task - display 1.13 1.75 1.68 1.76 | 1.76 156.47% 154.21%
Task - tasks 1.13 1.16 1.60 1.13 | 1.53 141.76% 120.03%
Phone 1.13 1.12:| 0.97 0.70 | 0.99 99.41% 83.85%
Network 3 1.43 1.34 1.26 | 1.82 161.79% 129.88%
Network - state 113 131 1.75 1.58 | 1.82 161.79% 143.27%
Network - env. 1.05 1.79 1.45 1.44 | 1.08 170.20% | 137.07%
Device 1.13 1.07 1.56 1.12 | 1.24 138.14% 110.74%
Device - battery 1.13 0.71 1.12 1.23 | 1.12 109.39% 92.78%
Device - storage 1.13 0.95 1.07 1.44 | 1.42 127.49% 108.09%
Device - memory || 1.13 092 | 0.79 1.24 | 1.30 115.59% 94.46%
Device - audio 1.13 0.46 | 0.63 0.96 | 1.30 114.93% 74.26%
Player 113 1.29 1.36 1.35 | 1.35 120.77% 118.46%
All ¥l 3 0.90 1.78 1.14 | 1.14 158.02% 110.05%




Preliminary Evaluation: Results

(1)  Which granularity/abstraction level to choose for representation/learning?

Predicting class
artist

Best results
achieved,
significantly
outperforming
baseline.

Relation

{context — artist}
seems to be
predictable.

Dataset 0-R || KNN | C4.5 | SVM | BN || Max.rel. | Avg.rel.
Time 28.54 60.83 | 57.10 | 59.68 | 58.70 213.15% | 207.01%
Location 28.54 || 42.69 | 41.42 | 37.80 | 40.04 149.58% | 141.86%
Location - state 28.54 41.71 | 41.83 | 33.11 | 37.05 146.55% | 134.64%
Location - place || 28.54 || 35.74 | 36.99 | 36.07 | 36.28 129.62% | 127.09%
Weather 28.54 63.46 | 63.25 | 56.06 | 61.34 222.35% | 213.84%
Ambient 28.54 34.70 | 36.83 | 31.17 | 35.18 129.03% | 120.77%
Ambient - no n. 28.54 || 33.54 | 34.87 | 31.43 | 34.46 122.19% | 117.65%
Ambient - noise 28.54 || 26.12 | 30.55 | 28.75 | 29.81 107.04% | 100.94%
Motion 28.54 35.08 | 36.10 | 37.14 | 35.11 130.15% | 125.65%
Motion - acc. 28.54 26.54 | 27.87 | 28.93 | 28.62 101.36% 98.07%
Motion - orient. 28.54 || 36.22 | 35.63 | 36.54 | 35.17 128.02% | 125.75%
Task 28.54 60.75 | 60.65 | 59.63 | 56.20 212.86% | 207.81%
Task - display 28.54 28.12 | 28.31 | 28.62 | 28.34 100.29% 99.33%
Task - tasks 28.54 61.35 | 61.28 | 60.28 | 55.23 214.97% | 208.60%
Phone 28.54 37.30 | 38.74 | 31.33 | 33.74 135.74% | 123.61%
Network 28.54 36.38 | 36.44 | 37.93 | 34.87 132.90% | 127.56%
Network - state 28.54 34.95 | 33.14 | 34.58 | 34.17 122.45% | 119.86%
Network - env. 21.90 25.01 | 26.42 | 27.43 | 22.69 125.26% | 115.92%
Device 28.54 70.42 | 68.68 | 54.95 | 65.31 246.76% | 227.20%
Device - battery || 28.54 || 39.10 | 47.15 | 36.41 | 46.02 165.23% | 147.76%
Device - storage || 28.54 61.17 | 60.37 | 40.96 | 57.92 214.33% | 193.08%
Device - memory | 28.54 39.22 | 40.56 | 32.11 | 36.53 142.10% | 130.01%
Device - audio 28.54 || 47.92 | 47.71 | 41.42 | 42.76 167.90% | 157.50%
Player 28.54 38.18 | 38.36 | 38.30 | 38.25 134.41% | 134.10%
All 28.54 69.56 | 69.01 | 69.87 | 67.66 244.83% | 241.86%




Preliminary Evaluation: Results

(1)  Which granularity/abstraction level to choose for representation/learning?

Predicting class
genre

Prediction on more
general level than for
artist.

Still genre is an ill-
defined concept,
hence results inferior
to artist prediction.

