

Future Research Issues: Task-Based Session Extraction from Query Logs

Salvatore Orlando⁺, Raffaele Perego^{*}, <u>Fabrizio Silvestri</u>^{*}

*ISTI - CNR, Pisa, Italy

*Università Ca' Foscari Venezia, Italy

Claudio Lucchese, Salvatore Orlando, Raffaele Perego, Fabrizio Silvestri, Gabriele Tolomei. Identifying Task-based Sessions in Search Engine Query Logs. ACM WSDM, Hong Kong, February 9-12, 2011.

Problem Statement: TSDP

Task-based Session Discovery Problem:

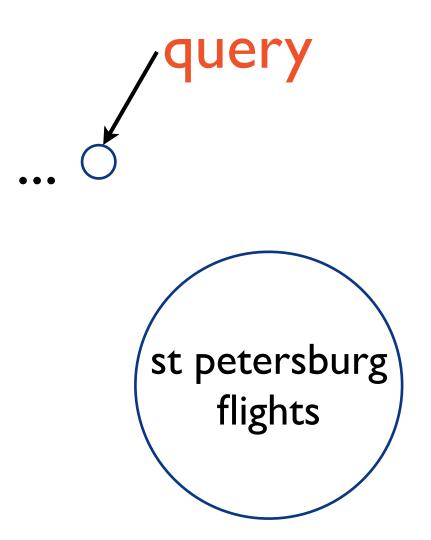
Discover sets of possibly non contiguous queries issued by users and collected by Web Search Engine Query Logs whose aim is to carry out specific "tasks"

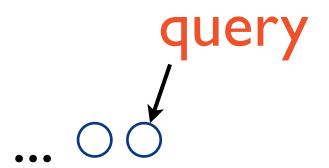
Background

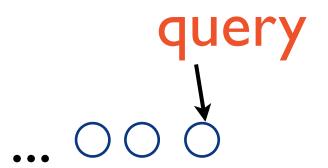
- What is a Web task?
 - A "template" for representing any (atomic) activity that can be achieved by exploiting the information available on the Web, e.g., "find a recipe", "book a flight", "read news", etc.
- Why WSE Query Logs?
 - Users rely on WSEs for satisfying their information needs by issuing possibly interleaved stream of related queries
 - WSEs collect the search activities, i.e., sessions, of their users by means of issued queries, timestamps, clicked results, etc.
 - User search sessions (especially long-term ones) might contain interesting patterns that can be mined, e.g., sub-sessions whose queries aim to perform the same Web task

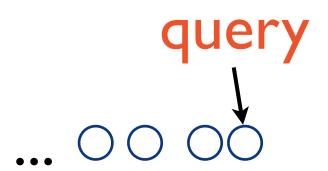
Motivation

- "Addiction to Web search": no matter what your information need is, ask it to a WSE and it will give you the answer, e.g., people querying Google for "google"!
- Conference Web site is full of useful information but still some tasks have to be performed (e.g., book flight, reserve hotel room, rent car, etc.)
- Discovering tasks from WSE logs will allow us to better understand user search intents at a "higher level of abstraction":
 - from query-by-query to task-by-task Web search

