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Outline 

• Bag of words  

 

• Extensions to incorporate sequential information 

– Maximal frequent sequences 

– Sequential patterns 

– The LOWBOW framework 

 

• Text categorization under LOWBOW 

 

• Authorship attribution with LOWBOW 
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Bag of words 

• Under the bag-of-words framework a document is 
represented by the set of terms that appear in it 

 

• By definition, BOW is an orderless representation  
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Yo me rio en el baño  
(I am laughing at the bathroom) 
 
 Yo me baño en el río 
(I am taking a shower at the 
river) 
  

 
Same BoW representation  

different meaning 



Bag of words 

• There have been several efforts trying to incorporate 
sequential information into BoW-based representations 
– Ngrams: Terms are defined as sequences of characters or 

words 

 

– Maximal frequent sequences: Frequent sequences of 
words are discovered (with/without gaps) 

 

– Phrase patterns: Sequential data mining is applied to 
detect sequential patterns (with gaps) 

 

– Methods based on linguistic analyses: POS tagging, 
syntactic trees, etc.   
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Bag of Ngrams 

• An Ngram is a sequence of N-terms (e.g., words / characters ):  
– Russian-federation / bag-of-words / in-god-we-trust  … 

– the / mex / lol / wtf ... 

 

• A sliding window is applied to the documents, all Ngrams 
found in the corpus form the vocabulary 

 

• Documents are represented by the bag of Ngrams that they 
contain 
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Unigrams Bigrams Tri-grams 

Russian,  Summer School, 
in, Information,  Retrieval 

Russian-summer, 
summer-school, school-

in, in-information, 
information-retrieval 

Russian-summer-school, 
Summer-School-in, 

School-in-Information, 
in-Information-Retrieval 

Document: Russian Summer School in Information Retrieval 



Bag of Ngrams 

• An Ngram is a sequence of N-terms (e.g., words / 
characters ): 
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• Ngrams capture low-range 
sequential information 

 

• Satisfactory results have 
been reported in non-
thematic tasks 

 

• When using characters, they 
can capture style aspects 

 

• Fixed length patterns 
(usually n≤5);  

 

•  The size of the vocabulary 
increases dramatically  

 

• No significant 
improvements over 
standard BOW  

 

 



Bag of Ngrams 

• An Ngram is a sequence of N-terms (e.g., words / 
characters ): 
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• Ngrams capture low-range 
sequential information 

 

• Satisfactory results have 
been reported in non-
thematic tasks 

 

• When using characters, they 
can capture style aspects 

 

• Fixed length patterns 
(usually n≤5);  

 

•  The size of the vocabulary 
increases dramatically  

 

• No significant 
improvements over 
standard BOW  

 

 

Skyp-grams: Extension to Ngrams that allows us to 
consider  gaps between terms to build Ngrams. Example: 

  Russian Summer School in Information Retrieval 

 

 

 

Unigrams Bigrams 2-skyp-bigrams 

Russian,  Summer School, 
in, Information,  Retrieval 

Russian-summer, 
summer-school, school-

in, in-information, 
information-retrieval 

Russian-school, Russian-
in, Summer-in, Summer-

Information, School-
information, in-retrieval 

 
Increases the range of 

sequential information, but 
augments the vocabulary size 

 



Maximal frequent sequences 

• Each document is seen a sequence of words (items) 

 

• The goal is to identify interesting sequences of words 
that can be used to characterize documents, e.g.: 

 

 

• No fixed-length constraints are imposed (as in n-grams) 

 

• Reduce overlapping information in the representation  

 

• Gaps are allowed in sequences 
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Maximal frequent sequences 

• Definitions: 
– A sequence                 is a subsequence of another 

sequence                   if all of the items pi 1 ≤ i ≤ k, occur 
in q and they occur in the same order as in p 

– A sequence p is frequent in document collection D if p 
is a subsequence of at least σ documents in D 

– A sequence p is a maximal frequent sequence in D if 
there does not exist any sequence p’ in D such that p 
is a subsequence of p’ and p’ is frequent in D 

 

• There are efficient algorithms to identify all of the 
MFS 
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MFS for authorship attribution  

• Authorship attribution: Given texts of uncertain 
authorship and texts written by a set of candidate 
authors, the task is to map the uncertain texts onto 
their true authors among the candidates. 

