Advances in IR Evaluation

Ben Carterette Evangelos Kanoulas Emine Yilmaz

w\m A The

"’\\M/ University Nﬁ osoft rch

/%\\ a Of

Sheffield. |

Course Outline

Low cost evaluation

Advanced user models
— Web search models, novelty & diversity, sessions

Reliability
— Significance tests, reusability
Other evaluation setups

Low-Cost Evaluation (4)

* Estimating measures with less judgments

— Aslam et al. SIGIRO06, Yilmaz and Aslam CIKMOG6, Yilmaz et
al SIGIR09

e Estimating systems ranking with less judgments
— Carterette et al. SIGIR06, Moffat et al. SIGIRO7

Goals for a Test Collection

* Different goals suggest different approaches:
— Find the relevant documents:

* Pooling
* Move-to-Front pooling, Hedge
* Interactive Searching and Judging
— Estimate the value of an evaluation measure:
* infAP, xinfAP, statAP

— Compare two or more systems by some measure:
* MTC (Minimal Test Collections)

MTC (Minimal Test Collections)

* MTC is an adaptive, episodic algorithm for
deciding which documents to judge

* |ts goals:
— Accurately compare two or more systems
— Make a minimum number of judgments
— Use existing judgments to help choose

* Not goals of MTC:
— Select documents most likely to be relevant
— Find all (or even most) of the relevant documents

— Accurate estimates of evaluation measures

MTC’s Two Parts

* MTC comprises two separate parts:
1. An algorithm for selecting documents to judge
2. A way to evaluate when many judgments are missing

* |f you “believe in” one but not the other, you may pick
and choose

— The judgments the algorithm produces can be fed into
other evaluation approaches

— The evaluation approach can be used with judgments from
any other method

 They are linked in the algorithm’s stopping condition

MTC Selection Algorithm Outline

e Start with the simplest case: compare two
systems by some measure on one topic

* Outline of MTC algorithm:

— Derive document weights from an algebraic
expression of the difference in the measure

— Order documents by weight and judge the
highest-weighted

— Use the judgment to update the weights
— Continue until a stopping condition is reached

Detailed Example: Precision

Say we want to compare two systems by precision
at rank k

First, define the difference in precision:

— Aprec@k = prec, @k — prec, @k

Goal: determine sign of Aprec@Kk

Define precl@k, prec2@k in terms of relevance:

k k
prec;Qk = ¢ Z rel1;, preca@k = 1 Zrelg,z—

— If we knew the values of rel, ;, rel, ;, we would know the
sign of Aprec@Kk

Refining Aprec@Kk

rel, ;, rel,; could represent the same document
— System 1 places Doc A at rank 1; system 2 places Doc A at rank 4

=rel,, =rel,,

No sense in using two different variables to refer to it
— Number documents independently of their ranking
— Let x; indicate the relevance of document number i
— Let rank(i) indicate the rank document i appears at in system |

Now we can write Aprec@k as:
mn

AprecQk = lZa:'I rank (i) < k) ——Z:vz (ranks(2) < k)
=1 1=1

[=

= 7 Z I(rank,(i) < k) — I(ranky(i) < k))

— I(rank(i) <) is 1 if document i is ranked above k and O otherwise

Precision at rank 5 System 1 System 2

with local document numbering
rel;
rel E

1,2

rel, 4

~o]o]=
=]>]o]-]o

k=5
relzl8

10

Precision at rank 5 System 1 System 2
with global document numbering

X X
Document numbers are independent 2 B 1
of rank... use rank(i) to map back to rank
k=5
X7 X3
I 4 I
X6 X7
I 4 I
I I

AprecQb = %Zmz (I(ranky(i) < 5) — I(ranks(i) < 5))

=1

11

Goal of MTC

|II

Decide which subset of x" = {x;, X, ..., X} to “reveal” (have judged)

to prove sign of Aprec@k is -1, 0, or 1
Aprec@k = Z x; (I(ranki1(i) < k) — I(ranks(i) < k))

i=1
Notice:
— Judging a document ranked below k by both systems tells us nothing
* I(rank(i) < k) —I(rank,(i)<k)=0-0=0
— Judging a document ranked above k by both systems tells us nothing
* I(rank,(i) k) —I(rank,(i)<k)=1-1=0
— The only interesting documents are those ranked above k by one
system but not the other

Define “interestingness” weight
— w, = l(rank,(i) < k) = I{rank,(i) < k)

Calculating document weights

w, = I(rank,(1) £5) —I(rank,(1) < 5)
=1-1

=0
w,=1
w; =1
w, =-1
w; =0
wg =-1
w,=0
wg =0

Only four documents are useful to judge...

