Advances in IR Evaluation

Ben Carterette Evangelos Kanoulas Emine Yilmaz

Course Outline

- Intro to evaluation
 - Evaluation methods, test collections, measures, comparable evaluation
- Low cost evaluation
- Advanced user models
 - Web search models, novelty & diversity, sessions
- Reliability
 - Significance tests, reusability
- Other evaluation setups

Low-Cost Evaluation (4)

- Estimating *measures* with less judgments
 - Aslam et al. SIGIR06, Yilmaz and Aslam CIKM06, Yilmaz et al SIGIR09

- Estimating systems ranking with less judgments
 - Carterette et al. SIGIR06, Moffat et al. SIGIR07

Goals for a Test Collection

- Different goals suggest different approaches:
 - Find the relevant documents:
 - Pooling
 - Move-to-Front pooling, Hedge
 - Interactive Searching and Judging
 - Estimate the value of an evaluation measure:
 - infAP, xinfAP, statAP
 - Compare two or more systems by some measure:
 - MTC (Minimal Test Collections)

MTC (Minimal Test Collections)

- MTC is an adaptive, episodic algorithm for deciding which documents to judge
- Its goals:
 - Accurately compare two or more systems
 - Make a minimum number of judgments
 - Use existing judgments to help choose
- Not goals of MTC:
 - Select documents most likely to be relevant
 - Find all (or even most) of the relevant documents
 - Accurate estimates of evaluation measures

MTC's Two Parts

- MTC comprises two separate parts:
 - 1. An algorithm for selecting documents to judge
 - 2. A way to evaluate when many judgments are missing
- If you "believe in" one but not the other, you may pick and choose
 - The judgments the algorithm produces can be fed into other evaluation approaches
 - The evaluation approach can be used with judgments from any other method
- They are linked in the algorithm's stopping condition

MTC Selection Algorithm Outline

- Start with the simplest case: compare two systems by some measure on one topic
- Outline of MTC algorithm:
 - Derive document weights from an algebraic expression of the difference in the measure
 - Order documents by weight and judge the highest-weighted
 - Use the judgment to update the weights
 - Continue until a stopping condition is reached

Detailed Example: Precision

- Say we want to compare two systems by precision at rank k
- First, define the difference in precision:
 - $-\Delta prec@k = prec_1@k prec_2@k$
- Goal: determine sign of Δprec@k
- Define prec1@k, prec2@k in terms of relevance:

$$prec_1@k = \frac{1}{k}\sum_{i=1}^{k}rel_{1,i}, \ prec_2@k = \frac{1}{k}\sum_{i=1}^{k}rel_{2,i}$$

– If we knew the values of $rel_{1,i}$, $rel_{2,i}$, we would know the sign of $\Delta prec@k$

Refining \(\Delta\) prec@k

- rel_{1,i}, rel_{2,i} could represent the same document
 - System 1 places Doc A at rank 1; system 2 places Doc A at rank 4
 ⇒ rel_{1.1} ≡ rel_{2.4}
- No sense in using two different variables to refer to it
 - Number documents independently of their ranking
 - Let x_i indicate the relevance of document number i
 - Let rank_i(i) indicate the rank document i appears at in system j
- Now we can write Δprec@k as:

$$\Delta prec@k = \frac{1}{k} \sum_{i=1}^{n} x_{i} I(rank_{1}(i) \leq k) - \frac{1}{k} \sum_{i=1}^{n} x_{i} I(rank_{2}(i) \leq k)$$

$$= \frac{1}{k} \sum_{i=1}^{n} x_{i} (I(rank_{1}(i) \leq k) - I(rank_{2}(i) \leq k))$$

- $I(rank_i(i) \le k)$ is 1 if document i is ranked above k and 0 otherwise

Precision at rank 5 with local document numbering

Precision at rank 5 with global document numbering

Document numbers are independent of rank... use rank(i) to map back to rank

$$\Delta prec@5 = \frac{1}{5} \sum_{i=1}^{n} x_i \left(I(rank_1(i) \le 5) - I(rank_2(i) \le 5) \right)$$

