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Supervised learning 

• Most current methods for automatic text 
categorization are based on supervised learning 
techniques 

• A major difficulty of supervised techniques is that 
they commonly require large training sets 

– Examples are manually labeled 

– Very expensive and time consuming 

• Unfortunately, in many real-world applications 
training sets are extremely small and very 
imbalanced 
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Size of training sets and classification performance 
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Important drop in accuracy (27% ) 



Semi-supervised learning 

• Idea: learning from a mixture of labeled and 
unlabeled data. 

• This idea was supported on the observation that, for 
more text classification tasks, it is easy to obtain 
samples of unlabeled data. 

• Assumption is that unlabeled data provide 
information about the joint probability distribution 
over words and their co-occurrrences 

7th Russian Summer School in Information Retrieval 
Kazan, Russia, September 2013 

6 



Two main approaches 

• Self training 

– Uses its own predictions to teach itself 

– Based on the assumption that “one’s own high 
confidence predictions are correct”. 

• Co-training 

– The idea is to construct two classifiers trained on 
different sub-feature sets, and to have the classifiers 
teach each other by labeling instances where they are 
able. 
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Self-training procedure 
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Parameters and variants 
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• Base learner: any classifier/ensemble that makes 
confidence-weighted predictions. 

• Stopping criteria: a fixed arbitrary number of 
iterations or until convergence 

• Indelibility: basic version re-labels unlabeled data at 
every iteration; in a variation, labels from unlabeled 
data are never recomputed. 

• Selection: add only k instances to the training at each 
iteration. 

• Balancing: select the same number of instances for 
each class, or preserve the initial class proportions. 



Co-training procedure 

7th Russian Summer School in Information Retrieval 
Kazan, Russia, September 2013 

10 



Comments on semi-supervised methods 

• Self-training: 

– The simplest semi-supervised learning method, but 

– Early mistakes could reinforce themselves  

• Co-training: 

– Not applicable to all problems 

– It is necessary to have two different views of the 
documents.  

• The two features subsets have to be conditionally 
independent given the class; i.e., high confident data 
points in one view will be randomly scattered in the 
other view 
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Finding unlabeled examples 

• Semi-supervised methods assume the existence of a 
large set of unlabeled documents 

– Documents that belong to the same domain 

– Example documents for ALL given classes 

• If unlabeled documents do not exists, then it is 
necessary to extract them from other place 

• Idea: using the web as corpus, but 

 

How to extract related documents from the Web? 

How to guarantee they are relevant for the given problem? 
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Self-training  using the Web as corpus 

Rafael Guzmán-Cabrera, Manuel Montes-y-Gómez, Paolo Rosso, Luis Villaseñor-Pineda. Using the Web as Corpus 
for Self-training Text Categorization. Information Retrieval, Volume 12, Issue3, Springer 2009. 
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Building web queries 

• Good queries are formed by good terms 
– Terms that helps to describe some class, and to 

differentiate among classes 

• Good queries are not ambiguous 
– Long queries are very precise but have low recall; 

short queries tend to be ambiguous 

• Proposed solution: 
– Consider frequent terms with positive IG 

– Queries of 3 terms (all possible combinations of the N 
best terms) 

 
But, will be all these queries equally useful? 
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Collecting results from web search 

Not all queries are equally relevant! 
 

• Significance of a query q = {w1, w2, w3} to class C : 

 

 
 

• Number of downloaded examples per query in a 
direct proportion to its -value. 
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Frequency of occurrence and 
information gain of the query 
terms 

Total number of snippets 
to be download 



Adapted self-training procedure 

16 
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Experiment 1: Classifying Spanish news reports 

17 

• Four classes: forest fires, hurricanes, floods, and earthquakes 

• Having only 5 training instances per class was possible to 
achieve a classification accuracy of 97% 
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Experiment 2: Classifying English news reports 

• Experiments using the R10 collection (10 classes); Naïve Bayes 

• Higher accuracy was obtained using only 1000 labeled examples 
instead of considering the whole set of 7206 instances (84.7%) 

18 
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Experiment 3: Authorship attribution of Spanish poems 

• Poems from five different contemporary poets 

– 282 training instances, 71 test instances. 

• Surprising to verify that it was feasible to extract useful 
examples from the Web for authorship attribution. 
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Final remarks 

• Different to other semi-supervised approaches, the 
presented method does not require a predefined set 
of unlabeled examples, instead, it considers their 
automatic extraction from the Web 

• Works well with very few training examples 

– Could be applied in classification problems having 
imbalanced classes, maybe in conjunction with under-
sampling techniques. 

• It is domain and language independent. 

– Experiments in three different tasks and in two 
different languages. 
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Outline 

• One-class classification 

• Taxonomy of OCC techniques 

• Learning from positive and unlabeled data 

• Our adaptation to PU-learning 

• Experiments on opinion spam detection 
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One class classification 

• Conventional classification algorithms classify objects 
into one of several pre-defined categories.  

– A problem arises when a unknown object does not 
belong to any of those categories. 