 

• Applications include: fraud detection, spam filtering, 
computer forensics and plagiarism detection 
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MFS for authorship attribution  

• Instance-based approach to authorship attribution 
(~text categorization) 
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Maximal frequent sequences 

• MSF for authorship attribution 
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Maximal frequent sequences 

• Identify authors of 
poems written by 
different mexican 
poets 
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• Baseline results 

• Maximal frequent 
sequences approach 



Maximal frequent sequences 

• MFS can discover interesting and useful patterns, 
however, extracting all of the MFS is a time 
consuming process 

 

• MFS do not exploit information about the labels in 
training documents (it is an unsupervised method) 

 

• Informativeness of patterns heavily depends on the 
frequency threshold σ 

7th Russian Summer School in Information Retrieval Kazan, Russia, September 
2013 

16 



Phrase patterns 

• A text is considered an ordered list of sentences, 
where each sentence is an unordered set of words 

 

• The goal is to identify interesting sequences of sets of 
words. The order is at the sentence level 

 

• Sequential patterns are extracted per each category 
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Novel-representations text-classification  
Representation-for-documents  
Authorship-attribution  
Return-a-effective-classification model 



Phrase patterns 

• Similar to MFS: Sequential patterns aim at 
discovering temporal relations between items 
(words) in a database (corpus)  

 

• Main idea: extending work on mining association 
rules to extract meaningful sequential patterns  
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Mining association rules Text categorization 

Client Text 

Item Word 

Items/transaction Sentence (set of words) 

Data Position of the sentence in 
document 



Phrase patterns 

• Let                 be a sequence, the support of s is defined 
as: 

 

• Sequences with a support higher than minsup are 
considered for the next step.  Frequent patterns are used 
to generate rules of the form: 

 

• The confidence of a frequent pattern is defined as 
follows: 

 

• Classification is done with a KNN scheme over rules with 
highest confidence 
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Phrase patterns 

• Interesting patterns can be obtained with this 
formulation 

 

• Class-information is considered in obtaining 
sequential rules 

 

• Similar results to BOW using SVMs 

 

• A large number of rules can be obtained and (as with 
MFS) extracting sequential patterns is a time 
consuming process 
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The locally weighted bag-of-words framework  

• LOWBOW: an attempt to enrich BoW 
representations with sequential information without 
defining/generating new terms/patters 

 

• Each document is represented by a set of local 
histograms computed across the whole document 
but smoothed by kernels and centered at different 
document locations  

 

• LOWBOW-based document representations can 
preserve sequential  information in documents 
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The locally weighted bag-of-words framework  

• A document is a sequence of N words, it can be seen 
as a categorical time series:  

 

 

• Idea: smooth temporarily this categorical times 
series with a Kernel: 
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The locally weighted bag-of-words framework  

• Let: 

 

 Denote the weight of term j at position k of document i, 
for  k a subset of locations at the documents 

 

• The LOWBOW representation of the word sequence di is: 

 

 where                is the local word histogram at µ defined by 
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The locally weighted bag-of-words framework  

 Novel representations and methods in text classification 
 Manuel Montes-y-Gómez & Hugo Jair Escalante  

 
 

Two core components of any classification system are the adopted representation for documents 
and the classification model itself. This tutorial deals with recent advances and developments on 
both components. The default representation for documents in text classification is the bag-of-
words(BOW), where weighting schemes similar to those used in information retrieval are adopted. 
Whereas this representation has proven to be very helpful for thematic text classification, in novel, 
non-thematic text classification problems (e.g., authorship attribution, sentiment analysis and 
opinion mining, etc.), the standard BOW can be outperformed by other advanced representations. 