Goal of MTC

• Decide which subset of $x^n = \{x_1, x_2, ..., x_n\}$ to "reveal" (have judged) to prove sign of Δ prec@k is -1, 0, or 1

$$\Delta prec@k = \frac{1}{k} \sum_{i=1}^{n} x_i (I(rank_1(i) \le k) - I(rank_2(i) \le k))$$

- Notice:
 - Judging a document ranked below k by both systems tells us nothing
 - $I(rank_1(i) \le k) I(rank_2(i) \le k) = 0 0 = 0$
 - Judging a document ranked above k by both systems tells us nothing
 - $I(rank_1(i) \le k) I(rank_2(i) \le k) = 1 1 = 0$
 - The only interesting documents are those ranked above k by one system but not the other
- Define "interestingness" weight
 - $w_i = I(rank_1(i) \le k) I(rank_2(i) \le k)$

Calculating document weights

$$w_1 = I(rank_1(1) \le 5) - I(rank_2(1) \le 5)$$

= 1 - 1
= 0

$$w_2 = 1$$

$$w_3 = 1$$

$$w_4 = -1$$

$$w_5 = 0$$

$$w_6 = -1$$

$$w_7 = 0$$

$$w_8 = 0$$

Only four documents are useful to judge...

Selecting Documents

- But do we need to judge *all* of the interesting documents?
- After each judgment, ask the following:
 - What is the maximum possible value of Δ prec@k?
 - What is the minimum possible value of Δ prec@k?
- Check these values:
 - If the maximum possible is less than zero, then we have proved that $sign(\Delta prec@k) = -1$; no more judging is necessary
 - If the minimum possible is greater than zero, we have proved that $sign(\Delta prec@k) = 1$; no more judging is necessary
 - Otherwise we must keep judging
- In other words, bound Δprec@k
 - Calculate lower and upper bounds by making different assumptions about the relevance of the unjudged documents

Bounding Aprecision@5

System 1

System 2

x₂ B

 X_5

 $\mathbf{E} \mathbf{x}_1$

 \mathbf{x}_{6}

Upper bound: B, D relevant G, H not relevant

x₈ C

C X₈

Lower bound: B, D not relevant G, H relevant

X₃ D

A **x**₅

-0.4 ≤ Δprec@ ≤ 0.4

X₁ E

H X₄

X₇ F

k = 5

We cannot conclude anything.

x₆ G

x₇

 X_4

Н

 X_2

Bounding Aprecision@5

Suppose B and D are judged relevant. Then:

Upper bound: no more relevant G, H not relevant

Lower bound: no more not relevant G, H relevant

 $0.0 \le \Delta \text{prec} @ \le 0.4$

We conclude that system 2 cannot be better than system 1.

We don't know whether system 1 is better than system 2.

Whether documents judged relevant or not relevant, effect on bounds is the same. 17

Bounding Aprecision@k

The bounds can be expressed with simple formulas:

$$\lceil \Delta prec@k \rceil = \frac{1}{k} \left(\sum_{\substack{i \mid i \text{ judged}}} w_i x_i + \frac{\#(\text{unjudged and } w_i > 0)}{\#(\text{unjudged and } w_i < 0)} \right)$$

$$\lfloor \Delta prec@k \rfloor = \frac{1}{k} \left(\sum_{\substack{i \mid i \text{ judged}}} w_i x_i - \frac{\#(\text{unjudged and } w_i < 0)}{\#(\text{unjudged and } w_i < 0)} \right)$$
 Contribution of system 2-only documents judged documents

The Algorithm (MTC for prec@k)

- for each doc i from 1 to n,
 - set w_i = I(rank₁(i) ≤ k) I(rank₂(i) ≤ k)
- lowerbound = 0; upperbound = 0
- while (lowerbound ≤ 0 and upperbound ≥ 0)
 - Judge an unjudged document with $|w_i| > 0$
 - Alternate between docs with $w_i = 1$, $w_i = -1$
 - Recompute Δprec@k bounds:
 - lowerbound = $\frac{1}{k} \left(\sum_{i|i \text{ judged}} w_i x_i \#(\text{unjudged and } w_i < 0) \right)$
 - upperbound = $\frac{1}{k} \left(\sum_{i|i \text{ judged}} w_i x_i + \#(\text{unjudged and } w_i > 0) \right)$

