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CONCEPT-BASED REPRESENTATIONS 
FOR TEXT CATEGORIZATION 

Novel represensations and methods in text classification 
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Outline 

• The bag-of-concepts representation 

• Distributional term representations (DTRs) 

– Document occurrence representation (DOR) 

– Term co-occurrence representation (TCOR) 

• Using DTRs in short-text classification 

• Random indexing 

– Definition and computation 

– Incorporating syntactic information 

– Results on text classification 

• Final remarks 
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Bag-of-words representation 

• Many text classification methods adopt the BoW 
representation because its simplicity and efficiency.  

• Under this scheme, documents are represented by 
collections of terms, each term being an 
independent feature. 

–  Word order is not capture by this representation 

– There is no attempt for understanding  documents’ 
content 
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Main problems 

• BoW ignores all semantic information; it simply 
looks at the surface word forms 

– Polysemy and synonymy are big problems 

• BoW tend to produce very sparse representations, 
since terms commonly occur in just a small subset of 
the documents  

– This problem is amplified by lack of training texts and 
by the shortness of the documents to be classified. 

 

We need representations at concept level! 
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Bag-of-concepts 

• Addresses the deficiencies of the BoW by considering 
the relations between document terms. 

• BoC representations are based on the intuition that 
the meaning of a document can be considered as the 
union of the meanings of their terms. 

• The meaning of terms is related to their usage; it is 
captured by their distributional representation. 

– Document occurrence representation (DOR) 

– Term co-occurrence representation (TCOR) 
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Document occurrence representation (DOR) 

• DOR representation is based on the idea that the 
semantics of a term may be view as a function of the 
bag of documents in which the term occurs.  
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Intuitions about the weights 

 

 

 

 

• DOR is a dual version of the BoW representation, 
therefore: 

– The more frequently ti occurs in dj, the more 
important is dj for characterizing the semantics of ti 

– The more distinct the words dj contains, the smaller 
its contribution to characterizing the semantics of ti. 
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Representing documents using DOR 

• DOR is a word representation, not a document 
representation. 

• Representation of documents is obtained by the 
weighted sum of the vectors from their terms. 
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Term co-occurrence representation (TCOR) 

• In TCOR, the meaning of a term is conveyed by the 
terms commonly co-occurring with it; i.e. terms are 
represented by the terms occurring in their context 
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Intuitions about the weights 

 

 

 

 

• TCOR is the kind of representation traditionally used 
in WSD, therefore: 

– The more words tk and tj co-occur in, the more 
important tk is for characterizing the semantics of tj 

– The more distinct words tk co-occurs with, the smaller 
its contribution for characterizing the semantics of tj. 
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Representing documents using TCOR 

• TCOR, such as DOR, is a word representation, not a 
document representation. 

• Representation of documents is obtained by the 
weighted sum of the vectors from their terms. 
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DOR/TCOR for text classification 
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Experiments 

• Short-text categorization based on distributional 
term representations (DOR and TCOR)  

– They reduce the sparseness of representations and 
alleviates, to some extent, the low frequency issue. 

• Our experiments aimed to: 

– Verify the difficulties of the BoW for effectively 
representing the content of short-texts 

– Assess the added value offered by concept-based 
representations over the BoW formulation 

14 
7th Russian Summer School in Information Retrieval    

Kazan, Russia, September 2013 



Evaluation datasets 

• We assembled two types of collections: 

– Whole documents for training and test 

– Whole documents for training and titles for test 
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Short-text classification with BoW 
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Conclusions (1) 

• Acceptable performance was obtained when regular-
length documents were considered 

– SVM obtained the best results for most configurations 
of data sets and weighting schemes 

• The performance of most classifiers dropped 
considerably when classifying short documents 

– The average decrement of accuracy was of 38.66% 

• Results confirm that the BoW representation is not 
well suited for short-text classification 
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Using DOR/TCOR for short-text classification 
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Conclusions (2) 

• DOR and TCOR clearly outperformed BoW for most 
configurations. 

– In 62 out of the 90 results the improvements of DTRs 
over BoW were statistically significant 

• In average, results obtained with DOR and TCOR 
were very similar.  

– DOR is advantageous over TCOR because it may result 
in document representations of much lower 
dimensionality. 
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Bag of concepts by random indexing 

• BoC approaches tend to be computationally 
expensive. 

