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Introduction

I The interaction between IR and ASR is non-trivial.

I ASR errors impact on retrieval behaviour, in sometimes
surprising ways.

I Experience has shown that SCR systems can be effective
with relatively high WER rates without much apparent
effect on performance.

I Performance largely unaffected with WER of 20%.
I but WER of 30% - 50% or more is likely for many SCR

content sets, e.g. call-center recordings, telephone speech,
etc.
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Introduction

I WER is not a direct predictor of SCR effectiveness,

but high WER does impact on SCR quality.
Consider what is going on here:

I function words vs meaning-bearing words
I consider only mean-bearing words? ×
I consider only named entities? X
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Interaction of ASR Error and IR

I Analysis of ranked lists produced in SCR shows that
documents at nearer the top of the list have lower WERs
than the average for the collection.

I A query expresses a topic. This is better represented if the
ASR WER is low and the query can more easily match the
contents.

I Errors in transcriptions are likely to be independent and not
associated with topic word patterns.

I Unlikely that misrecognized words will appear in a pattern
that resembles a topic.

I Hence well recognized relevant items are likely to appear
near the top of the list, and non-relevant items in which the
words are not spoken are unlikely to be promoted in rank,
relative to that of a perfect transcript.
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Word Distributions in accurate vs ASR transcripts

I Comparison of human generated and ASR transcripts
using an ASR system well matched to the task revealed:

I ASR transcripts have much smaller vocabulary than
manual transcripts.

I Count of observations of word which do appear in ASR
transcripts (on average) notably higher than in manul
transcripts.

I This arises due to:
I OOV issues.
I Problems with acoustic models and language model mean

that ASR system shows bias towards use of some in
vocabulary words, and bias against using other ones.
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Term weighting and SCR

I SCR uses the same term weighting functions as standard
text IR, e.g.

idf (i) = log
N

n(i)
f (tf (i , j)) = log(tf (i , j) + 1)

w(i , j) = idf (i)× f (tf (i , j))

where: idf (i) = inverse document frequency of term i
N = no of documents in the current collection
n(i) = no of documents containing term i
tf (i , j) = no of occurrences of term i in document j
w(i , j) = tf.tdf weighting of term i in document j
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Term weighting and SCR

I Non-linear functions of this type mean that the first
occurrence of a term is the most important.

I Subsequent occurrences have progressively less impact
on document rank.

Very basic ranking function:

ms(j) =
I−1∑
i=0

w(i , j)

where ms(j) = query-document matching score of document j
I = vocabulary of all search terms
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Term weighting and SCR

I Terms that are OOV clearly have w(i , j) = 0.

I Terms which are not favoured by the ASR system will have
lower values of n(i) than with a perfect transcript,
i.e. they will have higher idf (i) values and appear more
important.

I Terms which are not favoured by the ASR system will have
lower values of tf (i , f ) than with a perfect transcript,
i.e. they will have lower values of f (tf (i , j))) and appear
less significant.

I Even for a small document collection n(i) values will 10s or
100s (often much more), impact on idf (i) will usually be
very small.

I Impact on ms(i , j) will be minimal.
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Term weighting and SCR

I The real tfR(i , j) for a word relevant to document j will
typically be > 1.

I If ASR produces tf (i , j) = 0, when tfR(i , j) > 0, then clearly
the mismatch is a problem.

I If ASR produces tf (i , j) < tfR(i , j), then w(i , j) and ms(j)
will be reduced, but not usually not disasterously, i.e SCR
is robust to some level of substitutions and deletions of
correct terms.

I By contrast, insertions and substitutions of incorrect term
will typically have tf (i , j) = 1 in j ,
AND other terms in the query will typically have tf (i , j) = 0.
Thus, ms(i , j) for these documents will be > 0, BUT will
typically be very low, and may fall below a document score
threshold to be retrieved.
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Term weighting and SCR

I Words which are favoured by the ASR system often have
n(i) >> nR(i), where nR(i) is the real no of documents
containing term i .

idf (i) will be reduced, but generally not significantly.
ms(i , j) will be reduced, but generally not significantly.
i.e. term weighting in SCR is quite robust to high levels of
insertions and substitutions favouring a term.

I Words which are favoured by ASR system may have
increased tf (i , j), for term i in document j , but since errors
are (in a loose sense) randomly distributed this is unlikely.

I If tf (i , f ) > tfR(i , j), f (tf (i , j)) will be increased, but not
significantly, remember the function is usually non-linear.
ms(i , j) will be increased, but not significantly.