MTC is Minimal

- Theorem: MTC requires the minimal number of judgments to determine the sign of Δprec@k
 - More precisely: among all algorithms with no prior information about relevance, MTC requires no more judgments on average than any of them
 - Algorithms that learn something about the distribution of relevant documents (such as MTF) could do better
 - MTC could do worse on some cases while still doing better on average

- First define two probabilities:
 - p₁ is the probability that a document unique to system 1 is judged relevant
 - i.e. the probability that a doc with $w_i > 0$ is relevant
 - $-p_2$ is defined likewise for system 2
- If p₁ > p₂ then system 1 is better than system 2
 - And vice versa

- Suppose w.l.o.g. that p₁ > p₂
- Suppose MTC stops after m judgments
 - At this point the lower bound is greater than zero
 - Because of alternation, m/2 of the judged documents are from system 1, m/2 from system 2
- We can place non-MTC algorithms in one of two bins:
 - Those that might judge documents with $w_i = 0$ (the majority)
 - Those that select among the same set as MTC but do not alternate ("MTC-like")

- Suppose an alternative approach also selects m documents to judge
- If even one of those has $w_i = 0$, then the lower bound of $\Delta prec@k$ cannot be greater than zero
 - At least one more judgment will be required to complete the proof
- This encompasses all non-MTC-like approaches

- For MTC-like approaches, the argument is more difficult
- The idea is as follows:
 - Since an MTC-like approach only judges documents with $w_i \neq 0$, the only difference is that it does not alternate between $w_i > 0$ and $w_i < 0$
 - This means it prefers documents unique to system 1 or documents unique to system 2
 - Because of this preference, it may be able to prove one bound faster, but it won't be able to prove the other bound faster
 - Therefore it cannot do better than MTC

MTC for DCG@k

- DCG has become a popular measure due to its use of a user model and graded judgments
 - Gain function $g(x_i)$ maps judgments to gain values
 - Discount function d(rank(i)) discounts gains by rank
 - DCG is a family of measures with particular cases defined by specific g() and d()
- As we did with precision, define DCG in terms of relevance variables x_i and their ranks rank(i):

$$DCG@k = \sum_{i=1}^{n} \frac{g(x_i)}{d(rank(i))} I(rank(i) \le k)$$

MTC for DCG@k

Now we can define the difference ΔDCG@k:

$$\Delta DCG@k = \sum_{i=1}^{n} \frac{g(x_i)}{d(rank_1(i))} I(rank_1(i) \le k) - \frac{g(x_i)}{d(rank_2(i))} I(rank_2(i) \le k)$$

$$= \sum_{i=1}^{n} g(x_i) \left(\frac{I(rank_1(i) \le k)}{d(rank_1(i))} - \frac{I(rank_2(i) \le k)}{d(rank_2(i))} \right)$$

... and the document weights:

$$w_i = \frac{I(rank_1(i) \le k)}{d(rank_1(i))} - \frac{I(rank_2(i) \le k)}{d(rank_2(i))}$$

 This is similar to precision, but now the ranks matter as well as whether it was retrieved

DCG at rank 5

$$w_1 = 1/log2(5+1) - 1/log2(2+1)$$

= -0.244

$$w_2 = 1/log2(2+1) - 0/log2(8+1)$$

= 0.631

$$w_3 = 1/log2(4+1) - 0/log2(5+1)$$

= 0.431

$$w_4 = -0.387$$

$$w_5 = 0.569$$

$$w_6 = -1.000$$

$$w_7 = 0.000$$

$$w_8 = 0.000$$

$$\Delta DCG@5 = \sum_{i=1}^{n} (2^{x_i} - 1) \left(\frac{I(rank_1(i) \le 5)}{\log_2(rank_1(i) + 1)} - \frac{I(rank_2(i) \le 5)}{\log_2(rank_2(i) + 71)} \right)$$