System 1 System 2

X5 FUA €| Xe

W B E R

Xg |6 o | X3

X3 b A RS

X1 |2 H R

X7 X3
I

Xe X7
I

X, X,
I

13

Selecting Documents

But do we need to judge all of the interesting documents?

After each judgment, ask the following:
— What is the maximum possible value of Aprec@k?
— What is the minimum possible value of Aprec@k?

Check these values:

— |f the maximum possible is less than zero, then we have proved
that sign(Aprec@k) = -1; no more judging is necessary

— If the minimum possible is greater than zero, we have proved
that sign(Aprec@k) = 1, no more judging is necessary

— Otherwise we must keep judging

In other words, bound Aprec@Kk

— Calculate lower and upper bounds by making different
assumptions about the relevance of the unjudged documents

Bounding Aprecision@5

Starting from no relevance judgments:

Upper bound: B, D relevant
G, H not relevant

Lower bound: B, D not relevant
G, H relevant

-0.4 < Aprec@ <04

We cannot conclude anything.

System 1

System 2

I 4
Xg \ Xg
I 4
I 4
I 4
k=5
X7 X3
Ly I 4
Xe X5
I 4 Ly
X, X,
I 4 I 4

15

Bounding Aprecision@5 System 1 System 2

_ X5 G R%
Suppose B and D are judged relevant.
Then: B
I 4
Upper bound: no more relevant « «
G, H not relevant 8 8
X3 Xs
Lower bound: no more not relevant

G, H relevant
k=5
0.0< Aprec@ <04
X7 X3
I I
We conclude that system 2 cannot Xg X5
be better than system 1. I |
, X, X,
We don’t know whether system 1

is better than system 2.

Bounding Aprecision@5 System 1 System 2

g B

Then: B
Xy X1
Ly

Suppose B and D are judged nonrelevant.

Upper bound: no more relevant
G, H not relevant

Lower bound: no more not relevant

G, H relevant
k=5
-0.4 < Aprec@ <£0.0
X7 X3
L7 L7
We conclude that system 1 cannot Xg X5
be better than system 2. I |
, X, X,
We don’t know whether system 2

is better than system 1.

Whether documents judged relevant or not relevant, effect on bounds is the same. 17

Bounding Aprecision@Kk

 The bounds can be expressed with simple
fOrm U IaS: Contribution of unjudged

system 1-only documents

1
| AprecQk| = 3 Z w; ;| H## (unjudged and w; > 0)

| AprecQk| = #(unjudged and w; < 0)

| =
]
S
5
|

i udeed
\Z|Z jueee Contribution of unjudged
system 2-only documents

Contribution of
judged documents

The Algorithm (MTC for prec@k)

 for each docifrom1ton,
— set w, = I(rank,(i) < k) — I(rank,(i) < k)
* lowerbound = 0; upperbound =0

* while (lowerbound < 0 and upperbound > 0)

— Judge an unjudged document with |w,| >0
* Alternate between docs withw, =1, w,=-1

— Recompute Aprec@k bounds:

(Z w;r; — #(unjudged and w; < 0))

|7 judged

| =

* lowerbound =

. upperbound =% (Z w;x; + #(unjudged and w; > O))

|7 judged

MTC is Minimal

e Theorem: MTC requires the minimal number

of judgments to determine the sign of
Aprec@k

— More precisely: among all algorithms with no
prior information about relevance, MTC requires
no more judgments on average than any of them

* Algorithms that learn something about the distribution
of relevant documents (such as MTF) could do better

* MTC could do worse on some cases while still doing
better on average

MTC is Minimal: Proof Sketch

* First define two probabilities:

— p, is the probability that a document unique to
system 1 is judged relevant
* i.e. the probability that a doc with w, > 0 is relevant