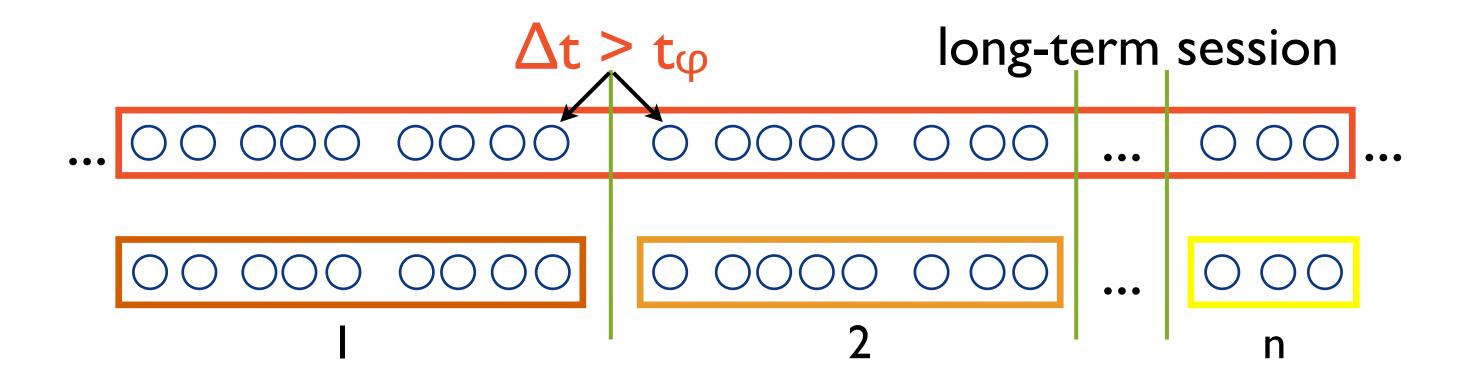




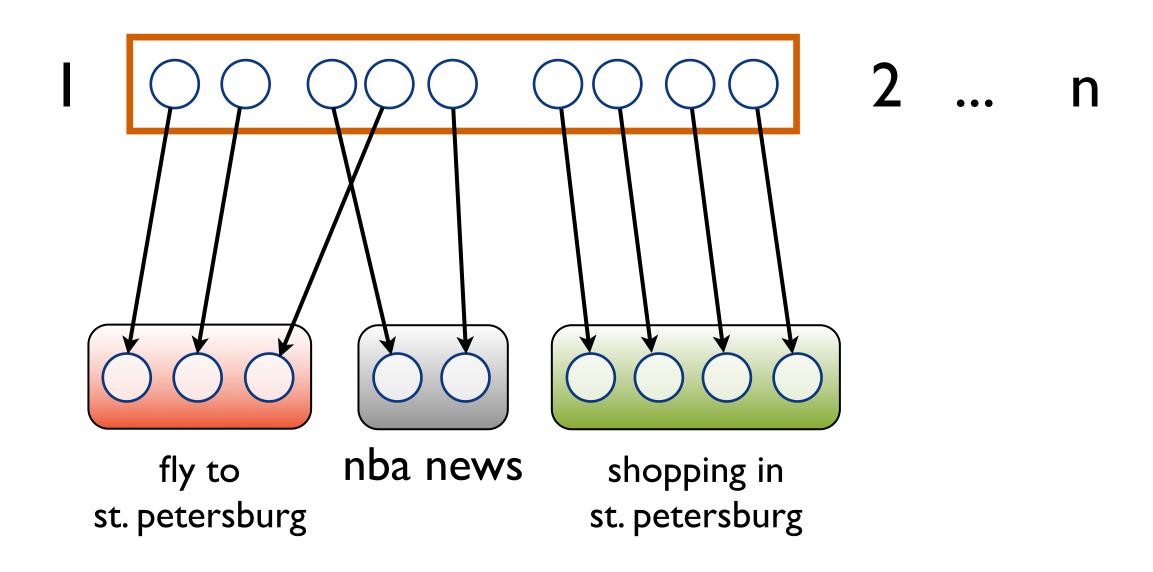




long-term session



1 00000000 2 ... n



Related Work

- Previous work on session identification can be classified into:
 - I. time-based
 - 2. content-based
 - 3. novel heuristics (combining I. and 2.)

Related Work: time-based

- 1999: Silverstein et al. [1] firstly defined the concept of "session":
 - 2 adjacent queries (q_i, q_{i+1}) are part of the same session if their time submission gap is at most 5 minutes
- 2000: He and Göker [2] used different timeouts to split user sessions (from 1 to 50 minutes)
- 2006: Jansen and Spink [4] described a session as the time gap between the first and last recorded timestamp on the WSE server

PROs

√ ease of implementation

CONs

√ unable to deal with multi-tasking behaviors

Related Work: content-based

- Some work exploit lexical content of the queries for determining a topic shift in the stream, i.e., session boundary [3, 5, 6, 7]
- Several string similarity scores have been proposed, e.g.,
 Levenshtein, Jaccard, etc.
- 2005: Shen et al. [8] compared "expanded representation" of queries
 - expansion of a query q is obtained by concatenating titles and Web snippets for the top-50 results provided by a WSE for q