 This course is focused on three document representations that have proved to be useful for 
capturing more information than the raw occurrence of terms in documents as in BOW. The 
considered representations are: locally weighted BOW, distributional term representations, concise 
representations and graph-based representations. Likewise, the tutorial covers recent 
developments in the task of building classification models. Specifically, we consider contextual 
classification techniques and full model selection methods. The former approach is focused in the 
design of classifiers that consider the neighborhood of a document for making better predictions. 
The latter formulation focuses in the development of automatic methods for building classification 
systems, that is, black box tools that receive as input a data set and return a very effective 
classification model. 
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Identify locations  
in documents 



The locally weighted bag-of-words framework  

 Novel representations and methods in text classification 
 Manuel Montes-y-Gómez & Hugo Jair Escalante  

 
 

Two core components of any classification system are the adopted representation for documents 
and the classification model itself. This tutorial deals with recent advances and developments on 
both components. The default representation for documents in text classification is the bag-of-
words(BOW), where weighting schemes similar to those used in information retrieval are adopted. 
Whereas this representation has proven to be very helpful for thematic text classification, in novel, 
non-thematic text classification problems (e.g., authorship attribution, sentiment analysis and 
opinion mining, etc.), the standard BOW can be outperformed by other advanced representations. 

 This course is focused on three document representations that have proved to be useful for 
capturing more information than the raw occurrence of terms in documents as in BOW. The 
considered representations are: locally weighted BOW, distributional term representations, concise 
representations and graph-based representations. Likewise, the tutorial covers recent 
developments in the task of building classification models. Specifically, we consider contextual 
classification techniques and full model selection methods. The former approach is focused in the 
design of classifiers that consider the neighborhood of a document for making better predictions. 
The latter formulation focuses in the development of automatic methods for building classification 
systems, that is, black box tools that receive as input a data set and return a very effective 
classification model. 
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The locally weighted bag-of-words framework  
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Two core components of any classification system are the adopted representation for documents 
and the classification model itself. This tutorial deals with recent advances and developments on 
both components. The default representation for documents in text classification is the bag-of-
words(BOW), where weighting schemes similar to those used in information retrieval are adopted. 
Whereas this representation has proven to be very helpful for thematic text classification, in novel, 
non-thematic text classification problems (e.g., authorship attribution, sentiment analysis and 
opinion mining, etc.), the standard BOW can be outperformed by other advanced representations. 

 This course is focused on three document representations that have proved to be useful for 
capturing more information than the raw occurrence of terms in documents as in BOW. The 
considered representations are: locally weighted BOW, distributional term representations, concise 
representations and graph-based representations. Likewise, the tutorial covers recent 
developments in the task of building classification models. Specifically, we consider contextual 
classification techniques and full model selection methods. The former approach is focused in the 
design of classifiers that consider the neighborhood of a document for making better predictions. 
The latter formulation focuses in the development of automatic methods for building classification 
systems, that is, black box tools that receive as input a data set and return a very effective 
classification model. 
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Two core components of any classification system are the adopted representation for documents 
and the classification model itself. This tutorial deals with recent advances and developments on 
both components. The default representation for documents in text classification is the bag-of-
words(BOW), where weighting schemes similar to those used in information retrieval are adopted. 
Whereas this representation has proven to be very helpful for thematic text classification, in novel, 
non-thematic text classification problems (e.g., authorship attribution, sentiment analysis and 
opinion mining, etc.), the standard BOW can be outperformed by other advanced representations. 