MTC for DCG@k

Finally, bounds on ΔDCG@k are:

$$\lceil \Delta DCG@k \rceil = \sum_{i|i \text{ judged}} w_i g(x_i) + \sum_{i|i \text{ unjudged and } w_i > 0} w_i \max \text{gain}$$

$$[\Delta DCG@k] = \sum_{i|i \text{ judged}} w_i g(x_i) + \sum_{i|i \text{ unjudged and } w_i < 0} w_i \max \text{gain}$$

DCG at rank 5

$$W_1 = -0.244$$

$$w_2 = 0.631$$

$$w_3 = 0.431$$

$$w_4 = -0.387$$

$$w_5 = 0.569$$

$$w_6 = -1.000$$

$$w_7 = 0.000$$

$$w_8 = 0.000$$

 $-0.631 \le \Delta DCG@5 \le 1.631$

System 1 System 2 **X**₅ X_6 X_2 X_1 \mathbf{X}_{8} X_8 X_3 X_5 X_4 X_1 Н **X**₇ X_3 **x**₆ **X**₇ X_4 \mathbf{X}_{2}

$$\Delta DCG @ 5 = \sum_{i=1}^{n} (2^{x_i} - 1) \left(\frac{I(rank_1(i) \le 5)}{\log_2(rank_1(i) + 1)} - \frac{I(rank_2(i) \le 5)}{\log_2(rank_2(i) + 91)} \right)$$

Multiple Topics

- We usually evaluate over more than just one topic
- There are two ways to use an MTC algorithm:
 - Apply it separately to each topic
 Gives a set of signs of measure differences, e.g. 50 values of sign (ΔDCG)
 - Apply it to all topics simultaneously
 Gives the sign of the mean difference, e.g. the value of sign(ΔDCG)
 averaged over 50 topics
- The second is better:
 - That's the quantity we're directly interested in
 - It allows the algorithm to find the topics that are interesting as well as the documents

Top 6 highest-weighted docs: G (topic 1), A (topic 3), H (topic 3), B (topic 1), B (topic 3), G (topic 3) 31

Recall Measures

- Note that precision and DCG do not require knowing how many relevant docs there are
 - That is the real challenge for most low-cost methods
- Can MTC work for recall, NDCG, AP, and other such measures?
 - For individual queries, yes: the denominators don't affect the difference
 - For a set of queries…?

MTC for Recall

Again, define recall@k in terms of x_i and rank(i):

$$rec@k = \frac{1}{\sum_{i=1}^{n} x_i} \sum_{i=1}^{n} x_i I(rank(i) \le k)$$

- The denominator is the total number of relevant documents
- Similarly, a difference in recall:

$$\Delta rec@k = \frac{1}{\sum_{i=1}^{n} x_i} \left(\sum_{i=1}^{n} x_i (I(rank_1(i) \le k) - I(rank_2(i) \le k)) \right)$$

 To define weights, ask: what happens to our understanding of recall when we judge a document? With no documents judged, what are the max/min values of Δrec@5?

- B, D relevant; G, H nonrelevant $\Rightarrow \Delta rec@5 = 1.0$
- B, D nonrelevant; G, H relevant $\Rightarrow \Delta rec@5 = -1.0$

System 1

System 2

Suppose document B is judged relevant i.e. $x_2 = 1$

What are the max/min values of $\Delta rec@5$?

B relevant

D relevant; G, H nonrelevant $\Rightarrow \Delta rec@5 = 1.0$

B relevant

D nonrelevant; G, H relevant

$$\Rightarrow \Delta rec@5 = 1/3 - 2/3 = -0.333$$

So
$$-0.333 \le \Delta rec@5 \le 1.0$$

Judging B nonrelevant accomplishes nothing!

MTC for Recall

- With precision and DCG, judging a document relevant or not relevant didn't matter
 - Either way, one of the bounds is affected
 - Effect is equal in both cases
- With recall, it does matter
 - A relevant judgment increases the lower bound
 - A nonrelevant judgment does nothing
- Furthermore, each judgment affects the possible effect of future judgments

Finally: MTC for AP

- Average precision presents an additional challenge: relevance judgments interact
 - If the document at rank 1 is relevant, then the contribution of every subsequent relevant document increases
 - If the document at rank 1 is nonrelevant, then the maximum possible contribution of subsequent relevant documents decreases