PROs

√ effectiveness improvement

CONs

Related Work: novel

- 2005: Radlinski and Joachims [3] introduced query chains, i.e., sequence of queries with similar information need
- 2008: Boldi et al. [9] introduce the query-flow graph as a model for representing WSE log data
 - session identification as Traveling Salesman Problem
- 2008: Jones and Klinkner [10] address a problem similar to the TSDP
 - hierarchical search: mission vs. goal
 - supervised approach: learn a suitable binary classifier to detect whether two queries (q_i, q_j) belong to the same task or not

PROs

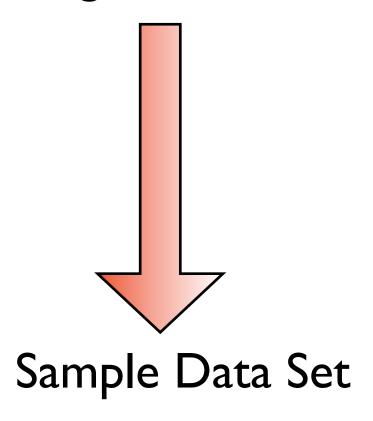
√ effectiveness improvement

CONs

√ computational complexity

Data Set: AOL Query Log

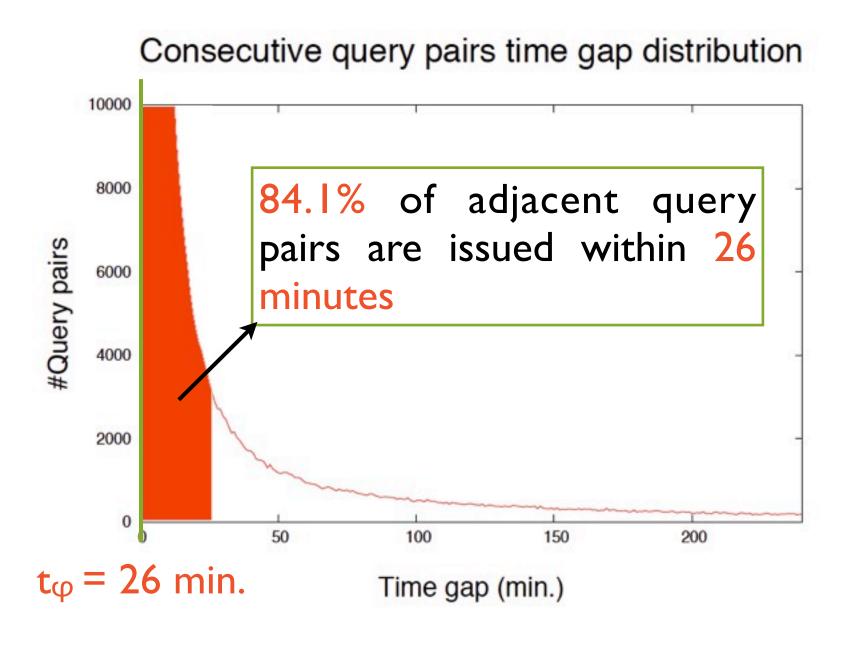
Original Data Set



- ✓ 3-months collection
- √ ~20M queries
- ✓ ~657K users

- √ I-week collection
- ✓ ~100K queries
- √ 1,000 users
- √ removed empty queries
- ✓ removed "non-sense" queries
- √ removed stop-words
- ✓ applied Porter stemming algorithm

Data Analysis: query time gap



Ground-truth: construction

- Long-term sessions of sample data set are first split using the threshold t_{ϕ} devised before (i.e., 26 minutes)
 - obtaining several time-gap sessions
- Human annotators group queries that they claim to be task-related inside each time-gap session
- Represents the true task-based partitioning manually built from actual WSE query log data
- Useful both for statistical purposes and evaluation of automatic task-based session discovery methods

Ground-truth: statistics

- **√ 2,004** queries
- √ 446 time-gap sessions
- √ 1,424 annotated queries
- √ 307 annotated time-gap sessions
- √ 554 detected task-based sessions

