Advances in IR Evaluation

Ben Carterette Evangelos Kanoulas Emine Yilmaz

Course Outline

- Intro to evaluation
 - Evaluation methods, test collections, measures, comparable evaluation
- Low cost evaluation
- Advanced user models
 - Web search models, novelty & diversity, sessions
- Reliability
 - Significance tests, reusability
- Other evaluation setups

Judgment Effort

Average?

• INQ604 - 0.281

1.00 0.80 0.60 0.40 0.20 0.00

INQ604

ok8alx - 0.324

• CL99XT - 0.373

How much is the average

- A product of
 - your IR system
 - chance?
- Slightly different set of topics?
 - Would the average change?

Reliability

- Reliability: the extent to which results reflect real difference (not due to chance)
- Variability in effectiveness scores due to
 - 1. Differentiation in nature of **documents** (corpus)
 - 2. Differentiation in nature of **topics**
 - 3. **Incompleteness** of relevance judgments
 - 4. **Inconsistency** among assessors

uses of alternative dispute resolution job search vancouver washington poem of arrival of columbus

Reliability

- Variability in effectiveness scores due to
 - 1. Differentiation in nature of **documents** 3. **Incompleteness** of judgments
 - 2. Differentiation in nature of **topics**
- 4. **Inconsistency** among assessors

- Document corpus size
 [Hawking and Robertson J of IR 2003]
- Topics vs. assessors
 [Voorhees SIGIR98, Banks et al. Inf. Retr.99, Bodoff and Li SIGIR07]
- Effective **size** of the topic set for reliable evaluation [Buckley and Voorhees SIGIR00/SIGIR02, Sanderson and Zobel SIGIR05]
- Topics vs. documents (Million Query track)
 [Allan et al. TREC07, Carterette et al. SIGIR08]

Is C really better than A?

Comparison and Significance

- Variability in effectiveness scores
- When observing a difference in effectiveness scores across two retrieval systems
 - Does this difference occur by random chance?
- Significance testing
 - Estimates the probability p of observing a certain difference in effectiveness given that H_0 is true.
 - In IR evaluation
 - H₀: the two systems are in effect the same and any difference in scores is by random chance.

Significance Testing

- Significance testing framework:
 - Two hypotheses, e.g.

```
H_0: \mu = 0
```

 H_a : $\mu \neq 0$

- System performance measurements over a sample of topics
- A test statistic T computed from those measurements
- The distribution of the test statistic
- A p-value, which is the probability of sampling T from a distribution obtained by assuming H₀ is true

Student's t-test

- Parametric test
- Assumptions
 - 1. effectiveness score differences are meaningful
 - effectiveness score differences follow normal distribution
- Statistic: $t = \frac{\overline{B-A}}{\sigma_{B-A}}.\sqrt{N}$
- t-test performs well even when the normality assumption is violated [Hull SIGIR93]

Student's t-test

Query	Α	В	В-А
1	.25	.35	+.10
2	.43	.84	+.41
3	.39	.15	24
4	.75	.75	0
5	.43	.68	+.25
6	.15	.85	+.70
7	.20	.80	+.60
8	.52	.50	02
9	.49	.58	+.09
10	.50	.75	+.25

$$\overline{B - A} = 0.214$$

$$\sigma_{B-A} = 0.291$$

$$t = \frac{B - A}{\sigma_{B - A}} \sqrt{n} = 2.33$$

Student's t-test

Sign Test

Non-parametric test

- Ignores magnitude of differences
- Null hypothesis for this test is that

$$-P(B > A) = P(A > B) = \frac{1}{2}$$

• Statistic: number of pairs where B>A

Wilcoxon Signed-Ranks Test

Non-parametric test

• Statistic:
$$w = \sum_{i=1}^{N} R_i$$

- R_i is a signed rank of absolute differences
- N is the number of differences ≠ 0

Wilcoxon Signed-Ranks Test

Query	Α	В	В-А
1	.25	.35	+.10
2	.43	.84	+.41
3	.39	.15	24
4	.75	.75	0
5	.43	.68	+.25
6	.15	.85	+.70
7	.20	.80	+.60
8	.52	.50	02
9	.49	.58	+.09
10	.50	.75	+.25

Sorted
02
+.09
+.10
24
+.25
+.25
+.41
+.60
+.70

Signed-rank		
-1		
+2		
+3		
-4		
+5		
+6		
+7		
+8		
+9		

$$w = \sum_{i=1}^{N} R_i$$

$$w = 35 => p = .025$$

Randomisation test

- Loop for many times {
 - 1. Load topic scores for 2 systems
 - 2. Randomly swap values per topic
 - 3. Compute average for each system
 - 4. Compute difference between averages
 - 5. Add difference to array
- Sort array
- If actual difference outside 95% differences in array
 - Two systems are significantly different