System 1

- Α
- В
- С
- D
- Ε
- F
- G
- Н

- Define SP (Sum Precision) as AP*R
 - SP is between 0 and R
- If document A is relevant, its total contribution to SP is as much as 1+1/2+1/3+...
 - Depending on relevance of subsequent docs
- If document A is not relevant, SP cannot be greater than R-1-1/2-1/3-...
- Judgments of nonrelevance can be informative for AP

MTC for AP

Define AP in terms of x_i and rank(i) as follows:

$$AP = \frac{1}{\sum_{i=1}^{n} x_i} \sum_{i=1}^{n} x_i \cdot \frac{1}{rank(i)} \sum_{j=1}^{n} x_j I(rank(j) \le rank(i))$$

- Note that AP sums over all documents
 - Those that were not retrieved should be assumed to appear at rank infinity
- This can be usefully simplified:

$$AP = \frac{1}{\sum_{i=1}^{n} x_i} \sum_{j \le i} \frac{1}{a_{ij}} x_i x_j, \quad a_{ij} = \min\{rank(i), rank(j)\}$$

MTC for AP

Now define the difference in AP:

$$\Delta AP = \frac{1}{\sum x_i} \sum_{j \le i} c_{ij} x_i x_j$$

$$c_{ij} = \frac{1}{\max\{rank_1(i), rank_1(j)\}} - \frac{1}{\max\{rank_2(i), rank_2(j)\}}$$

For simplicity, ignore the denominator for now

Assume all documents are nonrelevant What happens if we judge one relevant?

$$x_1$$
: $SP_1 = 1/5$, $SP_2 = 1/2$
 $\Delta SP = -0.300$

$$x_2$$
: $SP_1 = 1/2$, $SP_1 = 1/8$
 $\Delta SP = 0.375$

$$x_3$$
: $\Delta SP = 0.083$

$$x_4$$
: $\Delta SP = -0.075$

$$x_5$$
: $\Delta SP = 0.750$

$$x_6$$
: $\Delta SP = -0.857$

$$x_7$$
: $\Delta SP = 0.024$

$$x_8$$
: $\Delta SP = 0.000$

System 1

X₅ A

x₂ B

x₈ C

x₃ D

X₁ E

X₇ **F**

x₆ **G**

X₄ H

System 2

G X₆

E X₁

C X₈

A X₅

H X₄

D X₃

F X₇

B X₂

Or assume all documents are relevant What happens if we judge one nonrelevant?

$$x_1$$
: $SP_1 = 1+1+1+1+5/6+6/7+7/8$
 $SP_2 = 1+2/3+3/4+...+7/8$
 $\Delta SP = 0.783$

$$x_2$$
: $SP_1 = 1+2/3+3/4+...+7/8$
 $SP_1 = 1+1+1+1+1+1$
 $\Delta SP = -1.218$

$$x_3$$
: $\Delta SP = -0.367$

$$x_4$$
: $\Delta SP = 0.434$

$$x_5$$
: $\triangle SP = -1.083$

$$x_6$$
: $\Delta SP = 1.593$

$$x_7$$
: $\Delta SP = -0.143$

$$x_8$$
: $\Delta SP = 0.000$

System 1

System 2

Calculating Document Weights

- Initially each document gets a "relevant weight" and a "nonrelevant weight"
 - Relevant weight = effect on $\triangle SP$ if relevant = c_{ii}
 - Nonrelevant weight = effect on $\triangle SP$ if nonrelevant = $c_{ii} + c_{1i} + c_{2i} + c_{3i} + ... + c_{ni}$
- Judge the document with the greatest maximum of rel weight and nonrel weight

G judged nonrelevant $(x_6 = 0)$

Assume all documents are nonrelevant What happens if we judge one relevant?

$$x_1$$
: $SP_1 = 1/5$, $SP_2 = 1/2$
 $\Delta SP = -0.300$

$$x_2$$
: $SP_1 = 1/2$, $SP_1 = 1/8$
 $\Delta SP = 0.375$

$$x_3$$
: $\Delta SP = 0.083$

$$x_4$$
: $\Delta SP = -0.075$

$$x_5$$
: $\Delta SP = 0.750$

$$x_6$$
: $\Delta SP = 0.857$

$$x_7$$
: $\triangle SP = 0.024$

$$x_8$$
: $\Delta SP = 0.000$

System 1

System 2

- D X₃
- F X₇
- B X₂

Or assume all documents are relevant What happens if we judge one nonrelevant?