Spoken Content Retrieval: Challenges, Techniques and Applications

Term weighting and SCR

I Words which are favoured by the ASR system often have
n(i) >> nR(i), where nR(i) is the real no of documents
containing term i .
idf (i) will be reduced,

but generally not significantly.
ms(i , j) will be reduced, but generally not significantly.
i.e. term weighting in SCR is quite robust to high levels of
insertions and substitutions favouring a term.

I Words which are favoured by ASR system may have
increased tf (i , j), for term i in document j , but since errors
are (in a loose sense) randomly distributed this is unlikely.

I If tf (i , f ) > tfR(i , j), f (tf (i , j)) will be increased, but not
significantly, remember the function is usually non-linear.
ms(i , j) will be increased, but not significantly.



Spoken Content Retrieval: Challenges, Techniques and Applications

Term weighting and SCR

I Words which are favoured by the ASR system often have
n(i) >> nR(i), where nR(i) is the real no of documents
containing term i .
idf (i) will be reduced, but generally not significantly.

ms(i , j) will be reduced, but generally not significantly.
i.e. term weighting in SCR is quite robust to high levels of
insertions and substitutions favouring a term.

I Words which are favoured by ASR system may have
increased tf (i , j), for term i in document j , but since errors
are (in a loose sense) randomly distributed this is unlikely.

I If tf (i , f ) > tfR(i , j), f (tf (i , j)) will be increased, but not
significantly, remember the function is usually non-linear.
ms(i , j) will be increased, but not significantly.



Spoken Content Retrieval: Challenges, Techniques and Applications

Term weighting and SCR

I Words which are favoured by the ASR system often have
n(i) >> nR(i), where nR(i) is the real no of documents
containing term i .
idf (i) will be reduced, but generally not significantly.
ms(i , j) will be reduced, but generally not significantly.
i.e. term weighting in SCR is quite robust to high levels of
insertions and substitutions favouring a term.

I Words which are favoured by ASR system may have
increased tf (i , j), for term i in document j , but since errors
are (in a loose sense) randomly distributed this is unlikely.

I If tf (i , f ) > tfR(i , j), f (tf (i , j)) will be increased, but not
significantly, remember the function is usually non-linear.
ms(i , j) will be increased, but not significantly.



Spoken Content Retrieval: Challenges, Techniques and Applications

Term weighting and SCR

I Words which are favoured by the ASR system often have
n(i) >> nR(i), where nR(i) is the real no of documents
containing term i .
idf (i) will be reduced, but generally not significantly.
ms(i , j) will be reduced, but generally not significantly.
i.e. term weighting in SCR is quite robust to high levels of
insertions and substitutions favouring a term.

I Words which are favoured by ASR system may have
increased tf (i , j), for term i in document j ,

but since errors
are (in a loose sense) randomly distributed this is unlikely.

I If tf (i , f ) > tfR(i , j), f (tf (i , j)) will be increased, but not
significantly, remember the function is usually non-linear.
ms(i , j) will be increased, but not significantly.



Spoken Content Retrieval: Challenges, Techniques and Applications

Term weighting and SCR

I Words which are favoured by the ASR system often have
n(i) >> nR(i), where nR(i) is the real no of documents
containing term i .
idf (i) will be reduced, but generally not significantly.
ms(i , j) will be reduced, but generally not significantly.
i.e. term weighting in SCR is quite robust to high levels of
insertions and substitutions favouring a term.

I Words which are favoured by ASR system may have
increased tf (i , j), for term i in document j , but since errors
are (in a loose sense) randomly distributed this is unlikely.

I If tf (i , f ) > tfR(i , j), f (tf (i , j)) will be increased, but not
significantly, remember the function is usually non-linear.
ms(i , j) will be increased, but not significantly.



Spoken Content Retrieval: Challenges, Techniques and Applications

Term weighting and SCR

I Words which are favoured by the ASR system often have
n(i) >> nR(i), where nR(i) is the real no of documents
containing term i .
idf (i) will be reduced, but generally not significantly.
ms(i , j) will be reduced, but generally not significantly.
i.e. term weighting in SCR is quite robust to high levels of
insertions and substitutions favouring a term.

I Words which are favoured by ASR system may have
increased tf (i , j), for term i in document j , but since errors
are (in a loose sense) randomly distributed this is unlikely.