Topic	ok8alx	_	INQ604
1	0.02		0.02
2	0.43	←→	0.35
3	0.87		0.92
4	0.25	←	0.18
5	0.10	←	0.15
6	0.41		0.41
7	0.36	←	0.31
8	0.25	←→	0.25
9	0.19		0.24
10	0.77	←	0.79
11	0.40	←→	0.29
12	0.49		0.26
13	0.46		0.21
14	0.21	←→	0.20
15	0.54		0.44
16	0.37		0.36
17	0.35	←→	0.09
18	0.45	←→	0.43
19	0.17		0.12
20	0.50		0.41
21	0.04	4	0.05
22	0.50	←	0.50
23	0.64		0.49
24	0.24	←→	0.25
25	0.55	` ′	0.41
26	0.11	←	80.0
27	0.34	` ′	0.27
28	0.29	4	0.40
29 30	0.35 0.60	•	0.39 0.60
31	0.36		0.16
32	0.01	\longleftrightarrow	0.10
33	0.05	←	0.02
34	0.44		0.35
35	0.16		0.24
36	0.10	\longleftrightarrow	0.14
37	0.04		0.03
38	0.26	\longleftrightarrow	0.23
39	0.04		0.07
40	0.26	\longleftrightarrow	0.20
41	0.57		0.63
42	0.03	←→ 17	0.01
43	0.09	1/	0.21
44	0.63		0.53

Inference from Hypothesis Tests

- We often uses tests to make an inference about the population based on a sample
 - e.g. infer that H_0 is false in the population of topics
- That inference can be wrong for various reasons:
 - Sampling bias
 - Measurement error
 - Random chance
- There are two classes of errors:
 - Type I, or false positives: we reject H₀ even though it is true
 - Type II, or false negatives: we fail to reject H₀ even though it is false

Errors in Inference

A significance test is basically a classifier

	H _o false	H _o true
p < 0.05 (reject H ₀)	correct	Type I error
$p \ge 0.05$ (do not reject H_0)	Type II error	correct

- We can't actually know whether H₀ is true or not
 - If we could, we wouldn't need the test
- But we can set up the test to control the expected
 Type I and Type II error rates

Expected Type I Error Rate

- Test parameter α is used to decide whether to reject H0 or not—if p < α , then reject H₀
- Choosing α is equivalent to stating an expected Type I error rate
 - e.g. if p < 0.05 is considered significant, we are saying that we expect that we will incorrectly reject H₀ 5% of the time

Why?

- Because when H₀ is true, every p-value is equally likely to be observed
- 5% of the time we will observe a p-value less than 0.05...
 and therefore there is a 5% Type I error rate

Typical distribution of test statistic assuming H₀ true

Distribution of p-values assuming H₀ true

5% chance of incorrectly concluding H₀ false

Expected Type II Error Rate

- What about Type II errors?
 - False negatives are bad: if we can't reject H₀ when it's false, we may miss out on interesting results
- What is the distribution of p-values when H₀ is false?
 - Problem: there is only one way H₀ can be true,
 but there are many ways it can be false

Typical distribution of test statistic assuming H₀ true

⇒ 0.36 Type II error rate

distributions if H₀ is false

Distribution of p-values for that alternative

Power and Expected Type II Error Rate

- Power is the probability of rejecting H₀ when it is false
 - Equivalent to (1 Type II error rate)
- Power parameter is β
 - Choosing a value of β therefore entails setting an expected Type II error rate
- But what does it mean to "choose a value of β "?
 - In the previous slide, β was calculated post hoc, not chosen a priori

Effect Size

- A measure of the magnitude of the difference between two systems
 - Effect size is dimensionless; intuitively similar to % change in performance
 - Bigger population effect size → more likely to find a significant difference in a sample
- Before starting to test, we can say "I want to be able to detect an effect size of h with probability β "
 - e.g. "If there is at least a 5% difference, the test should say the difference is significant with 80% probability"
 - \Rightarrow h = 0.05, β = 0.8

Sample Size

- Once we have chosen α , β , h (Type I error rate, power, and desired effect size), we can determine the sample size needed to make the error rates come out as desired
 - $n = f(\alpha, \beta, h)$
 - Usually involves a linear search
 - There are software tools to do this
- Basically:
 - Sample size n increases with β if other parameters held constant
 - If you want more power, you need more samples