• They are based on a co-occurrence matrix of order 
w×c; w = terms, and c = contexts (terms or documents) 

• Random indexing produce these context vectors in a 
more computationally efficient manner: the co-
occurrence matrix is replaced by a context matrix of 
order w×k, where k << c. 
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Random indexing procedure (1) 

• First step: a unique random representation known as 
“index vector” is assigned to each context. 

– A context could be a document , paragraph or 
sentence 

– Vectors are filled with -1, 1 and 0s. 
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Random indexing procedure (2) 

• Second step: index vectors are used to produce context 
vectors by scanning through the text 

 

 

 
 

• Third step: build document vectors by adding their 
terms’ context vectors. 
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Limitations of BoC representations 

• BoC representations ignore the large amount of 
syntactic data in the documents not captured 
implicitly through term context co-occurrences 

• Although BoC representations can successfully model 
some synonymy relations, since different words with 
similar meaning will occur in the same contexts, they 
can not model polysemy relations. 

• Solution: a representation that encodes both the 
semantics of documents, as well as the syntax of 
documents 
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Random indexing with syntactic information 

• Multiplicative bidding procedure: 

– For each PoS tag, generate a unique random vector 
for the tag of the same dimensionality as the term 
context vectors.  

– For each term context vector, we perform element-
wise multiplication between that term’s context 
vector and its identified PoS tag vector to obtain our 
combined representation for the term. 

– Finally, document vectors are created by summing the 
combined term vectors. 
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An alternative procedure 

• Circular convolution procedure: 

– For each PoS tag, generate a unique random vector for 
the tag of the same dimensionality as the term context 
vectors 

– For each term context vector, perform circular 
convolution, which binds two vectors : 

 

 

 

– Finally, document vectors are created by summing the 
combined term vectors 
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Circular convolution as binding operation  

•  Two properties that make it appropriate to be used 
as a binding operation: 
– The expected similarity between a convolution and its 

constituents is zero, thus differentiating the same 
term acting as different parts of speech in similar 
contexts.  

• Gives high importance to syntactic information 

– Similar semantic concepts (i.e., term vectors) bound 
to the same part-of-speech will result in similar 
vectors; therefore, usefully preserving the original 
semantic model. 

• Preserves semantic information 
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Results on text classification 

• The goal of the experiment was to demonstrate that 
integrating PoS data to the text representation is 
useful for classification purposes. 

• Experiments on the 20 Newsgroups corpus; a linear 
SVM kernel function was used; all context vectors 
were fixed to 512 dimensions 
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Final remarks 

• BoC representations constitute a viable supplement 
to word based representions. 

• Not too much work in text classification and IR 

– Recent experiments demonstrated that TCOR, DOR 
and random indexing results outperform those from 
traditional BoW; in CLEF collections improvements 
have been around 7%. 

• Random indexing is efficient, fast and scalable; 
syntactic information is easily incorporated. 
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CONCISE SEMANTIC ANALYSIS 
Novel represensations and methods in text classification 
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Outline 

• Bag of concepts (again!) 

 

• Concise semantic analysis  

 

• Concise semantic analysis for author profiling 

 

• Meta-features for authorship attribution 

 

• Other bag-of-concept approaches 
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Bag of concepts (again) 

• Under the bag-of-concepts formulation a document 
is represented as a vector in the space of concepts 

 

• Concepts can be defined/extracted in different ways 
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Bag of concepts (again) 

• So far we have seen representations that are 
unsupervised: techniques proposed for other tasks 
than classification and that do not take into account 
information of labeled examples 

 

• Can we define concepts that take into account 
information from labeled documents? 
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Bag of concepts (again) 

• Supervised bag-of-concepts:  encode inter-class 
and/or intra-class information into concepts 

 

• A simple (yet very effective) approach for building 
concepts/features in a supervised fashion: 

– Concise semantic analysis: associate a concept with a 
class 
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Concise semantic analysis 

• Underlying idea: to associate a concept with each 
class of the categorization problem.  

 

• After all, in text categorization classes are usually tied 
with words/topics/concepts.  
– E.g., when classifying news into thematic classes: 

politics, religion, sports, etc.   

 

• Implicitly CSA reduces dimensionality, sparseness 
and incorporate document-term and term-class 
relationships  
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Concise semantic analysis 

• Two stage process (as before, e.g., with DOR/TCOR) 

– Represent a term in the space of concepts 

– Represent documents in the space of concepts 
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Concise semantic analysis 

 

• Stage 1: Represent a term in the space of concepts 
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Concise semantic analysis 

 

• Stage 2: Represent documents in the space of 
concepts: 
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Concise semantic analysis 

• CSA for text categorization: 
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A variant of CSA for Author Profiling 

• The Author Proling (AP) task consists in knowing as much 
as possible about an unknown author, just by analyzing a 
given text 
– How much can we conclude about the author of a text 

simply by analyzing it? 