 This course is focused on three document representations that have proved to be useful for 
capturing more information than the raw occurrence of terms in documents as in BOW. The 
considered representations are: locally weighted BOW, distributional term representations, concise 
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classification techniques and full model selection methods. The former approach is focused in the 
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The latter formulation focuses in the development of automatic methods for building classification 
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The locally weighted bag-of-words framework  

• A set of histograms, each weighted according to 
selected positions in the document 
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The locally weighted bag-of-words framework  

• Standard bag-of-words: 
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The locally weighted bag-of-words framework  

• Documents represented under LOWBOW can be 
used for text categorization, using an appropriate 
distance measure (e.g.): 
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The locally weighted bag-of-words framework  

• Text segmentation:  

 

 

 

 

 

 

 

 

• Taking the gradient norm of the lowbow curve: 
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The locally weighted bag-of-words framework  

• Text segmentation:  

 

 

 

 

 

 

 

 

• PCA (left) and MDS (right) projections 
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LOWBOW for authorship attribution  

• Authorship attribution: Given texts of uncertain 
authorship and texts from a set of candidate authors, 
the task is to map the uncertain texts onto their true 
authors among the candidates. 

 

• Applications include: fraud detection, spam filtering, 
computer forensics and plagiarism detection 
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LOWBOW for authorship attribution  

• LOWBOW acts as an expansion of the BOW approach 
that can be particularly suitable for AA 

 

• Local histograms incorporate sequential information 
that reveal clues about the writing style of authors 

 

• Hypothesis: Authors use similar distributions of 
certain words when writing documents 

 

• We explore the use of LOWBOW for AA using 
character n-grams 
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LOWBOW for authorship attribution  
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LOWBOW for authorship attribution  

• How to take advantage of the multiple vectors 
associated to each document: 

– Combining the vectors (LOWBOW histogram) 

 

 

– Use the set of vectors to represent the document 
(BOLH) 

 

• Classifier: Support vector machine 
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LOWBOW for authorship attribution  

• Kernels for BOLHs 
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Experimental settings 

• We consider a subset of RCV-I, documents written by 10 
authors (about the same subject); 50 documents are 
available for training and 50 for testing for each author 

 

• Experiments using words and 3-grams at the character 
level were performed, different number of locations and 
scale parameters were evaluated, we report the settings 
that showed better performance 

 

• The 2500 most frequent terms were used to obtain the 
representations  
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Experimental settings 

 

• Three settings were considered: 
– Balanced data set (BC): 50 documents for training per 

author 

 

– Reduced data set (RBC): 4 subsets using 1, 3, 5 and 10 
training documents per author 

 
– Imbalanced data set (IRBC): 3 subsets generated with 

a Gaussian distribution over authors using at least 2, 
5, 10  and at most 10, 10, and 20 documents, 
respectively.  
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Balanced data set (BC) 
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Method  Parameters Words Char. N-grams  

BOW - 78.2% 75.0% 

LOWBOW k = 2; σ = 0.2 75.8% 72.0% 

LOWBOW k = 5; σ = 0.2 77.4% 75.2% 

LOWBOW k = 20; σ = 0.2 77.4% 75.0% 

k  Euc. Diff. EMD  Chi2 

Words 

2 78.6% 81.0% 75.0% 75.4% 

5 77.6% 82.0% 72.0% 77.2% 

20 79.2% 80.8% 75.2% 79.0% 

Character N-grams 

2 83.4% 82.8% 84.4% 83.8% 

5 83.4% 84.2% 82.2% 84.6% 

20 84.6% 86.4% 81.0% 85.2% 

LOWBOW histograms 

BOLH 

BOW a strong baseline  

BOLHs obtained better 
performance 



Balanced data set (BC) 
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BOW - 78.2% 75.0% 
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Balanced data set (BC) 
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Method  Parameters Words Char. N-grams  

BOW - 78.2% 75.0% 

LOWBOW k = 2; σ = 0.2 75.8% 72.0% 

LOWBOW k = 5; σ = 0.2 77.4% 75.2% 

LOWBOW k = 20; σ = 0.2 77.4% 75.0% 

k  Euc. Diff. EMD  Chi2 

Words 

2 78.6% 81.0% 75.0% 75.4% 

5 77.6% 82.0% 72.0% 77.2% 
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Character N-grams 