x₁:
$$SP_1 = 1+1+1+1+5/6+6/8$$

 $SP_2 = 1/3+2/4+...+6/8$
 $\Delta SP = 2.019$

x₂:
$$SP_1 = 1+2/3+3/4+...+6/8$$

 $SP_1 = 1/2+2/3+...+6/7$
 $\Delta SP = 0.393$

$$x_3$$
: $\triangle SP = 1.202$

$$x_4$$
: $\triangle SP = 1.952$

$$x_5$$
: $\Delta SP = 0.402$

$$x_6$$
: $\Delta SP = 1.593$

$$x_7$$
: $\Delta SP = 1.450$

$$x_8$$
: $\Delta SP = 1.402$

System 1

System 2

Updating Document Weights

interactions with judged documents

G judged nonrelevant $(x_6 = 0)$ E judged relevant $(x_1 = 1)$

$$x_2$$
: $\Delta SP = 0.150$

$$x_3$$
: $\Delta SP = -0.183$

$$x_4$$
: $\triangle SP = -0.450$

$$x_5$$
: $\Delta SP = 0.400$

$$x_6$$
: $\Delta SP = -1.514$

$$x_7$$
: $\Delta SP = 0.252$

$$x_8$$
: $\Delta SP = -0.433$

System 1

System 2

Stopping Condition

- How do we calculate bounds on ΔSP?
 - A: We don't. They're too hard (NP-Hard).
- But we can still determine whether the stopping condition is satisfied
 - "Look ahead"
 - If the algorithm continued in the best case, would our conclusion change?
- If ΔSP > 0 with current judgments, can it become < 0 after a series of future judgments?

System 1 System 2 So far we know: \mathbf{x}_{6} **X**₅ G is nonrelevant E is relevant X_2 \mathbf{X}_1 Based on that, $\Delta SP = -0.3$ X_8 X_8 Is it possible for system 1 to catch up? X_3 X_5 YES: if A is judged relevant, ΔSP will go up to 0.4 \mathbf{X}_{1} X_4 Н **X**₇ \mathbf{X}_3 D \mathbf{x}_{6} **X**₇ X_4 \mathbf{X}_{2} В

MTC for AP: Algorithm

- while (!done)
 - for each unjudged document i,
 - $w_i = max\{w_i^R, w_i^N\}$ (where w_i^R, w_i^N calculated as above)
 - judge document with max | w_i |
 - calculate ΔAP with current judgments
 - if $\triangle AP > 0$, simulate algorithm forward taking documents in order of increasing w_i^R
 - if $\Delta AP < 0$, simulate forward taking documents in order of decreasing w_i^R
 - if sign is the same after simulation, done = true

MTC: Summary So Far

- MTC is a family of algorithms with specific cases for each evaluation measure
- An algorithm is defined by
 - A way to weight documents
 - A way to select which document to judge next
 - A way to update document weights
 - A stopping condition based on bounds
- Some algorithms are easier to understand/ implement/prove optimal than others...

Refining the Bounds

- Lower and upper bounds are a blunt instrument
 - Bounds can be on the wrong side of zero, but only by a small fraction

0

- Define a probability distribution over values between the bounds
 - If the total probability of values greater than 0 is low, stop judging

Distributions of Evaluation Measures

Basic idea:

- There is a set of m unjudged documents
- Each one could be relevant or nonrelevant
- Thus, there are 2^m total possible ways to assign relevance to the unjudged documents
- Each one of those assignments results in a particular value of the measure
- We can therefore count the number of ways every possible value of Δprec@k, Δrec@k, ΔAP, etc. can occur

System 1 System 2

X ₁	x ₂	X ₃	X ₄	X ₅	x ₆	X ₇	X ₈	prec ₁ @5	prec ₂ @5	Δprec@5
0	0	0	0	0	0	0	0	0.0	0.0	0.0
1	1	1	1	1	1	1	1	1.0	1.0	0.0
1	0	1	0	1	0	1	0	0.6	0.4	0.2
0	1	0	1	0	1	0	1	0.4	0.6	-0.2
1	1	0	0	1	1	0	0	0.6	0.6	0.0