Ground-truth: statistics

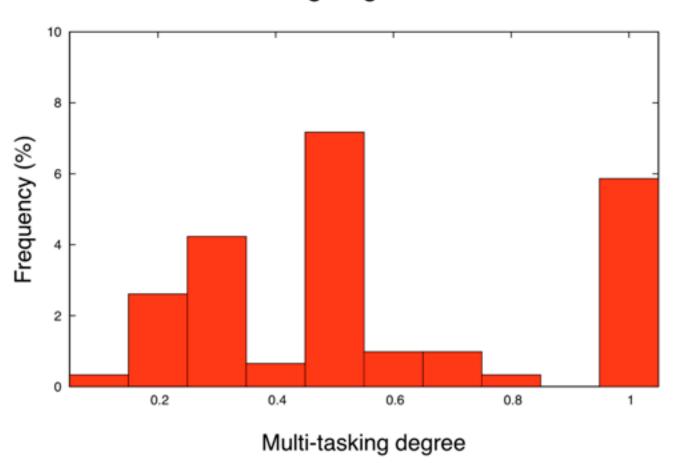
- √ 4.49 avg. queries per time-gap session
- √ more than 70% time-gap session contains at most 5 queries

- ✓ 2.57 avg. queries per task
- √ ~75% tasks contains at most 3
 queries

- ✓ 1.80 avg. task per time-gap session
- √ ~47% time-gap session contains
 more than one task (multi-tasking)
- √ I,046 over I,424 queries (i.e.,
 ~74%) included in multi-tasking
 sessions

Ground-truth: statistics

Multi-tasking degree distribution



- ✓ overlapping degree of multi-tasking sessions
- ✓ jump occurs whenever two queries of the same task are not originally adjacent
- ✓ ratio of task in a time-gap session that contains at least one jump

TSDP: approaches

I) TimeSplitting-t

Description:

The idea is that if two consecutive queries are far away enough then they are also likely to be unrelated.

Two consecutive queries (q_i, q_{i+1}) are in the same task-based session if and only if their time submission gap is lower than a certain threshold t.

PROs:

- √ ease of implementation
- \checkmark O(n) time complexity (linear in the number n of queries)

CONs:

- ✓ unable to deal with multi-tasking
- ✓ unawareness of other discriminating query features (e.g., lexical content)

Methods: TS-5, TS-15, TS-26, etc.

2) QueryClustering-m

Description:

Queries are grouped using clustering algorithms, which exploit several query features. Clustering algorithms assembly such features using two different distance functions for computing query-pair similarity.

Two queries (q_i, q_j) are in the same task-based session if and only if they are in the same cluster.

PROs:

- ✓ able to detect multi-tasking sessions
- ✓ able to deal with "noisy queries" (i.e., outliers)

CONs:

 \checkmark O(n²) time complexity (i.e. quadratic in the number n of queries due to all-pairs-similarity computational step)

Methods: QC-MEANS, QC-SCAN, QC-WCC, and QC-HTC

Query Features

Content-based (µcontent)

- √ two queries (q_i, q_j) sharing common terms are likely related
- ✓ µ_{jaccard}: Jaccard index on query character 3-grams

$$\mu_{jaccard}(q_1, q_2) = 1 - \frac{|T(q_1) \cap T(q_2)|}{|T(q_1) \cup T(q_2)|}$$

✓ µ_{levenshtein}: normalized Levenshtein distance

$$\mu_{content}(q_1, q_2) = \frac{(\mu_{jaccard} + \mu_{levenshtein})}{2}$$

Semantic-based (µ_{semantic})

- ✓ using Wikipedia and Wiktionary for "expanding" a query q
- √ "wikification" of q using vector-space model

$$\overrightarrow{C}(t) = (c_1, c_2, \dots, c_W)$$
 $\overrightarrow{C}(q) = \sum_{t \in q} \overrightarrow{C}(t)$