Dataset 0-R || KNN | C4.5 | SVM | BN || Max.rel. | Avg.rel.
Time 29.80 || 46.75 | 44.99 | 46.46 | 46.27 156.88% | 154.76%
Location 29.80 32.92 | 34.17 | 34.45 | 32.05 115.61% | 112.08%
Location - state 29.80 32.25 | 33.41 | 32.48 | 30.44 112.12% | 107.87%
Location - place || 29.80 || 29.75 | 32.54 | 32.38 | 32.45 109.19% | 106.65%
Weather 29.80 49.68 | 50.61 | 43.77 | 46.70 169.83% | 160.03%
Ambient 29.80 2830 | 34.12 | 31.38 | 33.27 114.50% | 106.61%
Ambient - no n. 29.80 31.52 | 33.39 | 31.42 | 33.34 112.04% | 108.79%
Ambient - noise 29.80 23.38 | 29.92 | 29.67 | 29.77 100.40% 94.57%
Motion 29.80 32.23 | 34.34 | 34.56 | 34.39 115.98% | 113.69%
Motion - acc. 29.80 25.67 | 28.55 | 30.50 | 30.41 102.35% 96.59%
Motion - orient. 29.80 34.49 | 35.22 | 34.28 | 34.39 118.21% | 116.10%
Task 29.80 || 43.89 | 46.47 | 44.55 | 41.85 155.95% | 148.29%
Task - display 29.80 28.57 | 29.04 | 28.78 | 28.78 97.44% 96.61%
Task - tasks 29.80 || 44.71 | 47.62 | 44.94 | 42.31 159.81% | 150.66%
Phone 29.80 31.17 | 33.43 | 31.33 | 30.13 112.20% | 105.77%
Network 29.80 32.31 | 3196 | 33:93 | 3173 113.85% | 109.00%
Network - state 29.80 31.70 | 31.14 | 32.07 | 31.26 107.63% | 105.85%
Network - env. 26.10 26.17 | 27.02 | 29.78 | 27.28 114.08% | 105.58%
Device 29.80 || 49.65 | 50.03 | 43.16 | 48.00 167.88% | 160.11%
Device - battery || 29.80 31.58 | 38.03 | 33.42 | 35.85 127.61% | 116.51%
Device - storage | 29.80 || 47.76 | 47.55 | 37.25 | 46.56 160.29% | 150.28%
Device - memory || 29.80 30.79 | 36.87 | 31.76 | 36.60 123.73% | 114.11%
Device - audio 29.80 || 40.19 | 41.12 | 38.16 | 37.02 137.99% | 131.29%
Player 29.80 35.79 | 36.34 | 36.08 | 35.59 121.96% | 120.65%
All 29.80 46.75 | 49.22 | 50.41 | 48.51 169.15% | 163.50%




Preliminary Evaluation: Results

(1)

Predicting class
mood

Poor results as
mood in music is
quite subjective and
hence hard to
predict.

Which mood
anyway: composers
intention? mood
expressed by
performers? mood
evoked in listeners?

Which granularity/abstraction level to choose for representation/learning?

Dataset 0-R || KNN | C4.5 | SVM | BN || Max.rel. | Avg.rel.
Time 24.00 (| 24.79 | 27.73 | 24.56 | 24.29 115.53% | 105.59%
Location 24.00 || 23.27 | 23.89 | 25.05 | 24.62 104.38% | 100.86%
Location - state 24.00 || 23.44 | 23.97 | 25.25 | 24.79 105.20% | 101.51%
Location - place || 24.00 || 21.99 | 23.99 | 23.80 | 23.67 99.94% 97.33%
Weather 24.00 || 25.13 | 27.05 | 27.86 | 25.39 116.07% | 109.82%
Ambient 24.00 17.04 | 19.41 | 23.59 | 24.04 100.17% 87.58%
Ambient - non. || 24.00 || 21.14 | 23.18 | 23.87 | 24.00 100.00% 96.03%
Ambient - noise 24.00 16.70 | 21.38 | 23.79 | 23.96 99.83% 89.40%
Motion 24.00 19.88 | 26.54 | 24.78 | 24.65 110.56% 99.84%
Motion - acc. 24.00 || 20.86 | 22.75 | 24.32 | 23.96 101.34% 95.72%
Motion - orient. 24.00 || 23.99 | 27.82 | 24.99 | 24.65 115.91% | 105.68%
Task 24.00 || 22.94 | 24.32 | 24.58 | 25.00 104.18% | 100.87%
Task - display 24.00 || 24.45 | 24.58 | 24.97 | 24.88 104.06% | 103.00%
Task - tasks 24.00 || 23.56 | 25.20 | 24.99 | 24.13 105.00% | 101.95%
Phone 24.00 || 19.34 | 24.64 | 26.75 | 26.74 111.45% | 101.52%
Network 24.00 || 22.81 | 24.20 | 23.92 | 24.28 101.17% 99.17%
Network - state 24.00 23.48 | 24.39 | 24.01 | 24.28 101.64% 100.17%
Network - env. 27.78 27.68 | 28.36 | 29.24 | 27.78 105.26% | 101.74%
Device 24.00 21.45 | 24.72 | 25.79 | 24.86 107.46% 100.86%
Device - battery | 24.00 16.09 | 26.31 | 23.94 | 24.06 109.64% 94.17%
Device - storage || 24.00 || 25.57 | 26.69 | 25.36 | 24.48 111.19% | 106.36%
Device - memory | 24.00 13.92 | 21.39 | 23.59 | 23.81 99.22% 86.16%
Device - audio 24.00 || 26.33 | 26.50 | 25.48 | 24.43 110.43% | 107.03%
Player 24.00 || 24.81 | 25.57 | 25.37 | 25.45 106.54% | 105.41%
All 24.00 || 22.43 | 26.16 | 24.81 | 26.11 109.00% | 103.66%




