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. What are multimedia queries?

. Fingerprinting

. Image search and indexing

. Evaluation

. Browsing, search and geography
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2. Fingerprinting
- Overview
- How Shazam works
- Subfingerprinting
- Locality sensitive hashing
- Min hash algorithm
- Sift image features
- Surf as alternative
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Fingerprinting technique

1 Compute salient points

2 Extract “characteristics” from vincinity (feature)
3 Make invariant under rotation & scaling

4 Quantise: create visterms

5 Index as in text search engines

6 Check/enforce spatial constraints after retrieval
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NDD: Compute salient points

KM s
A LVALE -th 0 and features

Eg, SIFT features: each salient point
described by a feature vector of 128
numbers; the vector is invariant to
scaling and rotation

[Lowe2004 - http://www.cs.ubc.ca/~lowe/keypoints/]
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All keypoint features of
all images in collection
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visterms
i

Jkjh Geese Bjlkj Wharf
Ojkkjhhj Kssn Klkekjl Here
Lkjkll Wijjkll Kkjlk Bnm
Kllkgjg Lwoe Boerm ...

NDD: Encode all images with
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INSTITUTE

At query time compute salient points,
keypoint features and visterms

Query against database of images
represented as bag of vistems

Query

"® Joiu Gddwd Bipoi Wueft
’é—v’»sociallearn — » | Oiooiuui Kwwn Kpodoip Hdfd
Loiopp Wiiopp Koipo Bnm
Kppoyiy Lsld Bldfm ...

[with Suzanne Little]
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NDD: Check spatial

ﬂA constraints

rning in an Open World
X S 10 Confarence, June 2014

SocialLearn Team: Simon Buckingham Shum,
Rebecca Ferguson, Mark Glaister, Thanh Le

Ql0eo

The Open University

[with Suzanne Little, SocialLearn project]
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Fingerprinting technique

1 Compute salient points

2 Extract “characteristics” from vincinity (feature)
3 Make invariant under rotation & scaling

4 Quantise: create visterms

5 Index as in text search engines

6 Check/enforce spatial constraints after retrieval
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@ ; - Spectrogram
INSTITUTE _!_h ’”A p g

Compute energy for all (frequency,time) pairs
using a Fourier transform under a Hann window w

spectrogram(f, 7) = / s(t)w(t — 7)eltdt

w(t) {

COs(Zt) ift e [—-T/2,T/2]
otherwise

N | =

——

O N =
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™ Hann window application
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hann(t-tau)
signal(t)*hann(t-tau)

signal(t) —

tau-T/2

tau

tau+T/2
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File Edit View Tracks Generate Effect Analyze Help
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Iclick and drag to select audio ’
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Encoding: (f,, f,, t,-t,) hashes to (t,, id)
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Every query vector (f,,f, t° -t% ) is matched to the database.

You get a list of possible (t‘dl, id) values (some are false positives).

Create a histogram of t“"l—tc'1 values (temporal consistency check!)

A substantial peak in this histogram means that the query has
matched song id at time offset t° -t9 .
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Specificity: Encoding (f,, f,, t,-t,) to use 30 bit
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I NSTITUTE ih, /{u p

Assume that the typical survival probability of each 30-bit
constellation pair after deformations that we still want to recognise
is p, and that this process is independent per pair. Which encoding
density, ie, the number of constellation pairs per second, would
you need on average so that a typical query of 10 seconds exhibits
at least 10 matches in the right song with a probability of at least
99.99%"7? Under these assumptions, further assuming that the
constellation pair extraction looks like a random independent and
identically distributed number, what is the false positive rate for a
database of 4 million songs each of which is 5 minutes long on
average?