✓ relatedness between (q_i, q_j) computed using cosine-similarity

$$rel(q_1, q_2) = \frac{\overrightarrow{C}(q_1) \cdot \overrightarrow{C}(q_2)}{|\overrightarrow{C}(q_1)||\overrightarrow{C}(q_1)|}$$

$$\mu_{wikification}(q_1, q_2) = 1 - rel(q_1, q_2)$$

$$\mu_{semantic}(q_1, q_2) = min(\mu_{wiktionary}, \mu_{wikipedia})$$

Distance Functions: µ1 vs. µ2

√ Convex combination µ₁

$$\mu_1 = \alpha \cdot \mu_{content} + (1 - \alpha) \cdot \mu_{semantic}$$

✓ Conditional formula µ2

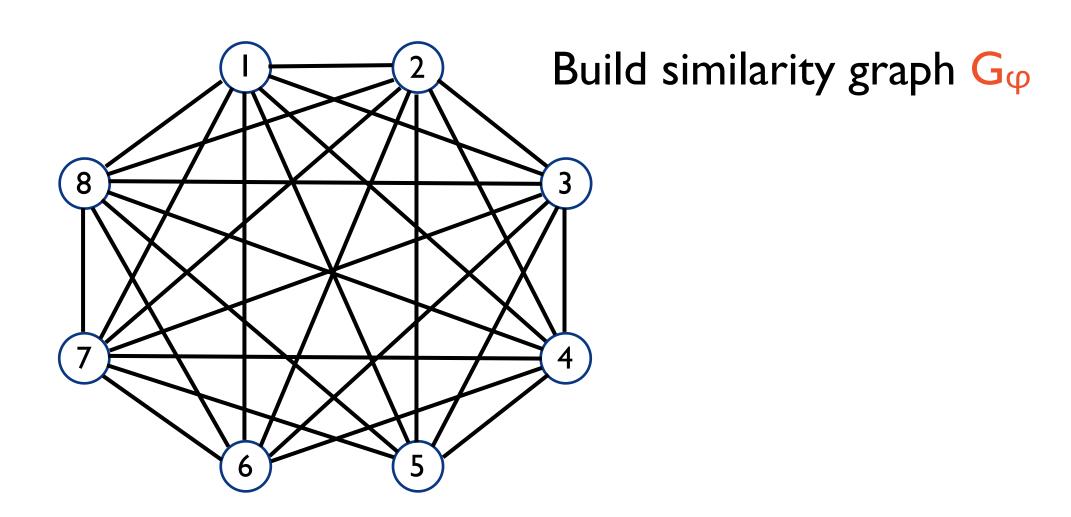
<u>Idea</u>: if two queries are close in term of lexical content, the semantic expansion could be unhelpful. Vice-versa, nothing can be said when queries do not share any content feature

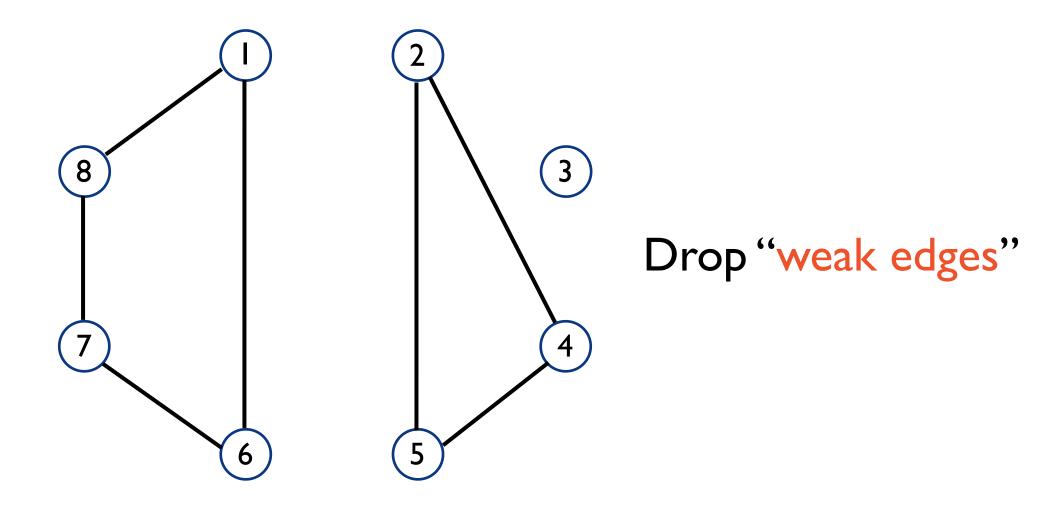
$$\mu_2 = \begin{cases} \mu_{content} & \text{if } \mu_{content} < \mathbf{t} \\ \min(\mu_{content}, \mathbf{b} \cdot \mu_{semantic}) & \text{otherwise.} \end{cases}$$