Preliminary Evaluation: Results

(i1)  Which user context features are the most important to predict music preference?

80,00 300,00%
70,00

250,00%
60,00

200,00%
50,00
40,00 150,00%
30,00

100,00%
20,00

50,00%
10,00
0,00 0,00%

All Device Weather Task - Task Time Device- Device - Device- Location
tasks storage audio battery
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Making use of all features yields best results.
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Preliminary Evaluation: Results
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(11)  Which user context features are the most important to predict music preference?

Weka-feature selection confirms most important attributes:

time: weekday, hour of day

location: nearest populated place (better than longitude, and latitude)

weather: temperature, humidity, air pressure, wind speed/direction, and dew point

device: music and ringer volume, battery level, available storage and memory

task: running tasks/apps

C
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Preliminary Evaluation: Results

= Problems:

— too little data to make significant predictions on the quality of the approach

— need more data from more participants over a longer period of time

— large-scale study

— dataset does not incorporate features potentially highly relevant to music listening

inclination (user activity and mood)

C

Department of
Computational
Perception



Large-scale Evaluation

= collected user context data from JKU students over a period of 2 months

= about 8,000 listening data items and corresponding user context gathered

To be analyzed:

(1) How well does our approach perform to predict the preferred artist based on a given user

context vector?

Results for predicting class “artist”:

ZeroR (baseline) classifier 15% accuracy
k-nearest neighbors 42% accuracy
JRip rule learner 51% accuracy
J48 decision tree 55% accuracy
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Matching Places of Interest and Music

(Kaminskas et al.; RecSys 2013)

recommend music that is suited to a place of interest (POI) of the user (context-aware)

Session 1 out of 10: ’ P PP DPPPIPYIOYD

La Scala, Milan, Italy
http://en.wikipedia.org/wiki/La_Scala

La Scala is a world renowned opera house in Milan, Italy. The theatre was inaugurated on 3 August
1778 and was originally known as the New Royal-Ducal Theatre at La Scala. The premiere
performance was Antonic Salieri's 'Europa riconosciuta'. Most of Italy's greatest operatic artists, and
many of the finest singers from around the wrold, have appeared at La Scala during the past 200
years.

Listen to the tracks and select those that in your opinion are suited
for the described place:

Reincidentes - Ay Dolores
http://en.wikipedia.org/wiki/Reincidentes

(]
oo:00f J—  o00:00 @

[o—

Vincenzo Pucitta - La Vestale,Opera seria 1st act
http://en.wikipedia.org/wiki/Vincenzo_Pucitta

(]
oo:00f J— 00:00 @

—O"

The Shower Scene - This Is The Call Out
http://en.wikipedia.org/wiki/The_Shower_Scene

(]
oo:00f J—  00:00 @

i

Duchess Maria Antonia of Bavaria - Pallid’ ombra che
d'intorno
http://en.wikipedia.org/wiki/Duchess_Maria_Antonia_of_Bavaria

(]
00:00{ § "~ 00:00 @
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Matching Places of Interest and Music

(Kaminskas et al.; RecSys 2013)

Approaches:

* genre-based: only play music belonging to the user’s preferred genres (baseline)
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Matching Places of Interest and Music

(Kaminskas et al.; RecSys 2013)

Approaches:

* knowledge-based: use the DBpedia knowledge base (relations between POIs and
musicians)

Fioned
A (e
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Matching Places of Interest and Music

(Kaminskas et al.; RecSys 2013)

Approaches:

* tag-based: user-assigned emotion tags describing images of POIs and music,
Jaccard similarity between music-tag-vectors and POI-tag-vectors

Tag: Fritz Kreisler - Liebesfreud | Skip this item
http: //en.wikipedia.org/wiki/Fritz_Kreisler
[] melancholic [] Bright
[ ] Heavy [ ] Animated 00:08 =i J 1 00:31 @
' <)
Tender [] Energetic

- Friedrich 'Fritz' Kreisler (February 2, 1875 — January 29, 1962) was an
[] cold [] spiritual Austrian-born violinist and composer. One of the most famous violin masters
of his or any other day, he was known for his sweet tone and expressive

Modern Serene

£ 5 phrasing. Like many great violinists of his generation, he produced a

[] Ancient [] calm characteristic sound which was immediately recognizable as his own. Although
he derived in many respects from the Franco-Belgian school, his style is

[[] Affectionate [] sad nonetheless reminiscent of the gemiitlich (cozy) lifestyle of pre-war Vienna.”