— p, is defined likewise for system 2

* If p; >p, then system 1 is better than system 2

— And vice versa

MTC is Minimal: Proof Sketch

* Suppose w.l.o.g. that p, > p,

* Suppose MTC stops after m judgments
— At this point the lower bound is greater than zero
— Because of alternation, m/2 of the judged documents
are from system 1, m/2 from system 2
* We can place non-MTC algorithms in one of two
bins:
— Those that might judge documents with w, = 0 (the
majority)

— Those that select among the same set as MTC but do
not alternate (“MTC-like”)

MTC is Minimal: Proof Sketch

e Suppose an alternative approach also selects
m documents to judge

* If even one of those has w, = 0, then the lower

bound of Aprec@k cannot be greater than
Zero

— At least one more judgment will be required to
complete the proof

* This encompasses all non-MTC-like
approaches

MTC is Minimal: Proof Sketch

* For MTC-like approaches, the argument is more
difficult

* The idea is as follows:
— Since an MTC-like approach only judges documents

with w, # 0, the only difference is that it does not
alternate between w, >0and w, <0

— This means it prefers documents unique to system 1
or documents unique to system 2

— Because of this preference, it may be able to prove
one bound faster, but it won’t be able to prove the
other bound faster

— Therefore it cannot do better than MTC

MTC for DCG@k

* DCG has become a popular measure due to its
use of a user model and graded judgments
— Gain function g(x.) maps judgments to gain values
— Discount function d(rank(i)) discounts gains by rank
— DCG is a family of measures with particular cases
defined by specific g() and d()

* As we did with precision, define DCG in terms of
relevance variables x. and their ranks rank(i):

DCGQk = Z; y m(nk)())I(ra'n,k(i) <k)

MTC for DCG@k

e Now we can define the difference ADCG@k:

ADCGQk = Z . ra(mZ) I(rank,(i) < k) — 9(z:) I(ranks(i) < k)

nki (1)) d(ranky(2))
. (ranky(i) < k) I(ranks(i) < k)
- Zg v (d(rank; (7)) d(ranks(i)))

e ...and the document weights:

I(rank,(i) < k) I(rankz(i) < k)
d(ranky(2)) d(ranks (7))

* This is similar to precision, but now the ranks
matter as well as whether it was retrieved

w; —

DCG at rank 5 System 1 System 2

w; = 1/log2(5+1) — 1/log2(2+1) Xs Xe
=-0.244
w, = 1/log2(2+1) — 0/log2(8+1) X3 B X4
=0.631
w; = 1/log2(4+1) — 0/log2(5+1) Xg Xg
=0.431
w, = -0.387 X B X,
=0.569
X X
W, = -1.000 1 p
=0.000 . } k=5
/ 3
= 0.000 By o
X6 X5
I |
X4 X,
I |y

B n - I(rank,(i) <5) I(ranky(i) < 5)
ADCG@S5 = 2(2 -1 (logz(rcmkl()+ 1) logy(ranks (i) + 1))

=1

MTC for DCG@k

* Finally, bounds on ADCG@k are:

'ADCGQk| = Z w;g(x;) + Z w; Max gain
1|t judged i|¢ unjudged and w;>0
ADCGQE| = Z w;g(z;) + Z w; max gain

1|t judged 2|t unjudged and w;<0

28

DCG at rank 5

=-0.244
w, =0.631
w; =0.431
w, =-0.387
w; = 0.569

=-1.000
w, =0.000
wg = 0.000

-0.631 < ADCG@5 <1.631

ADCG@5 = f:(zwi

=1

System 1 System 2

k=5
X5 X3
Ly I 4
Xe X5
I 4 Ly
X, X,
I 4 I 4

I(rank,(i) <5) I(ranky(i) < 5)
—1) (1og2(mnk1(Y+ 1) log, (ranks(i) +- 1))

Multiple Topics

 We usually evaluate over more than just one topic

 There are two ways to use an MTC algorithm:

1. Apply it separately to each topic

Gives a set of signs of measure differences, e.g. 50 values of sign
(ADCG)

2. Apply it to all topics simultaneously

Gives the sign of the mean difference, e.g. the value of sign(ADCG)
averaged over 50 topics

e The second is better:

— That’s the quantity we’re directly interested in

— It allows the algorithm to find the topics that are
interesting as well as the documents

Topic 1

Topic 2

Topic 3

System 1

System 2

System 1 System 2

X3

X15 X119
I 4 I 4

X14 X5
I I

X1o X10
I I 4

System 1l System 2

X1 H R

W% E X320

X3 X19
I N 4

X3 X33
| I 4

X520 X1
I I

Top 6 highest-weighted docs: G (topic 1), A (topic 3), H (topic 3), B (topic 1), B (topic 3), G (topic 3) 5,

Recall Measures

* Note that precision and DCG do not require
knowing how many relevant docs there are

— That is the real challenge for most low-cost
methods

e Can MTC work for recall, NDCG, AP, and other
such measures?