2 83.4% 82.8% 84.4% 83.8% 

5 83.4% 84.2% 82.2% 84.6% 

20 84.6% 86.4% 81.0% 85.2% 

LOWBOW histograms 

BOLH 

BOW a strong baseline  

BOLHs obtained better 
performance 



Reduced balanced data sets 
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Method \ dataset 1-doc 3-docs 5-docs 10-docs 50-docs 

BOW 36.8% 57.1% 62.4% 69.9% 78.2% 

LOWBOW 37.9% 55.6% 60.5% 69.3% 77.4% 

Diff. Kernel 52.4% 63.3% 69.2% 72.8% 82.0% 

Reference - - 53.4% 67.8% 80.8% 

Method \ dataset 1-doc 3-docs 5-docs 10-docs 50-docs 

BOW 65.3% 71.9% 74.2% 76.2% 75.0% 

LOWBOW 61.9% 71.6% 74.5% 73.8% 75.0% 

Diff. Kernel 70.7% 78.3% 80.6% 82.2% 86.4% 

Reference - - 53.4% 67.8% 80.8% 

 Using words as terms 

 Using character n-grams as terms 



Imbalanced data sets 
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Method \ dataset 2-10 5-10 10-20 

BOW 62.3% 67.2% 71.2% 

LOWBOW 61.1% 67.4% 71.5% 

Diff. Kernel 66.6% 70.7% 74.1% 

Reference 49.2% 59.8% 63.0% 

Method \ dataset 2-10 5-10 10-20 

BOW 70.1% 73.4% 73.1% 

LOWBOW 70.8% 72.8% 72.1% 

Diff. Kernel 77.8% 80.5% 82.2% 

Reference 49.2% 59.8% 63.0% 

 Using words as terms 

 Using character n-grams as terms 



LOWBOW for authorship attribution  

• Conclusions: 
– Sequential information encoded in local histograms is 

useful for AA. Character-level representations, which have 
proved to be very effective for AA can be further improved 
by adopting a local histogram formulation 

 

– Our results are superior to state of the art approaches, 
with improvements ranging from 2%-6% in balanced data 
sets and from 14%-30% in imbalanced data sets (larger 
improvements were observed in challenging conditions) 

 

– In preliminary experiments with short texts we have found 
that LOWBOW does not work very well  
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Research opportunities with LOWBOW 

• Automatically-dynamically setting the number of local 
histograms for documents according to their length  

 

• Studying the performance of local histograms in terms of 
length of documents, training set size, sparseness, 
narrowness of domain, etc.  

 

• Profile-based authorship attribution using local 
histograms   

 

• Learning the appropriate smoothing function from data  
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Discussion 

• One of the main limitations of the BOW formulation 
is its inability to incorporate sequential information 

 

• Several extensions/alternatives to BOW have been 
proposed so far, each of which has limitations and 
advantages with respect to each other 

 

• Too much work to do in this topic = research 
opportunities  
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SYNTACTIC INFORMATION IN TEXT 
CLASSIFICATION 

Novel representations and methods in text classification 

51 
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Outline 

• Complex linguistic features for text classification 

• Use of syntactic features in authorship attribution 

– Brief review 

– Syntactic-based n-grams as features 

– AA using Probabilistic Context-Free Grammars 

• Final remarks 
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Background 

• Long history on the use of complex linguistic 
features in information retrieval (refer to TREC reports) 

– Have been used: lemmas, POS information, named 
entities, noun phrases, complex nominals, syntactic 
tuples such as subject-verb, verb-object, etc. 

• General conclusion: the high computational cost of 
the adopted NLP algorithms, the small improvement 
produced over simple BoW representation, and the 
lack of accurate WSD tools are the reasons for the 
failure of NLP in document retrieval 
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Linguistic features in text classification 

• Are they useful for text classification? 