 

• In OCC one of the classes is well characterized by 
instances in the training data; the other class, it has 
either no instances at all, very few of them, or they 
do not form a representative sample of the negative 
concept 
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An example of application 

• Homepage page classification 

– Collecting sample of homepages (positive training 
examples) is relatively easy 

– Collecting samples of non-homepages (negative 
training examples) is very challenging because it may 
not represent the negative concept uniformly and may 
involve human bias. 

• Other similar applications on textual data are: 

– Author verification 

– Wikipedia flaw detection 

– Opinion spam detection 
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Taxonomy of OCC techniques 
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Learning from positive and unlabeled 

• PU-learning is a partially supervised classification 
technique 

– It addresses the problem of building a two-class 
classifier with only positive and unlabeled examples. 

• It is defined as a two-step strategy: 

– Step 1: Extract a set of negative examples called 
reliable negatives (RN) from the unlabeled examples 

– Step 2: Iteratively apply a learning algorithm on the 
refined training set to build a two-class classifier. 
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Traditional PU-learning algorithm 
• The idea is to iteratively increase the number of unlabeled 

examples that are classified as negative while maintaining the 
positive examples correctly classified. 

 

1. Assign label 1 to each document in P (positive set) 

2. Assign label -1 to each document in U (unlabeled set) 

3. Build a classifier using P and U 
4. Use the classifier to classify U 
5. RN = documents in U classified as negative (reliable negatives) 

6. Build a classifier using P and RN 
7. Use the classifier to classify U-RN 
8. Add documents classified as negative to RN 
9. Repeat 6 to 8 until no more negative instances found 
 

It is a self-training approach! 
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Alternative PU-learning approaches 
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• Traditional PU-learning is very sensitive to initial 
extraction of reliable negatives. 

•  One alternative is the spy technique at first step 

– Uses a subset of P as control sample, to determine a 
threshold to identify reliable negative instances, or to 
determine stop condition 

Bangzuo Zhang, Wanli Zuo. Reliable Negative Extracting Based on kNN for Learning from Positive and Unlabeled 
Examples. Journal of Computers, Vol 4, No 1 (2009), 94-101, Jan 2009. 
  

 



Spy technique for identifying reliable negatives 
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Our approach for PU-learning 

• Instead of iteratively increase the number of reliable negative 
instances, iteratively refine this set 
– Applies a gradual reduction of the negative instances; at each 

iteration we eliminate less instances. 

 

7th Russian Summer School in Information Retrieval 
Kazan, Russia, September 2013 

31 



Using PU-Learning for opinion spam detection 

• Why experiments in this domain? 

– Large number of opinion reviews on the Web 

– Great economic importance of online reviews 

– Growing trend to incorporate spam on review sites.  

• Online reviews paid by companies to promote their 
products or damage the reputation of competitors 

• Ott et al. (2011) has estimated around 5% of positive 
hotel reviews appear to be deceptive  
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A Challenging problem 

• Detecting deceptive opinions is very difficult 

– Opinions are typically short texts, written in different 
styles and for different purposes. 

– Human deception detection performance is low,  with 
accuracies around 60% (Ott et al., 2013) 
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Example of a truthful opinion: 
 
We stay at Hilton for 4 nights last march. It was a 
pleasant stay. We got a large room with 2 double beds 
and 2 bathrooms, The TV was Ok, a 27’ CRT Flat 
Screen. The concierge was very friendly when we 
need. The room was very cleaned when we arrived, we 
ordered some pizzas from room service and the pizza 
was ok also. The main Hall is beautiful. The breakfast is 
charged, 20 dollars, kinda expensive. The internet 
access (WiFi) is charged, 13 dollars/day. Pros: Low rate 
price, huge rooms, close to attractions at Loop, close 
to metro station. Cons: Expensive breakfast, Internet 
access charged. Tip: When leaving the building, always 
use the Michigan Ave exit. It’s a great view. 

Example of a deceptive opinion: 
 
My husband and I stayed for two nights at the Hilton 
Chicago, and enjoyed every minute of it! The 
bedrooms are immaculate, and the linens are very 
soft. We also appreciated the free WiFi, as we could 
stay in touch with friends while staying in Chicago. The 
bathroom was quite spacious, and I loved the smell of 
the shampoo they provided-not like most hotel 
shampoos. Their service was amazing, and we 
absolutely loved the beautiful indoor pool. I would 
recommend staying here to anyone. 



Experiments 

• We used six different corpora 

– Test set: 80 deceptive and 80 truthful opinions. 

– Three training sets: 80, 100 and 120 positive 
instances, and 520 unlabeled instances (320 truthful 
and 200 deceptive opinions) 

•  Experimental setup: 

– Traditional BoW representation with binary weights 

– Naïve Bayes and SVM as base classifiers (Weka 
implementations; default parameters) 
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Results 
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Final remarks 

• Many real-world text classification applications fall 
into the class of positive and unlabeled learning 
problems. 
– Negative class very generic or uncertainty on negative 

examples 

– Author verification, sexual predator detection 

• Good results on the application of PU-learning to 
opinion spam detection  (F=0.84 with 100 examples) 
– Ott et al. (2011) reported F= 0.89 using 400 positive 

and 400 negative instances for cross-validation. 