— For individual queries, yes: the denominators
don’t affect the difference

— For a set of queries...?

MTC for Recall

* Again, define recall@k in terms of x, and rank(i):
recQk = Z?:ll . ;xil(ra,nk(i) <k)

— The denominator is the total number of relevant
documents

* Similarly, a difference in recall:

ArecQk = nl (Z z;(I(ranki(i) < k) — I(rankz(i) < k))
Zz’zl Lg i=1
* To define weights, ask: what happens to our
understanding of recall when we judge a
document?

System 1 System 2

With no documents judged, X5 X6
what are the max/min values of Arec@5?
Xy E RS
B, D relevant; G, H nonrelevant
= Arec@5=1.0
Xg 1@ 0 | Xg
B, D nonrelevant; G, H relevant
= Arec@5=-1.0 X3 B X
k=5
X7 X3
B B
Xg X
B B
X, X,
B B

34

System 1 System 2

Suppose document B is judged relevant X5 Xg
le.x,=1
. X3 E RS
What are the max/min values of Arec@5?
B relevant Xg Xg
D relevant; G, H nonrelevant
= Arec@5=1.0 X3 B Xs
B relevant X, |2 o x,
D nonrelevant; G, H relevant
= Arec@®5 = 1/3 — 2/3 = -0.333 k=35
X7 X3
I I
Xg X7
S0 -0.333 < Arec@5< 1.0 — —
X, X,
I N

35

System 1 System 2

Suppose document B is judged not relevant Xs Xg
i.e.x,=0
. X3 E RS
What are the max/min values of Arec@5?
B nonrelevant Xg Xg
D relevant; G, H nonrelevant
= Arec@5=1.0 X3 B Xs
B nonrelevant X, |2 o x,
D nonrelevant; G, H relevant
= Arec®5 = 0/2 —2/2 = -1.0 k=35
X7 X3
I I
Xg X7
So-1.0 < Arec@5 < 1.0 — —
X, X,
I N

Judging B nonrelevant accomplishes nothing!
36

MTC for Recall

* With precision and DCG, judging a document
relevant or not relevant didn’t matter

— Either way, one of the bounds is affected
— Effect is equal in both cases
 With recall, it does matter
— A relevant judgment increases the lower bound
— A nonrelevant judgment does nothing

* Furthermore, each judgment affects the
possible effect of future judgments

Finally: MTC for AP

* Average precision presents an additional
challenge: relevance judgments interact

— If the document at rank 1 is relevant, then the
contribution of every subsequent relevant
document increases

— |f the document at rank 1 is nonrelevant, then the

maximum possible contribution of subsequent
relevant documents decreases

Define SP (Sum Precision) as AP*R
— SPis between 0 and R

If document A is relevant, its total
contribution to SP is as much as
1+1/2+1/3+...

— Depending on relevance of
subsequent docs

If document A is not relevant, SP

cannot be greater than

R-1-1/2-1/3-...

Judgments of nonrelevance can

e informative for AP

System 1

=]ol-]-]o]ole]>

39

MTC for AP

* Define AP in terms of x. and rank(i) as follows:

1 1
AP = ST Zx rank (i Zx] (rank(j) < rank(i))

e Note that AP sums over all documents

— Those that were not retrieved should be assumed
to appear at rank infinity

* This can be usefully simplified:

1
AP = — al r;x;, a;; = min{rank(i), rank(j)}
Zz’zl Ly §<i K

MTC for AP

e Now define the difference in AP:

1 1
Cij = max{ranki (i), rank,(j)} B max{ranks(i), ranks(j)}

* For simplicity, ignore the denominator for now

Assume all documents are nonrelevant
What happens if we judge one relevant?

X!