Implications for Low-Cost Evaluation

- First consider how Type I and Type II errors can happen due to experimental design rather than randomness
 - Sampling bias: usually increases Type I error
 - Measurement error: usually increases Type II error
- When judgments are missing, measurements are more errorful
 - And therefore Type II error is higher than expected

Implications for Low-Cost Evaluation

- What is the solution?
 - If Type II error increases, power decreases
 - To get power back up to the desired level, sample size must increase
 - Therefore: deal with reduced numbers of judgments by increasing the number of topics
- Of course, each new topic requires its own judgments
 - Cost-benefit analysis finds the "sweet spot" where power is as desired within available budget for judging

Tradeoffs in Experimental Design

Criticism on Significance Tests

- Significance testing
 - Note: The probability p is not the probability that H_0 is true.
 - $p = P(Data \mid H_0) \neq P(H_0 \mid Data)$

Criticism on Significance Tests

- Are significance tests appropriate for IR evaluation?
- Is there any single best to be used?
 [Saracevic CSL68, Van Rijsbergen 79, Robertson IPM90, Hull SIGIR93, Zobel SIGIR98, Sanderson and Zobel SIGIR05, Cormac and Lynam SIGIR06, Smucker et al SIGIR09 ...]
- Are they any useful?
 - With a large number of samples any difference in effectiveness will be statistically significant.
 - e.g. 30,000 queries in new Yahoo! and MSR collections
 - "Strong form" of hypothesis testing [Meehl Phil.Sci.67, Popper 59, Cohen Amer.Psy.94]

Criticism on Significance Tests

- What to do?
 - Improve our data (make them as representative as possible)
 - Report confidence intervals [Cormack and Lynam SIGIR06,
 Yilmaz et al. SIGIR08, Carterette et al. SIGIR08]
 - Examine whether results are "practically significant" [Allan et al SIGIR05, Thomas and Hawking CIKM06, Turpin and Scholer SIGIR06, Joachims SIGIR02, Radlinski et al CIKM08, Radlinski and Craswell SIGIR10, Sanderson et al. SIGIR10]

Judgment Effort

Reusability

- Why reusable test collections?
 - High cost of constructing test collections
 - Amortize cost by reusing test collections
 - Make retrieval system results comparable
 - Test collections used by systems that did not participate while collections were constructed
- Low-cost vs. Reusability
 - If not all relevant documents are identified the effectiveness of a system that did not contribute to the pool may be underestimated

Reusability

Relevance Judgments

New System S' Ranked List on Topic1

?

9

?

?

9

Reusability

Reusability is hard to guarantee

- Can we test for reusability?
 - Leave-one-out

[Zobel SIGIR98, Voorhees CLEF01, Sanderson and Joho SIGIR04, Sakai CIKM08]

- Through Experimental Design
 - Carterette et al. SIGIR10

Reusability - Leave-one-out

Reusability - Leave-one-out

- Assume that a systems did not participate
- Evaluate the non-participating system with the rest of the judgments

Reusability

Reusability is hard to guarantee

- Can we test for reusability?
 - Leave-one-out

[Zobel SIGIR98, Voorhees CLEF01, Sanderson and Joho SIGIR04, Sakai CIKM08]

- Through Experimental Design
 - Carterette et al. SIGIR10

Low-Cost Experimental Design

Sampling and Reusability

- Does sampling produce a reusable collection?
 - We don't know...
 - ... and we can't simulate it

- Holding systems out would produce a different sample
 - Meaning we would need judgments that we don't have

Experimenting on Reusability

- Our goal is to define an experimental design that will allow us to simultaneously:
 - Acquire relevance judgments
 - Test hypotheses about differences between systems
 - Test reusability of the topics and judgments
- What does it mean to "test reusability"?
 - Test a null hypothesis that the collection is reusable
 - Reject that hypothesis if the data demands it
 - Never accept that hypothesis

Reusability for Evaluation

- We focus on evaluation (rather than training, failure analysis, etc)
- Three types of evaluation:
 - Within-site: a group wants to internally evaluate their systems
 - Between-site: a group wants to compare their systems to those of another group
 - Participant-comparison: a group wants to compare their systems to those that participated in the original experiment (e.g. TREC)
- We want data for each of these

subset	topic	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6
T ₀	1						
		All-	Site Bas	eline			
	n						
T ₁	n+1						
	n+2						Within-Site
	n+3						Reuse
	n+4						Neuse
	n+5						
	n+6						
	n+7						
	n+8						Within-Site
	n+9						Baseline
	n+10						(for site 6)
	n+11						
	n+12						
	n+13						
	n+14						
	n+15						
T ₂	n+16						44