Distributions of Evaluation Measures

- Forming a distribution:
 - Assume each of the 2^m assignments of relevance is equally likely
 - uniform distribution over possible assignments of relevance
 - Result: values of Δprec@k have a binomial distribution
- As documents are judged, the distribution's center shifts, but it remains binomial

System 1 System 2 prec₁@5 | prec₂@5 | Δprec@5 **X**₅ \mathbf{x}_{6} 0.0 0.0 0.0 X_2 \mathbf{X}_{1} В 1.0 1.0 0.0 0.6 0.4 0.2 X_8 X_8 0 0.6 -0.2 1 0 0 0.4 1 1 0.6 0.0 0.6 1 0 0 1 1 0 0 X_3 X_5 \mathbf{X}_{1} X_4 Н k = 5**X**₇ X_3 D **x**₆ **X**₇ X_4 X_2 $\Delta precision@5$ 0.2 0.4 -0.2 -0.1 1.0 precision@5

Normal Approximations

- The binomial distribution can be approximated by a normal distribution
 - Pretty close approximation even for small k
- It turns out that distributions of ΔDCG and ΔAP can also be roughly approximated by normal distributions
 - Proofs possible using combinatoric arguments and limit theory
 - Proofs don't require uniform distribution of relevance assignments

Using Distributions in MTC

- Since measures are normally distributed, it is very easy to compute the probability that one system will be better than another
 - i.e. given a set of judgments J, we can easily compute $P(\Delta measure > 0 \mid J)$
- This in turn lets us know whether it's worth making more judgments
 - Instead of computing bounds, compute a probability
 - If the probability is low, judging can stop

Results

- So how well does MTC actually do?
- Experiment: randomly select a pair of systems, compare them using MTC
 - Validate against "true" results using TREC qrels

MTC for AP	nooling
WITC IOI AP	pooling

collection	judgments	% correct	judgments	% correct
TREC-3	367.77	91%	622.04	96%
TREC-4	411.11	97%	559.44	100%
TREC-5	408.29	91%	813.76	100%
TREC-6	354.19	91%	1198.36	96%
TREC-7	302.59	89%	892.37	93%
TREC-8	297.44	91%	731.48	100%

- A uniform distribution over relevance assignments is not a good assumption
 - Documents that were not retrieved are as likely to be relevant as documents at rank 1?
- Better estimates of the relevance of individual documents would improve performance

 We want an estimate of the probability that each document is relevant

$$- i.e. p_i = P(x_i = 1)$$

- Our goal will be to use existing relevance judgments to train a model of relevance
- What we can do that IR systems cannot:
 - Use the judgments for a particular topic as training data, then predict judgments on documents for the same topic

- First assumption we're going to make:
 - Documents are independently relevant, i.e. $P(x_1, x_2, ..., x_n) = P(x_1)P(x_2)...P(x_n)$
 - This is a basic assumption of ad hoc IR and many other IR tasks
- Second assumption:
 - The log of the odds of relevance of a document is a linear combination of feature values
 - This is for simplicity: linear models are easier to fit

• The model is:

$$\log \frac{p_i}{1 - p_i} = \beta_0 + \sum_{j=1}^{F} \beta_j f_{ij}$$

- where f_{ij} is the value of a feature calculated from document i and β_i is a coefficient
- Note that this is just a logistic regression model, appropriate for binary judgments
 - Graded judgments would require an ordinal model

Features for Inferring Relevance

- Features can be anything appropriate for predicting relevance
- Some we have tried:
 - Document similarity features
 - System performance features
 - Click features
- The following slides will discuss each in slightly more detail

Document Similarities

- Using document similarities as features is inspired by van Rijsbergen's Cluster Hypothesis:
 - Closely associated documents tend to be relevant to the same requests
- Take a shallow pool of documents to be "features"
- Feature values for document i are its similarities to every document in that pool