SP, =1/5,5P, = 1/2
ASP = -0.300

. SP,=1/2,SP, =1/8

ASP =0.375

: ASP =0.083

: ASP =-0.075

: ASP =0.750

: ASP =-0.857

: ASP =0.024

: ASP =0.000

System 1

System 2

42

Or assume all documents are relevant
What happens if we judge one nonrelevant?

X;: SP;=1+1+141+5/6+6/7+7/8
SP, = 1+2/3+3/4+..+7/8
ASP =0.783

X,: SP,=1+42/3+3/4+.+7/8
SP, = 1+1+1+1+1+1+1
ASP =-1.218

Xy: ASP =-0.367

X,: ASP=0.434

Xs: ASP=-1.083

Xg: ASP=1.593

X,: ASP=-0.143

Xg: ASP =0.000

System 1

System 2

43

Calculating Document Weights

* |nitially each document gets a “relevant
weight” and a “nonrelevant weight”
— Relevant weight = effect on ASP if relevant
=G
— Nonrelevant weight = effect on ASP if nonrelevant
=Gt Cy T+ Gy + .. F Gy

* Judge the document with the greatest
maximum of rel weight and nonrel weight

G judged nonrelevant (x; = 0)
Assume all documents are nonrelevant
What happens if we judge one relevant?

X,: SP,=1/5,SP, =1/2
ASP =-0.300

X,: SP,=1/2,5P, =1/8
ASP = 0.375

X3: ASP = 0.083

X,: ASP =-0.075

Xs: ASP = 0.750

X,: ASP =0.024

Xg: ASP = 0.000

System 1

System 2

45

Or assume all documents are relevant
What happens if we judge one nonrelevant?

X0 SP,=1+1+1+1+5/6+6/8
SP,=1/3+2/4+..+6/8
ASP =2.019
X,: SP,=1+2/3+3/4+..+6/8
SP, =1/242/3+..+6/7
ASP =0.393
Xy: ASP =1.202
X,: ASP=1.952
Xs: ASP =0.402
—x—ASP=34553
X,: ASP =1.450
Xg: ASP =1.402

System 1

System 2

46

Updating Document Weights

R
w; =|C H E Cij T
7|7 judged
N
w, =|Ci; H E Cij T4 E Cij
7|7 judged 7|7 not judged
base effect additional base for nonrel weight

interactions with
judged documents

G judged nonrelevant (x; = 0)
E judged relevant (x, = 1)

X,: ASP = 0.150

X3: ASP =-0.183

X4: ASP =-0.450

Xs: ASP = 0.400
X,: ASP =0.252

Xg: ASP =-0.433

System 1

System 2

48

Stopping Condition

* How do we calculate bounds on ASP?
— A: We don’t. They’re too hard (NP-Hard).

e But we can still determine whether the
stopping condition is satisfied
— “Look ahead”

— If the algorithm continued in the best case, would
our conclusion change?
e |f ASP > 0 with current judgments, can it

necome < 0 after a series of future
judgments?

So far we know:
G is nonrelevant
E is relevant

Based on that, ASP =-0.3
s it possible for system 1 to catch up?

YES: if Ais judged relevant,
ASP will goup to 0.4

System 1

System 2

50

MTC for AP: Algorithm

* while (!done)
— for each unjudged document i,
* w, = max{wrR, wN} (where wR, wN calculated as above)
— judge document with max |w;|

— calculate AAP with current judgments

e if AAP > 0, simulate algorithm forward taking
documents in order of increasing w,®

* if AAP <0, simulate forward taking documents in order
of decreasing wR

— if sign is the same after simulation, done = true

MTC: Summary So Far

* MTC is a family of algorithms with specific
cases for each evaluation measure

* An algorithm is defined by
— A way to weight documents
— A way to select which document to judge next
— A way to update document weights
— A stopping condition based on bounds

* Some algorithms are easier to understand/
implement/prove optimal than others...

Refining the Bounds

* Lower and upper bounds are a blunt
Instrument

— Bounds can be on the wrong side of zero, but only

by a small fraction
| 0

* Define a probability distribution over values
between the bounds

— If the total probability of values greater than O is
low, stop judging

Distributions of Evaluation
Measures

e Basic idea:
— There is a set of m unjudged documents
— Each one could be relevant or nonrelevant

— Thus, there are 2™ total possible ways to assign
relevance to the unjudged documents

— Each one of those assighments results in a
particular value of the measure

— We can therefore count the number of ways every
possible value of Aprec@k, Arec@k, AAP, etc. can
occur

System1l System 2

%, | %, | % | X | % | X | %, | %, | prec,@5 | prec,@5 | aprec@s [ES
0 0.0 0.0
Xy

O 0 0 060 0 0 0 O 0.