 

• Applications include business intelligence, computer 
forensics and security 

 

• Unlike Authorship Attribution (AA), on the problem of AP 
we does not have a set of potential candidates. Instead 
of that, the idea is to exploit more general observations 
(socio linguistic) of groups of people talking or writing 
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A variant of CSA for Author Profiling 

• Initially some works in AP have started to explore the 
problem of detecting gender, age, native language, 
and personality from written texts  

 

• AP can be approached as a single-label multiclass 
classification problem, where profiles are the classes 
to discriminate 

 

• From the point of view of text classification, we 
would have a set of training documents, labeled 
according to a category (e.g., man and woman). 
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A variant of CSA for Author Profiling 
 

• Stage 1: Represent a term in the space of concepts 
(one concept per profile) 
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A variant of CSA for Author Profiling 
 

• Stage 2: Represent documents in the space of 
concepts (one concept per profile): 
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A variant of CSA for Author Profiling 

• AP is not a thematic task and therefore the use of simple word 
occurrences may not work. Thus we also considered non-
thematic attributes as well 
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PAN13’s Author Profiling task 

• The proposed representation was evaluated in the 
PAN AP 2013, track:  

– Two corpora English and Spanish 

– To determine the gender (male or female) and age 
(13-17, 23-27, 33-47) for each document.  

 

 

 

• A linear SVM classifier was used for classification 
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Instances  Blogs  Vocabulary 

English  236,000 413, 564 180, 809, 187 

Spanish 75,900 125,453 21,824,190 



CSA in AP at PAN-13 

• Official results: 
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CSA in AP at PAN-13 

• Official results: 



Conclusions: CSA for AP 

• The proposed representation obtained the best result for 
the PAN’13-AP track (avg. performance was evaluated) 

 

• Besides our proposal is much more efficient than most 
formulations  (it was less efficient than two other 
approaches) 

 

• Too much potential on the use of CSA for non-thematic 
tasks  

 

• There are other ways of expanding the concept space to 
encode useful information 
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Multimodal concepts 

• Multimodal information resulted very 
effective for AP 

 

• Are there other ways of encoding 
multimodal information into the 
document representation? 

– Basic approaches: late fusion / early 
fusion of multimodal attributes 

– Meta-features based concepts: 
associate a feature/concept with the 
similarity to multimodal prototypes 
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Multimodal meta-features 

• Idea: to extract features from first-level attributes to 
derive a multimodal representation  that can 
improve the performance of first-level attributes 
– First level attributes: attributes/representations 

obtained from text directly (e.g., BoW, ngrams, POS-
based features, stylistic)  

 

• Process: 
– Extract first-level attributes 

– Obtain multimodal prototypes  

– Meta-features: Estimate the similarity of documents 
to each prototype 
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Multimodal meta-features 
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… … 

• First level attributes are clusted (e.g. via k-means) 

For each modality k-clusters 
are generated  
 
The centers of each cluster 
define multimodal 
prototypes 



Multimodal meta-features 

• Meta-features for a document are derived by 
estimating the similarity of the document to each of 
the m*k prototypes 
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Multimodal meta-features 
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Multimodal meta-features 

• Application to authorship attribution. First level 
features: 
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Multimodal meta-features 

• Some experimental results 
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Multimodal meta-features 
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Conclusions Metafeatures for AA 

• Multimodal and similarity-based metafeatures aim to 
represent a document by its similarity with 
documents of the same and different classes 

 

• Metafeatures (combined with first-level features) 
resulted very effective for AA 

 

• Higher improvements were observed when more 
authors are involved in the problem 

 

• Metafeatures can be considered a type of concepts  
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Relation with other approaches 

• Latent semantic indexing: Concepts are derived via 
SVD, concepts are the principal components of the 
term-document matrix 

 

• Topic models: Concepts are probability distributions 
over words, they can be obtained in different ways 
(pLSI, LDA, etc.) 

 

• Deep learning: Concepts are the outputs of 
hierarchical neural networks that aimed to 
reconstruct documents 
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Final remarks 

• Concept-based representations encode useful 
information into the representation of 
terms/documents 

 

• This useful information can be defined in different 
ways, depending on what we want to emphasize or 
characterize from documents 
– Term/document occurrence/co-occurrence 

– Inter-intra class information 

– Multimodal similarity 

– …. 
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