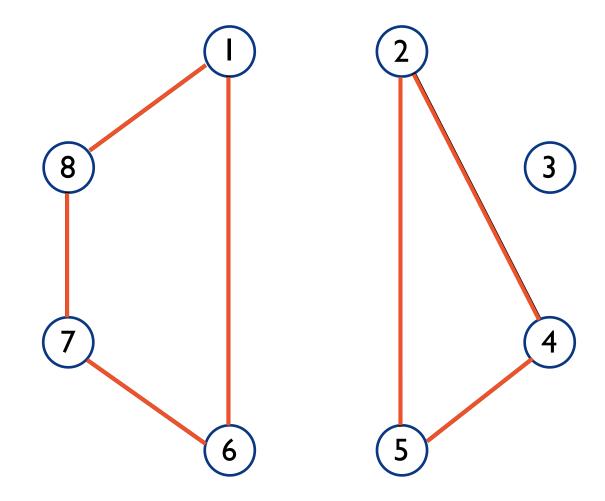
- ✓ Both μ_1 and μ_2 rely on the estimation of some parameters, i.e., α , t, and b
- √ Use ground-truth for tuning parameters

- Models each time-gap session ϕ as a complete weighted undirected graph G_{ϕ} = (V, E, w)
 - set of nodes V are the queries in φ
 - set of edges E are weighted by the similarity of the corresponding nodes
- Drop weak edges, i.e., with low similarity, assuming the corresponding queries are not related and obtaining G^{\prime}_{ϕ}
- Clusters are built on the basis of strong edges by finding all the connected components of the pruned graph G'_{ϕ}
- $O(|V|^2)$ time complexity.

φ 1 2 3 4 5 6 7 8







QC-HTC

- Variation of QC-WCC based on head-tail components
- Does not need to compute the full similarity graph
- Exploits the sequentiality of query submissions to reduce the number of similarity computations
- Performs 2 steps:
 - I. sequential clustering
 - 2. merging

QC-HTC: sequential clustering

- Partition each time-gap session into sequential clusters containing only queries issued in a row
- Each query in every sequential cluster has to be "similar enough" to the chronologically next one
- Need to compute only the similarity between one query and the next in the original data

QC-HTC: merging

- Merge together related sequential clusters due to multi-tasking
- <u>Hyp</u>: a cluster is represented by its chronologically-first and last queries, i.e., head and tail, respectively
- Given two sequential clusters c_i , c_j and h_i , t_i , and h_j , t_j , their corresponding head and tail queries the similarity $s(c_i, c_j)$ is computed as follow:

```
s(c_i,c_j) = min \ w(e(q_i,q_j)) \ s.t. \ q_i \in \{h_i,t_i\} \ and \ q_j \in \{h_j,t_j\}
```

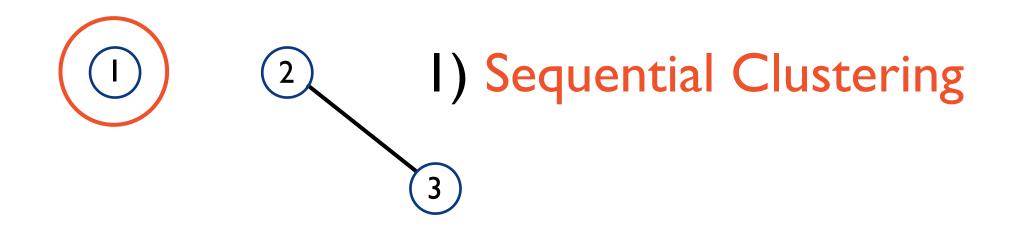
- c_i and c_j are merged as long as $s(c_i, c_j) > \eta$
- h_i, t_i and h_i, t_i are updated consequently