System Performance

- Use features derived from the systems being evaluated, such as:
 - Number of (known) relevant documents retrieved
 - Ranks at which relevant documents appear
 - Precisions at ranks of relevant documents
- Inspiration is the "metasearch hypothesis" (cf. Joon Ho Lee):
 - Systems tend to retrieve the same relevant documents but different nonrelevant documents

Clicks

- If available, the number of clicks on a document may be indicative of its relevance
- Some complications:
 - Presentation bias: higher ranks are preferred even if less relevant
 - Interactions: relevance of document at rank i can affect clicks at rank j

- As we said earlier, MTC evaluation is separate from its document selection
 - We could use MTC judgments with the usual assumption: that unjudged docs are not relevant
 - Since MTC is not trying to find all the relevant documents, this is probably not appropriate, though
 - We could use bpref or Q-measures that explicitly account for whether a document is judged or not
- MTC evaluation instead uses the idea of forming a distribution over possible values of the evaluation measure

- The idea is the same as with the stopping condition:
 - We used distribution of $\triangle AP$ to calculate $P(\triangle AP > 0)$
 - Now we will just look at the distribution of P(AP)
- But a distribution is not an evaluation measure
- For a single-number summary, calculate the expectation of the distribution

 Since we're assuming documents are independently relevant, expectations are easy

$$E[prec@k] = \frac{1}{k} \sum_{i=1}^{n} p_i I(rank(i) \le k)$$

$$E[R] = \sum_{i=1}^{n} p_i$$

$$E[rec@k] \approx \frac{1}{E[R]} \sum_{i=1}^{n} p_i I(rank(i) \le k)$$

$$E[AP] \approx \frac{1}{E[R]} \sum_{i=1}^{n} c_{ii} p_i + \sum_{i \le i} c_{ij} p_i p_j$$

- What we can show:
 - Although E[AP] is an approximation, the error is on the order of 2⁻ⁿ in the size of the collection
 - Variance of AP is also computable in O(n³) time
- What we cannot show:
 - That E[AP] is a good estimate of the actual value of AP
 - In practice it is not: our relevance models tend to overestimate relevance, leading to low values of E[AP]

MTC Evaluation: Example

run	topic	eR	eAP	eRprec	eP5	eP10
udelIndDRPR	1	3518.66	0.0177	0.0569	0.0433	0.1681
udelIndDRSP	1	3518.66	0.0830	0.1129	1.0000	0.9857
udelIndDMRM	1	3518.66	0.0792	0.1101	1.0000	0.9857

summary results:

```
run eMAP eRprec eP5 eP10 udelIndDRPR 0.030971 0.090344 0.265973 0.295068 udelIndDMRM 0.046869 0.103990 0.231451 0.323774 udelIndDRSP 0.047082 0.104238 0.277171 0.356119
```

MTC Evaluation: Example

summary results:

```
run eMAP eRprec eP5 eP10 udelIndDRPR 0.030971 0.090344 0.265973 0.295068 udelIndDMRM 0.046869 0.103990 0.231451 0.323774 udelIndDRSP 0.047082 0.104238 0.277171 0.356119
```

```
pairwise comparisons
```

	udelIndDMRM	udelIndDRSP
udelIndDRPR	-0.0159	-0.0161
	0.0000	0.0000
	1.0000	1.0000
udelIndDMRM		-0.0002
		0.0000
		0.5551

UDel results from TREC 2009 Web track (ad hoc⁷task)

MTC in Practice

- Practical considerations include:
 - Selecting documents when more than two systems are involved
 - Simple solution: judge the document with maximum weight across all pairs—computable in linear time
 - Deciding which documents to predict relevance
 - Usually infeasible to do all of them, instead restrict to pool of retrieved documents
 - "Unbiasing" expected evaluation measures
 - Possibly using priors to keep relevance models from overestimating—work in progress

MTC Summary

- MTC is a family of algorithms for selecting documents to judge
 - The probabilistic stopping condition of those algorithms also produces an evaluation measure
- The best way to use MTC is to compare systems
- The best way to interpret it is with the probability that one system is better than another
 - i.e. $P(\Delta AP > 0)$
 - This is the quantity that tells you whether you can have confidence that the judgments are sufficient