subset	topic	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6
T_0	1						
	•••	All-	-Site Bas	eline			
	n						
T ₁	n+1					Betweer	-Site Reuse
	n+2						
	n+3						
	n+4						
	n+5						
	n+6						
	n+7						
	n+8						
	n+9						
	n+10						
	n+11					Betwe	een-Site
	n+12					Bas	seline
	n+13					(for site	s 5 and 6
	n+14						
	n+15						
T ₂	n+16						45

subset	topic	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6
T_0	1						
		All-	Site Bas	eline			
	n						
T ₁	n+1						
	n+2						
	n+3						
	n+4						
	n+5						
	n+6					D	•
	n+7						ipant
	n+8					Comp	arison
	n+9						
	n+10						
	n+11						
	n+12						
	n+13						
	n+14						
	n+15						
T ₂	n+16						46

Statistical Analysis

- Goal of statistical analysis is to try to reject the hypothesis about reusability
 - Show that the judgments are not reusable
- Three approaches:
 - Show that measures such as average precision on the baseline sets do not match measures on the reuse sets
 - Show that significance tests in the baseline sets do not match significance tests in the reuse sets
 - Show that rankings in the baseline sets do not match rankings in the reuse sets
- Note: within confidence intervals!

Agreement in Significance

- Perform significance tests on:
 - all pairs of systems in a baseline set
 - all pairs of systems in a reuse set

 If the aggregate outcomes of the tests disagree significantly, reject reusability

Within-Site Example

 Some site submitted five runs to the TREC 2004 Robust track

- Within-site baseline: 210 topics
- Within-site reuse: 39 topics
- Perform 5*4/2 = 10 paired t-tests with each group of topics
- Aggregate agreement in a contingency table

Within-Site Example

	baseline tests			
reuse tests	p < 0.05 p ≥ 0.05			
p' < 0.05	6	0		
p' ≥ 0.05	3	1		

- 3 significant differences in baseline set that are not significant in reuse set
 - − → 70% agreement
- ... is that bad?

Expected Errors

Compare observed error rate to expected error rate

- To estimate expected error rate, use power analysis (Cohen, 1992)
 - What is the probability that the observed difference over 210 topics would be found significant?
 - What is the probability that the observed difference over 39 topics would be found significant?
 - Call these probabilities q_1 , q_2

Expected Errors

- For each pair of runs:
 - $-q_1$ = probability that observed difference is significant over 210 queries
 - $-q_2$ = probability that observed difference is significant over 39 queries
 - Expected number of true positives += $q_1 * q_2$
 - Expected number of false positives += $q_1*(1-q_2)$
 - Expected number of false negatives += $(1-q_1)*q_2$
 - Expected number of true negatives += $(1-q_1)*(1-q_2)$

Observed vs Expected Errors

Observed:

	baseline tests			
reuse tests	p < 0.05 p ≥ 0.0			
p' < 0.05	6	0		
p' ≥ 0.05	3	1		

Perform a X²
 goodness-of-fit
 test to compare
 the tables

• Expected:

	baseline tests			
reuse tests	p < 0.05	p ≥ 0.05		
p' < 0.05	7.098	0.073		
p' ≥ 0.05	2.043	0.786		

- p-value = 0.88
- Do not reject reusability (for new systems like these)

Validation of Design and Analysis

Three tests:

- Will we reject reusability when it is not true?
- When reusability is "true", will the design+analysis be robust to random differences in topic sets?
- When reusability is "true", will the design+analysis be robust to random differences in held-out sites?

Differences in Topic Samples

- Set-up: simulate design, but guarantee reusability
 - Randomly choose k sites to hold out
 - Use to define the baseline and reuse sets
 - Performance measure on each system/topic is simply the one calculated using the original judgments
- Reusability is true because all measures are exactly the same as when sites are held out

Observed vs Expected Errors (Within-Site)

Observed:

	baseline tests			
reuse tests	p < 0.05 p ≥ 0.05			
p' < 0.05	196	2		
p' ≥ 0.05	57	45		

Perform a X²
 goodness-of-fit
 test to compare
 the tables

• Expected:

	baseline tests			
reuse tests	p < 0.05 p ≥ 0.05			
p' < 0.05	189.5	4.3		
p' ≥ 0.05	62.1	44.1		

- p-value = 0.58
- Do not reject reusability (for new systems like these)

Differences in Held-Out Sites

- Set-up: simulation of design with TREC Robust data (249 topics, many judgments each)
 - Randomly hold two of 12 submitting sites out
 - Simulate pools of depth 10, 20, 50, 100
 - Calculate average precision over simulated pool
- Previous work suggests reusability is true
- (Only within-site analysis is possible)