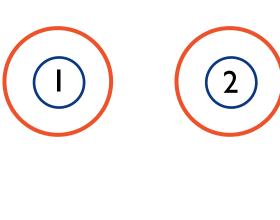
QC-HTC

φ 1 2 3 4 5 6 7 8

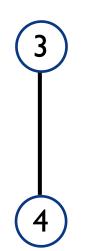
1 2

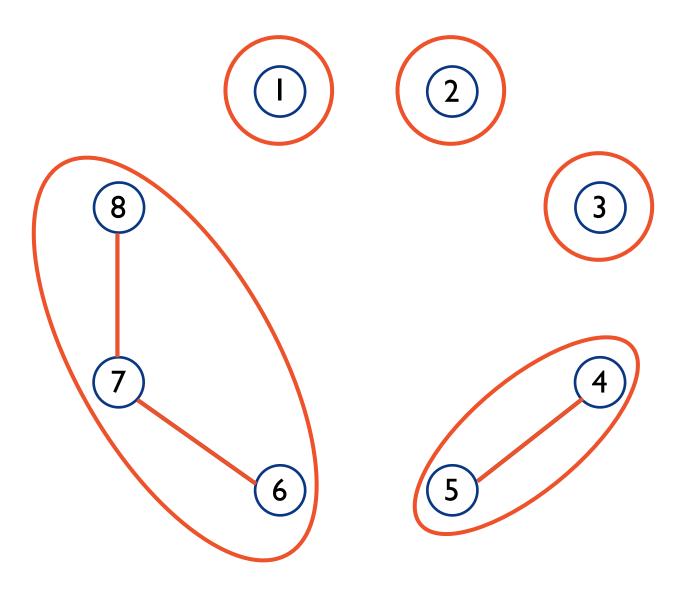
1) Sequential Clustering

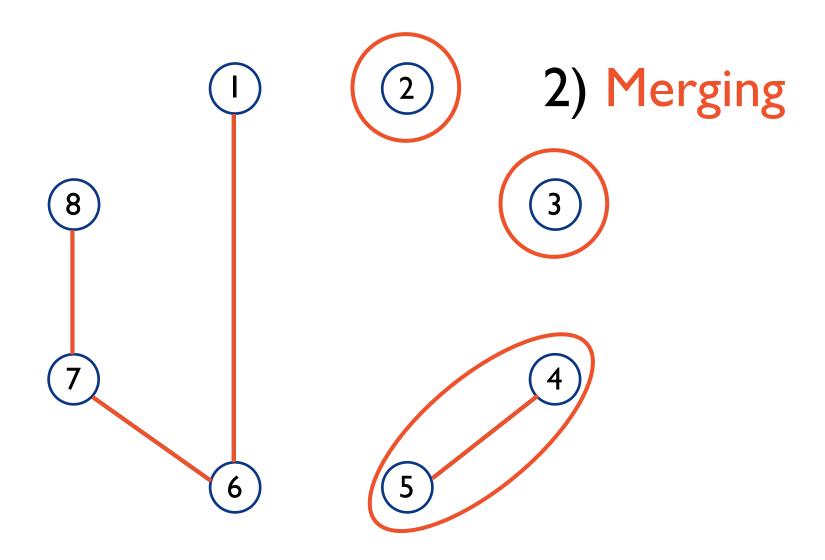


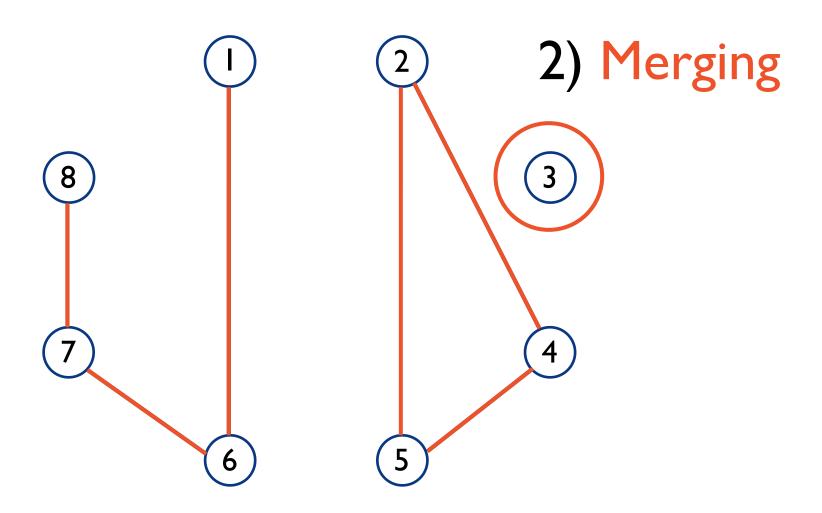


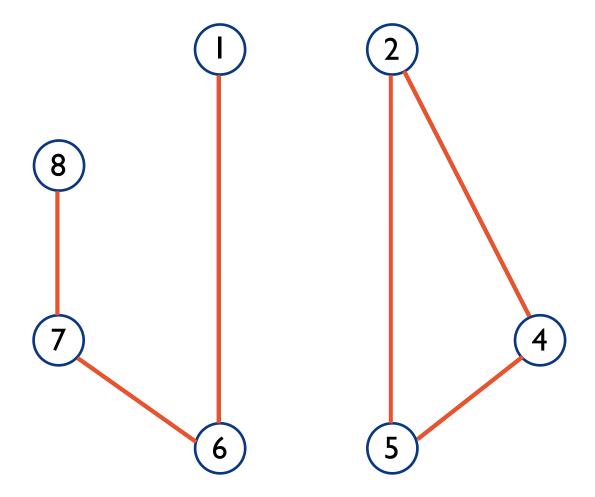
I) Sequential Clustering











QC-HTC: time complexity

- In the first step the algorithm computes the similarity only between one query and the next in the original data
 - O(n) where n is the size of the time-gap session
- In the second step the algorithm computes the pairwise similarity between each sequential cluster
 - $O(k^2)$ where k is the number of sequential clusters
 - if $k = \beta \cdot n$ with $0 < \beta \le 1$ then time complexity is $O(\beta^2 \cdot n^2)$
 - e.g. $\beta = 1/2 \Rightarrow O(n^2/4) \Rightarrow up$ to 4 times better than QC-WCC

Experiments Setup

- Run and compare all the proposed approaches with:
 - TS-26: time-splitting technique (baseline)
 - QFG: session extraction method based on the query-flow graph model (state of the art)

Evaluation