I If tf (i , f ) > tfR(i , j), f (tf (i , j)) will be increased, but not
significantly, remember the function is usually non-linear.

ms(i , j) will be increased, but not significantly.



Spoken Content Retrieval: Challenges, Techniques and Applications

Term weighting and SCR

I Words which are favoured by the ASR system often have
n(i) >> nR(i), where nR(i) is the real no of documents
containing term i .
idf (i) will be reduced, but generally not significantly.
ms(i , j) will be reduced, but generally not significantly.
i.e. term weighting in SCR is quite robust to high levels of
insertions and substitutions favouring a term.

I Words which are favoured by ASR system may have
increased tf (i , j), for term i in document j , but since errors
are (in a loose sense) randomly distributed this is unlikely.

I If tf (i , f ) > tfR(i , j), f (tf (i , j)) will be increased, but not
significantly, remember the function is usually non-linear.
ms(i , j) will be increased, but not significantly.



Spoken Content Retrieval: Challenges, Techniques and Applications

Substituting idf (n)

I Text document collections are typically much larger than
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representative of a language than for small ones.

I SCR effectiveness may be improved by substituting idf (i)
values for a large text collection for the idf (i) values
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I Has been demonstrated to be effective for SCR for news
data in TREC SDR tasks.

I BUT, text data must be contemporaneous with the spoken
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nR(i) and tfR(i , j) for text documents

I By contrast consider the situation for real values in actual
natural text documents.

I Many documents contain typographical errors - even
professionally edited documents such as published news
articles.

I Likely to introduce new terms into vocabulary.
I May be filtered out as too rare to include in document index.
I Otherwise will have very high idf (i) value, but often lower

tf (i , j) value.
I Thus, high w(i , j) value.
I Since they are a typo, usually doesn’t matter, they do

appear in queries, unless the searcher makes the same
typo!
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I ms(i , j) query-document matching score may be very poor

where one or more of the query words is poorly recognized
or OOV.

I ms(i , j) should be more reliable, if we can add missing
terms to the transcript.

I Exploiting multiple hypotheses is a potential way to
address missing in vocabulary terms,
but we need different method to address OOV.
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Exploiting Multiple Hypotheses
I N-best lists, Word Lattices and Confusion Networks - have

the potential to include correct words substituted out or
deleted from the 1-best list,

but also, inserting incorrect
words.

I To improve the situation with respect to substitutions and
deletions, the depth of the N-best list, Word Lattice or
Confusion Network.

I But remember, ASR systems are biased against some
words and in favour of others.

I Thus, in order to overcome substitutions and deletions a
depth may need to be very deep,

I but this risks introducing very high levels of insertions of
favoured words.

I Depth of N-best, Word Lattice or Confusion Network thus
represent a trade off.
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I Consider the implications for term weighting.

I n(i) values - for both correctly and incorrectly hypothesized
words - will be increased.
idf (i) values will be decreased.

I tf (i , j) values will increase.
I As depth increased likelihood of tf (i , j) > 0, when

tfR(i , j) = 0 will also increase.
I Due to ASR system bias, this increase may be non-linear

with increase in depth.
I Thus, depth needs to be carefully determined.
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I Two approaches:
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I Incorporate in term weights
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Thresholding:
I Compute confidence score for each word hypothesis.

I Since can be different from ASR transcripts score - can
overcome biasing effect.

I Delete words which fall below threshold.
I Again trade off between insertions, substitutions and

deletions.
I Typically only use for N-best lists or Word Lattices - not

really a problem for 1-best.
I Alternative for N-best lists is simply to sum them, since

insertion issues is not significant.
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Word Confidence Measures

Combining with Term Weights:

idf (i) = log
N

n(i)
f (tf (i , j)) = log(tf (i , j) + 1)

w(i , j) = idf (i)× f (tf (i , j))

I Replace n(i) and/or tf (i , j) with a confidence based
measure, e.g.

I Sum of confidence for each word.
I Estimated count taking account of recognition behaviour.
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I Use subword recognition method to construct mid-level
output at recognition stage.

I Look for OOV query words in subword structure.
I Methods:

I Phone lattice spotting
I scalability problems

I Spoken Term Detection
I Designed to be accurate and scalable

I Alternative strategy, 1-best ASR transcript, but look for ALL
query terms using OOV system to try to overcome deletion
and substitutions issues, rather than N-best list or word
lattice.
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I Again a trade off in depth, confidence measures typically
used to filter hypotheses.
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