€
1 1 1 1 1 1 1 1 1.0 1.0 0.0 B Xl
1 01 0 1 0 1 O 0.6 0.4 0.2
Xg @ C RS
0 1. 0 1 0 1 0 1 0.4 0.6 0.2
1 1 00 1 1 0 0 0.6 0.6 0.0 X3n XS
k=5
X5 X3
(]] L7 | 7
B o Xg X5
Y L
X, X,
i 7L | . _

0.0 0.2 0.4 0.6 0.8 1.0 -0.4

precision@5 ApreciSion@S

0.4

55

Distributions of Evaluation
Measures

* Forming a distribution:
— Assume each of the 2™ assignments of relevance is
equally likely

e uniform distribution over possible assignments of
relevance

— Result: values of Aprec@k have a binomial
distribution
* As documents are judged, the distribution’s
center shifts, but it remains binomial

System 1l System 2

MEMEM 2 x

111 1 1 1 1 1 1.0 1.0 0.0 XZB 1
18 - TR S N S - 0.5 04 0.2
Xg |16 C R
ol]1]lo 1 0 1 0 1 0.4 0.6 -0.2
1/1/0 0 1 1 0 O 0.6 0.6 0.0 X3n XS
k=5
X7 X3
[]] I I
Xg X5
I I
X, X,
H H N 4 I

0.2 0.4 0.6 0.8 1.0 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

precision@5 Aprecision@5

57

Normal Approximations

* The binomial distribution can be approximated by
a normal distribution

— Pretty close approximation even for small k

e |t turns out that distributions of ADCG and AAP
can also be roughly approximated by normal
distributions

— Proofs possible using combinatoric arguments and
limit theory

— Proofs don’t require uniform distribution of relevance
assignments

Using Distributions in MTC

* Since measures are normally distributed, it is
very easy to compute the probability that one
system will be better than another

— i.e. given a set of judgments J, we can easily
compute P(Ameasure >0 | J)
* This in turn lets us know whether it’s worth
making more judgments

— Instead of computing bounds, compute a
probability

— If the probability is low, judging can stop

Results

* So how well does MTC actually do?

* Experiment: randomly select a pair of systems,
compare them using MTC

— Validate against “true” results using TREC grels

MTC for AP pooling
collection | judgments | % correct | judgments | % correct _
TREC-3 367.77 91% 622.04 96%
TREC-4 411.11 97% 559.44 100%
TREC-5 408.29 91% 813.76 100%
TREC-6 354.19 91% 1198.36 96%
TREC-7 302.59 89% 892.37 93%
TREC-8 297.44 91% 731.48 100%

60

Inferring Relevance

* A uniform distribution over relevance
assignments is not a good assumption

— Documents that were not retrieved are as likely to
be relevant as documents at rank 17

e Better estimates of the relevance of individual
documents would improve performance

Inferring Relevance

 We want an estimate of the probability that
each document is relevant

—i.e.p,=P(x.=1)
* Our goal will be to use existing relevance
judgments to train a model of relevance

 What we can do that IR systems cannot:

— Use the judgments for a particular topic as
training data, then predict judgments on
documents for the same topic

Inferring Relevance

* First assumption we’re going to make:

— Documents are independently relevant, i.e.
P(X4, X5, ..., X,,) = P(X{)P(X,)...P(x,)
— This is a basic assumption of ad hoc IR and many
other IR tasks
* Second assumption:

— The log of the odds of relevance of a document is
a linear combination of feature values

— This is for simplicity: linear models are easier to fit

Inferring Relevance

e The model is:

D; — ﬁO +Zﬁjfm

]
og1

— where f; is the value of a feature calculated from
document i and B; is a coefficient

* Note that this is just a logistic regression
model, appropriate for binary judgments
— Graded judgments would require an ordinal model

Features for Inferring Relevance

* Features can be anything appropriate for
predicting relevance

e Some we have tried:

— Document similarity features
— System performance features

— Click features

* The following slides will discuss each in slightly
more detail

Document Similarities

* Using document similarities as features is
inspired by van Rijsbergen’s Cluster
Hypothesis:

— Closely associated documents tend to be relevant
to the same requests

* Take a shallow pool of documents to be
“features”

e Feature values for document i are its
similarities to every document in that pool

System Performance

e Use features derived from the systems being
evaluated, such as:

— Number of (known) relevant documents retrieved
— Ranks at which relevant documents appear
— Precisions at ranks of relevant documents

e |nspiration is the “metasearch hypothesis” (cf.
Joon Ho Lee):

— Systems tend to retrieve the same relevant
documents but different nonrelevant documents

Clicks

* If available, the number of clicks on a
document may be indicative of its relevance

* Some complications:

— Presentation bias: higher ranks are preferred even
if less relevant

— Interactions: relevance of document at rank i can
affect clicks at rank j

MTC Evaluation

* As we said earlier, MTC evaluation is separate
from its document selection

— We could use MTC judgments with the usual
assumption: that unjudged docs are not relevant

e Since MTC is not trying to find all the relevant documents,
this is probably not appropriate, though

— We could use bpref or Q-measures that explicitly
account for whether a document is judged or not
 MTC evaluation instead uses the idea of forming

a distribution over possible values of the
evaluation measure

MTC Evaluation

* The idea is the same as with the stopping
condition:

— We used distribution of AAP to calculate P(AAP > 0)
— Now we will just look at the distribution of P(AP)

e But a distribution is not an evaluation measure

* For a single-number summary, calculate the
expectation of the distribution

MTC Evaluation

* Since we’re assuming documents are
independently relevant, expectations are easy

E|precQk] = %Zpil(rank(i) <k)
E|R] = Zpi
E|recQk] ~ ﬁ sz-f(rank(i) <k)

1 n
E[AP] ~ m Z CiiPi + Z CijPiDj
i=1

1<J

MTC Evaluation

e What we can show:

— Although E[AP] is an approximation, the error is
on the order of 2" in the size of the collection

— Variance of AP is also computable in O(n3) time

e What we cannot show:

— That E[AP] is a good estimate of the actual value
of AP

* |In practice it is not: our relevance models tend to
overestimate relevance, leading to low values of E[AP]

MTC Evaluation: Example

run topic eR eAP eRprec ePb eP10
udel IndDRPR 1 3518.66 0.0177 0.0569 0.0433 0.1681
udelIndDRSP 1 3518.66 0.0830 0.1129 1.0000 0.9857
udel IndDMRM 1 3518.66 0.0792 0.1101 1.0000 0.9857

summary results:

run eMAP eRprec ePb eP10
udelIndDRPR 0.030971 0.090344 0.265973 0.295068
udelIndDMRM 0.046869 0.103990 0.231451 0.323774
udelIndDRSP 0.047082 0.104238 0.277171 0.356119

UDel results from TREC 2009 Web track (ad hoc task)

MTC Evaluation: Example

summary results:

run eMAP eRprec ePb5 eP10
udelIndDRPR 0.030971 0.090344 0.265973 0.295068
udelIndDMRM 0.046869 0.103990 0.231451 0.323774
udelIndDRSP 0.047082 0.104238 0.277171 0.356119

palrwise comparisons

udelIndDMRM udelIndDRSP

udelIndDRPR -0.0159 -0.0161
0.0000 0.0000

1.0000 1.0000

udel IndDMRM -0.0002
0.0000

0.5551

UDel results from TREC 2009 Web track (ad hoc’task)

MTC In Practice

* Practical considerations include:

— Selecting documents when more than two
systems are involved

e Simple solution: judge the document with maximum
weight across all pairs—computable in linear time

— Deciding which documents to predict relevance

* Usually infeasible to do all of them, instead restrict to
pool of retrieved documents

— “Unbiasing” expected evaluation measures

* Possibly using priors to keep relevance models from
overestimating—work in progress

MTC Summary

* MTC is a family of algorithms for selecting
documents to judge

— The probabilistic stopping condition of those
algorithms also produces an evaluation measure

* The best way to use MTC is to compare systems
* The best way to interpret it is with the probability
that one system is better than another

— i.e. P(AAP > 0)

— This is the quantity that tells you whether you can
have confidence that the judgments are sufficient