– Best human result in this dataset is around 60% of 
accuracy.  
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Outline 

• Collective classification 

– Motivation and definition 

– Approaches for hypertext classification 

• Text classification using neighborhood information 

– Experiments on short text classification 

– Experiments on crosslingual classification 

• Final remaks 
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Collective classification (motivation) 

• Traditional text classification methods: 

– Represent each document by a feature (word) vector 

– Learn a classifier based on manually labeled training 
data 

– Apply the classifier to each unlabeled document in a 
“context-free” manner. 

• Decisions are based only on the information 
contained in the given test document, disregarding 
the other documents in the test set. 
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Collective classification (general idea) 

• Not only determine the topic of a single document, 
but to infer it for a collection of documents. 

– This is the real application scenario for a text classifier 

• Try to collectively optimise this problem taking into 
account the connections present among the 
documents, for example: 

– Papers citing papers 

– Links among web pages (hypertext) 

– Other relations such as: same author, same 
conference, similar content, etc. 
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Approaches for hypertext classification (1) 

• Straightforward approach: Incorporate words of the 
neighbors into the vector of the given document 

– Adjust the non-zero weights of existing terms in the 
original vector 

– Bring in new terms from the neighbors (i.e, expand 
the document) 

• Generally it does not lead to a robust solution. 

– Parameter tuning is problematic 
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Approaches for hypertext classification (2) 

• Local approaches: learn a model locally, without 
considering unlabeled data, and then apply the 
model iteratively to classify unlabeled data. 
– At each iteration, the label of each document is 

influenced by the popularity of this label among their 
neighbors 

• Global approaches: aim to estimate the labels of all 
test documents simultaneously, by modeling the 
mutual influence between neighboring documents. 
– Based on global optimization techniques 

– Tend to exploit the links occurring between labeled 
and unlabeled data for learning 
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Neighborhood consensus classification (NCC) 

• Supported on the idea that similar documents may 
belong to the same category. 

– Classifies documents by considering their own 
information as well as information about the category 
assigned to other similar documents from the same 
target collection 

• Does not need information about the association 
between documents and can be easily combined 
with different classification algorithms. 
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A reclassification approach 

•  It is a local but not iterative approach 

– Learns a model locally, and classifies each document 
individually 

 
– Finds the N more similar documents in the target set 

• Content similarity (cosine function); KNN 

– Re-labels the documents considering the categories 
of their neighbors (similar documents) 
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Experiments 

• Short documents are difficult to categorize since 
they contain a small number of words whose 
absolute frequency is relatively low  

– Produce very sparse representations  

• The goal is to evaluate the effectiveness of NCC in 
the classification of short documents 

– Classification of complete news articles 

– Classification of news titles (short texts) 

46 
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Complexity of short text classification 
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• Prototype-based classification emerged as the most robust 
classification approach for short documents 



NCC using prototype-based classification 

• Prototypes are the centroids of the categories 

 

 
• Similarity among documents and between prototypes and 

documents is computed using the cosine formula 

• K = number of used neighbors; lambda = relative importance of 
neighbors information 
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Short-text classification using NC-PBC 

• Information from the neighbors improved the classification 
performance of short texts.  

• It was not very useful in the case of regular-length documents  
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Parameter tuning 

• For all these combinations of parameter values, results of NC-
PBC significantly outperformed the results of PBC   

• Use more than 5 neighbors and give them too much importance 
in the final decision 
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Additional experiments 

• A major difficulty of supervised techniques is that 
they commonly require large training sets 

• For many applications in several languages these 
datasets are extremely small or, what is worst, they 
are not available 

• One solution: crosslingual text classification 

– Consists in exploiting labeled documents in a source 
language to classify documents in a different target 
language 
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NCC in crosslingual text classification 

• Common approach: Translate training documents to 
target language using translation machines. 

– The resulting classifier is a weak classifier, because of 
translation errors as well as cultural discrepancies 
manifested in both languages. 

• The purpose of the experiment is to evaluate the 
improvement in the classification performance of 
these weak classifiers by applying the neighborhood 
consensus classification approach. 
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Baseline results 
• Three languages (English, French and Spanish) 
• News reports corresponding to four classes: crime, 

disasters, politics, and sports. 
• For each language we used 320 documents; 80 per each 

class 
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Results of NCC 

• Demonstrate the usefulness of considering information 
from target language (dataset) to reclassify the 
documents 
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• More neighbors than in short text classification 

• Also, greater importance to the neighbors 



Final remarks 

• NCC determines the category of documents by taking 
advantage of the information about the relationships 
between documents from the same target collection 

• Effective to improve the classification performance 
in complex scenarios: 
– Short text classification 

– Crosslingual text classification 

– Learning from small training sets 

• Performance is robust for different parameter 
values, but better results were obtained when using 
more than ten neighbors and small lambda values. 
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