Observed vs Expected Errors (Within-Site)

Observed:

	baseline tests			
reuse tests	p < 0.05 p ≥ 0.05			
p' < 0.05	130	17		
p' ≥ 0.05	127	160		

Perform a X²
 goodness-of-fit
 test to compare
 the tables

Expected:

	baseline tests			
reuse tests	p < 0.05 p ≥ 0.05			
p' < 0.05	135.4	13.9		
p' ≥ 0.05	121.6	163.1		

- p-value = 0.74
- Do not reject reusability (for new systems like these)

Course Outline

- Intro to evaluation
 - Evaluation methods, test collections, measures, comparable evaluation
- Low cost evaluation
- Advanced user models
 - Web search models, novelty & diversity, sessions
- Reliability
 - Significance tests, reusability
- Other evaluation setups

Evaluation using crowd-sourcing

- Sheng et al KDD 08, Bailey et al SIGIR08, Alonso and Mizarro SIGIR09, Kazai et al. SIGIR09, Yang et al WSDM09, Tang and Sanderson ECIR10, Sanderson et al SIGIR10
- Cheap but noisy judgments
- Large load under a single assessor per topic
 - Can you motivate an Mturker to judge ~1,500 documents
 - Multiple assessors (not MTurkers) per topics works fine [Trotman and Jenkinson ADCS07]
- Inconsistency across assessors
 - Malicious activity?
 - Noise?
 - Diversity in information needs (query aspects)?

Online Evaluation

- Joachims et al SIGIR05, Radlinski et al CIKM08, Wang et al KDD09, ...
- Use clicks as indication of relevance?
- Rank bias
 - Users tend to click on documents at the top of the list independent of their relevance
- Quality bias
 - Users tend to click on less relevant documents if the overall quality of the search engine is poor

Online Evaluation

- Evaluate by watching user behaviour:
 - Real user enters a query
 - Record how the users respond
 - Measure statistics about these responses
- Common online evaluation metrics
 - Click-through rate
 - Assumes more clicks means better results
 - Queries per user
 - Assumes users come back more with better results
 - Probability user skips over results they have considered (pSkip)

Online Evaluation

- Interleaving [Radlinski et al CIKM08]
 - A way to compare rankers online
 - Given the two rankings produced by two methods
 - Present a <u>combination</u> of the rankings to users
 - Ranking providing more of the clicked results wins
 - Treat a flight as an active experiment

Team Draft Interleaving

Ranking A

- 1. Napa Valley The authority for lodging... www.napavalley.com
- 2. Napa Valley Wineries Plan your wine... www.napavalley.com/wineries
- 3. Napa Valley College www.napavalley.edu/homex.asp
- 4. Been There | Tips | Napa Valley www.ivebeenthere.co.u
- 5. Napa Valley Wineries an 1. www.napavintners.com
- Napa Country, California en.wikipedia.org/wiki/N

Ranking B

- 1. Napa Country, California Wikipedia en.wikipedia.org/wiki/Napa Valley
- 2. Napa Valley The authority for lodging... www.napavalley.com
- 3. Napa: The Story of an American Eden... books.google.co.uk/books?isbn=...
- 4. Napa Valley Hotels Bed and Breakfast...

Presented Ranking

- Napa Valley The authority for lodging... www.napavalley.com
- 2. Napa Country, California Wikipedia en.wikipedia.org/wiki/Napa_Valley
- 3. Napa: The Story of an American Eden... books.google.co.uk/books?isbn=...
- 4. Napa Valley Wineries Plan your wine... www.napavalley.com/wineries
- 5. Napa Valley Hotels Bed and Breakfast.. www.napalinks.com
- 6. Napa Valley College www.napavalley.edu/homex.asp
- 7 NapaValley.org www.napavalley.org

Credit Assignment

- The "team" with more clicks wins
 - Randomization removes presentation order bias
- Each impression with clicks gives a preference for one of the rankings (unless there is a tie)
 - By design: If the input rankings are equally good,
 they have equal chance of winning
- Statistical test to run: ignoring ties, is the fraction of impressions where the new method wins statistically different from 50%?

Course Outline

- Intro to evaluation
 - Evaluation methods, test collections, measures, comparable evaluation
- Low cost evaluation
- Advanced user models
 - Web search models, novelty & diversity, sessions
- Reliability
 - Significance tests, reusability
- Other evaluation setups

By the end of this course...

You will be able to evaluate your retrieval algorithms

- A. At low cost
- B. Reliably
- C. Effectively

Many thanks to Mark Sanderson @RMIT, for some of the significance testing slides

Many thanks to Filip Radlinski @MSR, for many of the online evaluation slides