The Open
University
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Divide frequency scale into 33 frequency bands between 300 Hz and 2000 Hz
Logarithmic spread - each frequency step is 1/12 octave, ie, one semitone

Divide time axis into blocks of 256 windows of 11.6 ms (3 seconds)
E(m,n) is the energy of the m-th frequency at n-th time in spectrogram

For each block extract 256 sub-fingerprints of 32 bits each

b(m, n) = sign ([E(m, n) — E(m +1,n)] — [E(m,n+1) — E(m +1,n+ 1)])

AL /s d

0 < m < 31 (frequency)
0 < n < 255 (time)

[Haitsma and Kalker, 2003]
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NI " sﬂ%“ Probability of matching

f(p,30) —
0.995 | ]

0.99 | _

0.985 | ]

30 survives

0.98 | ]

0975 | ]

0.97 | ]

0.965 | ]

prob at least one of n

0.96 | ]

0.955 | | 1 . . .
0.1 02 03 04 05 06 07 08 059 1

prob of one correctly classified
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Exercise:

v

g fingerprint block probabilities

Assuming bit errors are independently identically distributed at the

rate of b. Show that the probability p(k, b) of having no more than k
bit errors in one sub-fingerprint is

< (32
k,b) = (1 —Ib7> b
i) =3 () 1w
Show that the probability that among 256 sub-fingerprints at least one
survives with no more than k bit errors is given by

1 — (1 — p(k, b))*®.

Verify, using above formulas, the following claim: Even though a high
bit error rate of b = 0.3 causes the probability p(4) that no more than
4 bits were flipped to drop under 2%, it is the case that when you look
at 256 sub-fingerprints, at least one of them will have no more than 4
bit errors with more than 99% probability.

(O
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g 8 0 fingerprint block false positives

Assuming that the fingerprint block extraction process yields random,
independent and identically disfributed bits, what is the probability
that a randomly modified fingerprint block matches a different ran-
dom block in the database that consists of, say, 10* overlapping fin-
gerprint blocks (4 million songs with around 5 minutes each)? The bit
error rate for the random modification is assumed to be 35%.
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Probability of at least one sub-

e E V fingerprint surviving with no
il " more than 4 errors
1 | —

256
)(1 B b)32ibi>

0.8 L |
06 |
04 |
02 L

O L !
0 0.2 0.8 1
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How audio matching with
sub-fingerprinting works
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it Quantisation through locality
iy \ﬂ%w sensitive hashing (LSH)

h-RY — 7Z
V hi(V) - La'v\ib'J

ai & Rd IS d random Gaussian-distributed vector

w € R is a constant
b' € |0, w) is a random number

h(v) - (hl(v), h(Q(V), s o 3 hk(v)) s the LSH hash vector.

=~
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— ~ Quantisation
g / ;ﬂ%“ LSH hashes

Vector v: h(v) = (-1, 0) O 83
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Use L independent hash vectors of k components each
both for the query and for each multimedia object.

Database elements that match at least m out of L times
are candidates for nearest neighbours.

Chose w, k and L (wisely) at runtime

- w determines granularity of bins, ie, # of bits for h'(v)

- k and L determine probability of matching
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1—(1—(1—b)k)"

0.8 |
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Exercise:

compute inflection point

/ \ L
1—(1—(1—b)
0.8 L
06 L
04 |
0.2 L
O | | |
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Min hash
Estimate discrete set overlap

| | A: N A.
im(A:..A:) | J
sim(A;, A;) A/ UA
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INSTITUTE A" l 4\“4 documents

= Humpty Dumpty sat on a wall,

= Humpty Dumpty had a great fall.

All the King's horses, And all the King's men
= Couldn't put Humpty together again!

(O
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it Surrogate docs after stop word
. ‘sﬂym removal and stemming
4 .