– IR and text classification are similar tasks, both are 
rely on thematic similarities. 

– Strong evidence indicates that POS information, 
complex nominals, and word senses are not adequate 
to improve TC accuracy 

 

Useful for other textual-based classification tasks? 
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Features in authorship attribution 

• AA deals with the definition of features that quantify 
the writing style of authors, and with the application 
of methods able to learn from that kind of features. 

– Lexical features  stylometric measures, words n-grams, function words 

– Character-based features  n-grams 

– Syntactic features 

– Semantic features  Use of synonyms and hyponyms, LSI 

– Domain specific features  Use/type of greetings, signatures, 

indentation, etc. 

 

 

7th Russian Summer School in Information Retrieval    Kazan, Russia, September 
2013 

55 

Efstathios Stamatatos. A survey of modern authorship attribution methods. Journal of the American Society for 
information Science and Technology 60(3): 538–556 (2009) 



Syntactic features in AA 

• The idea is that authors tend to use similar syntactic 
patterns unconsciously. 
– Strong authorial fingerprint 

• Two basic approaches: 
– Use POS tag frequencies or POS n-gram frequencies 

as features 

– Apply a chunker, and use phrase counts as features 

• Recent approaches:  
– Using syntactic-based n-grams as features 

– Using probabilistic context free grammars as language 
models for classification. 
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Syntactic n-grams 

• Sn-grams are obtained based on the order in which 
the elements are presented in syntactic trees.  

– Constructed by following a path in the tree, rather 
than taking words as they appear in the text.  

• Because sn-grams are based on syntactic relations of 
words, each word is bound to its real neighbors, 
ignoring the arbitrariness that is introduced by the 
surface structure 
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An example of sn-grams 

• Common word n-grams: 
– eat with 

• Common word sn-grams: 
– eat with, with spoon; eat with spoon 

• Ignoring function words we would obtain: 
– eat spoon 

 

7th Russian Summer School in Information Retrieval    Kazan, Russia, September 
2013 

58 



Other variants of sn-grams 

• In addition to word sn-grams, it is possible to build: 

– POS sn-grams 

– Sn-grams of syntactic relations tags (SR tags), where the elements are 
names of syntactic relations 

– Mixed sn-grams: composed by mixed elements like words (lexical 
units), POS tags and/or SR tags.  

 

                                                                                     Sn-grams of SR tags 
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Results 

• Profile size indicates the first most frequent n-grams/sngrams 
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AA using Probabilistic Context Free Grammars 

• Idea: use of syntactic information by building 
complete models of each author’s syntax to 
distinguish between authors.  

• How: build a probabilistic context free grammar 
(PCFG) for each author and use this grammar as a 
language model for classification. 

– A PCFG is a probabilistic version of a CFG where each 

production has a probability 

– Probability of a sentence/derivation is the product of the 

probabilities of its productions 
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General procedure 

• Generate a parse tree for 
each training document 

• Estimate a grammar and 
its parameters from the 
assembled “tree-bank” 

• Compute probabilities for 
each document, for each 
grammar 

• Select the author 
(grammar) with the 
highest probability 
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Results 
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Words Characters PCFG 

– PCFG-I: augments the training data with section of the Brown corpus; 
replicates the original data 3-4 times 

– PCFG-E: an ensemble of MaxEnt, Bigram-I and PCFG-I 

 



Final remarks 

• Syntactic information is an important authorial 
fingerprint 

• But, both syntactic and lexical information are useful in 
effectively capturing authors’ overall writing style 

– Mixed sn-grams are a good compromise between these 
two sources of information 

• Some disadvantages of using syntactic-based features: 

– Syntactic parsing is required! 

• Can take considerable time  

• Problem of availability of parsers for some languages 

– Language-dependent procedure 
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