Dark [] strong

Lightweight [] colorful

Open [] Thriling

[] warm [] Agitated

[] sentimental [] Bouncy

| Submit |



Matching Places of Interest and Music

(Kaminskas et al.; RecSys 2013)

Approaches:

* auto-tag-based: use state-of-the-art music auto-tagger based on the Block-level
Feature framework to automatically label music pieces; then again compute
Jaccard similarity between music-tag-vectors and POI-tag-vectors
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Matching Places of Interest and Music

(Kaminskas et al.; RecSys 2013)

Approaches:

* combined: aggregate music recommendations w.r.t. ranks given by knowledge-
based and auto-tag-based approaches

Machine Tag
>
Learning Models

i TRAINING
Digital b T 5
Audio eductionf— — — — — — @ — —_— — — ] — — — — — — —

o o5 TESTING

Classification »| Evaluation

Fny ‘ T ses.
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vour oo
! AN
. .
«
> Gnference.
Discrimination,
Audio || |  similari y)
Features
s ot septemper 2011 @ OO
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Matching Places of Interest and Music

(Kaminskas et al.; RecSys 2013)

Approaches:
* genre-based: only play music belonging to the user’s preferred genres (baseline)

* knowledge-based: using the DBpedia knowledge base (relations between POls
and musicians)

* tag-based: user-assigned emotion tags describing images of POIs and music,
Jaccard similarity between music-tag-vectors and POI-tag-vectors

* auto-tag-based: using state-of-the-art music auto-tagger based on the Block-level
Feature Framework to automatically label music pieces; then again use Jaccard
similarity between music-tag-vectors and POI-tag-vectors

* combined: aggregate music recommendations w.r.t. ranks given by knowledge-
based and auto-tag-based approaches
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Matching Places of Interest and Music

Evaluation:

(Kaminskas et al.; RecSys 2013)

 user study via web interface (58 users, 564 sessions)
Sessionloutof10: @ P P P P P P P P P

La Scala, Milan, Italy
http://en.wikipedia.org/wiki/La_Scala

o 1 ey S8

La Scala is a world renowned opera house in Milan, Italy. The theatre was inaugurated on 3 August
1778 and was originally known as the New Royal-Ducal Theatre at La Scala. The premiere
performance was Antonic Salieri's 'Europa riconosciuta’. Most of Italy's greatest operatic artists, and
many of the finest singers from around the wrold, have appeared at La Scala during the past 200
years.

Listen to the tracks and select those that in your opinion are suited
for the described place:

(]

Reincidentes - Ay Dolores
http://en.wikipedia.org/wiki/Reincidentes

00:00{ J © 00:00 @
BL |

—

Vincenzo Pucitta - La Vestale,Opera seria 1st act
http://en.wikipedia.org/wiki/Vincenzo_Pucitta

00:006 ) o00:00 @

—————)

The Shower Scene - This Is The Call Out
http://en.wikipedia.ora/wiki/The_Shower_Scene

00:00( 9 00:00 @

— 3| |

(]

Duchess Maria Antonia of Bavaria - Pallid’ ombra che
d'intorno
http://en.wikipedia.ora/wiki/Duchess_Maria_Antonia_of_Bavaria

00:006 J—— o00:00 @
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Matching Places of Interest and Music

(Kaminskas et al.; RecSys 2013)

Evaluation:
* Performance measure: number of times a track produced by each approach
was considered as well-suited in relation to total number of evaluation
sessions, 1.€. probability that a track marked as well-suited by a user was

recommended by each approach
0.5 — .

0.45 |
0.4 |

0.35

0.25 |
0.2}
0.15 j
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SUMMARY
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Music Information Retrieval is a great field

Various approaches to extract information from the audio signal

Various sources and approaches to extract contextual data and
similarity information from the Web

Multi-modal modeling and retrieval 1s important and allows for
exciting applications

Next big challenges:

* modeling user properties and context
* 1mprove personalization and context-awareness
* situation-based retrieval

* new and better suited evaluation strategies
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RuSSIR 2013: Content- and Context-based Music Similarity and Retrieval
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