A =
A, =
A, =
A,

{humpty, dumpty, sat, wall}
{humpty, dumpty, great, fall}
{all, king, horse, men}

= {put, humpty, together, again}

(O
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INSTITUTIE m\‘Mw matriX

AL A Az Ay
humpty | T 1 0 1
dumpty| 1 1T 0 O

saf 0 0 O
wal O 0 O
geat' O 1 0 O

falll O 1 0 O

all 0 0 1 O
king/ O O 0
horse| O O 0
men| 0 O 0
put/ 0 O O |

together 0 0 O
again| 0 0 O
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INSTITUTE 1! /nA

>
S

| .. . C11 humpty |
sim(A;, AJ) ~ cteroteo dumpty

SQ1
wal
great
fal

al
Important observation king

COO iS unused! norse
men

out

together

again

Cxy = NuMber of (X,y) rows

1O O 0 OO0 O OO D) —

OO0O0O0O0O0OO0O—=—00 — = F
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Estimation of similarity

©
2
IN<MI {1"'\ 0 through random permutations

T (dumpty, men, again, put, great, humpty, wall, horse, king, sat, fall, ftogether, all)
% (fall, put, all, again, dumpty, sat, men, great, wall, king, horse, humpty, tfogether)
773 = (horse, dumpty, wall, humpty, great, again, sat, all, men, together, put, king, fall)

T4 = (king, humpty, men, together, great, fall, horse, all, dumpty, wall, sat, again, put)

O
\
The Open
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KM‘ - Surrogate documents form
NI {u\ﬂﬁu random permutations

Keep first occurring word of A in n for
dense surrogate representation

A, A, As A4
m | dumpty dumpty [ men | again
> | dumpty fall all out
w3 | dumpty dumpty [ horse| humpty
4

]

humpty humpty [ King | humpty

~
-

(O

The Open
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i ; random permutations
INSTITUTE _!_h ’”A p

A A4
T dumpty again
e fall pout
3 dumpty humpty
T4 humpty humpty

Estimate sim(A_,A,) = 1/4
(proportion of co-inciding words)




KM% i Exercise: estimate sim(A,, A)
a8 . _
INSTITUTE ih‘ﬂ%w Wlth Mmin haSh

Mice are dancing in a round,

On a bench a cat is sleeping.

"Hush, you mice, don't make such noise
Or you'll wake up Vaska Cat

Vaska Cat will jump and leap

And will spoil and break your round".

A = {mice, danc, round}
A, = {bench, cat, sleep}
A, = {hush, mice, nois}
A, = {wake, vaska, cat}
AS
A6

= {vaska, cat, jump, leap}
= {spoil, break, round}

The Open
University
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Exercise: estimate sim(A4, AS)

@& ,
IN<MI {B\‘ /M with min hash

A = {wake, vaska, cat}
A_= {vaska, cat, jump, leap}

1 = (bench, break, cat, danc, hush, jump, leap, mice, naois, round, sleep, spail, vaska, wake)
Ty = (cat, vaska, wake, bench, danc, nois, leap, jump, sleep., round, mice, break, spoil, hush;

13 = (hush, break, vaska, nois, jJump, mice, sleep, spoil, wake, round, leap, bench, danc, cat)

era

s — (vaska, danc, leap, break, round, nois, spoil, hush, wake, jump, sleep, cat, benc,h mice)

3
T4 = (spoll, bench, cat, wake, nois, leap, danc, sleep, jump, round, mice, hush, break, vaska;
)
Te — (round, vaska, danc, wake, spail, hush, sleep, leap, cat, nois, mice, break, bench, jump)
7 = (danc, break, vaska, spoil, sleep, wake, round, bench, leap, hush, jump, mice, nois, cat)

g = (Jump, naois, break, danc, round, leap, hush, cat, sleep, vaska, spoil, mice, bench, wake]

(O

The Open
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Scale Invariant Feature Transform

“distinctive invariant image features that can be
used to perform reliable matching between different

views of an object or scene.”
Invariant to image scale and rotation.

Robust to substantial range of affine distortion,
changes in 3D viewpoint, addition of noise and

change in illumination.

[Lowe, D.G. (2004). Distinctive Image Features from Scale-Invariant
Keypoints. International Journal of Computer Vision, 60, 2, pp. 91-110.]
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For a given image:
Detect scale space extrema

Localise candidate keypoints
Assign an orientation to each keypoint

Produce keypoint descriptor
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Difference of Gaussian image

creation

Scale
octave

Gaussian images

Difference-of Gaussian images
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OMERGE N Difference of Gaussian
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INSTITUTE ih /(“

Once the Difference of Gaussian images have been

generated:
*Each pixel in the images is compared to 8

neighbours at same scale.
*Also compared to 9 corresponding neighbours in
scale above and 9 corresponding neighbours in the

scale below.
*Each pixel is compared to 26 neighbouring pixels in

3X3 regions across scales, as it is not compared to

itself at the current scale.
*A pixel is selected as a SIFT keypoint only either if

its intensity value is extreme.

ity

S
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Pixel neighbourhood
comparison

Scale
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Orientation histogram with 36 bins — one p¢
10 degrees.

Each sample weighted by gradient
magnitude and Gaussian window.

Canonical orientation at peak of
Smoothed histogram.

27

Where two or more orientations are detectec
keypoints created for each orientation.

The Open
University
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KMi f»"{‘ ’ The SIFT keypoint descriptor
p | 1

We now have location, scale and orientation for
each SIFT keypoint (“keypoint frame”).

— descriptor for local image region is required.

Must be as invariant as possible to changes in
illumination and 3D viewpoint.

Set of orientation histograms are computed on
4x4 pixel areas.

Each gradient histogram contains 8 bins and each
descriptor contains an array of 4 histograms.

— SIFT descriptor as 128 (4 x 4 x 8) element
histogram

S

iversity
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* Alternative to SIFT - "Speeded Up Robust
Features”

* High dimensionality of SIFT descriptor makes it
costly to compute and slow to match.

* Goal is to speed up the detection and description
process for image features.

 Similar to SIFT but the authors claim better and
more robust performance.

[Bay and Tuytelaars and Van Gool, H and T and L. Speeded Up Robust()
Features. In ECCV 2006, pp. 404-417.] =

The Open
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* Uses integral images (similar to summed area
tables) to quickly compute box-type
convolution filters.

* Integral image = the sum of the intensities of
all pixels contained in the rectangle defined by
the pixel of interest and the origin.

sity
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INSTITUTE d_h‘ ’(“

l(x,y)

The value of the integral image at point (x,y) = the sum of all pixels

above
and to the left.

The Open
University
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l

iz, y) Z (2, y")

x' <z,y' <y

INSTITUTE

Using the following pair of recurrences:
s(z,y) = s(x,y — 1) +i(x,y)

w(z,y) =i(z —1,y) + s(z, y)
Where s(X,y) is the cumulative row sum
s(x, -1) = 0 and
li(-1,y) =0

the integral image can be computed in one pass
over the original image

C

The Open
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KMi ?T‘M“Integral image theory
: 1

Integral image at point 1 = sum of pixels in A.
Value at point 2 = A+B.
Value at point 3 = A+C.

Value at point 4 = A+B+C+D.
Sum within D can be calculatedas 4 + 1 - (2 + 3).

(O

The Open
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| it

INSTITUTE

Gaussians Box filter equivalent

1

Y direction

XY direction

Computation time increases Computation time constant anc
with filter size. Independent of filter si%e;.

The Open
University
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Scale

*Analyse by upscaling
the filter size

*Start with 9x9
‘Upscale by octaves

(x2)

( O
The Open

University
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‘ 1

INSTITUTE 4]=
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INSTITUTE ih‘ /{u

SURF and SIFT both focus on the spatial distribution of
gradient information.

SURF
Is three times faster than SIFT
Is less susceptible to noise (claimed to be!)
Is good at handling serious image blur
Is good at handling image rotation

Does not handle viewpoint change or illumination
change well

NB: SURF does not always outperform the original SIFT

(O

The Open
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