 Measure the degree of correspondence between true tasks, i.e., manually-extracted ground-truth, and predicted tasks, i.e., output by algorithms

a) F-MEASURE

- √ evaluates the extent to
 which a predicted task
 contains only and all the
 queries of a true task
- √ combines p(i, j) and r(i, j)
 the precision and recall
 of task i w.r.t. class j

b) RAND

- ✓ pairs of queries instead of singleton
- \checkmark f₀₀, f₀₁, f₁₀, f₁₁

$$R = \frac{f_{00} + f_{11}}{f_{00} + f_{01} + f_{10} + f_{11}}$$

c) JACCARD

- ✓ pairs of queries instead of singleton
- $\checkmark f_{01}, f_{10}, f_{11}$

$$J = \frac{f_{11}}{f_{01} + f_{10} + f_{11}}$$

Evaluation

foo = #pairs of obj's w/ different class and task

fo1 = #pairs of obj's w/ different class and same task asks, i.e., manually-extracted

f10 = #pairs of obj's w/ same class and different task |ms

f11 = #pairs of obj's w/ same class and task

a) F-MEASURE

- √ evaluates the extent to which a predicted task contains only and all the queries of a true task
- \checkmark combines p(i, j) and r(i, j)the precision and recall of task i w.r.t. class j

b) RAND

- √ pairs of queries instead of singleton
- \checkmark f₀₀, f₀₁, f₁₀, f₁₁

$$R = \frac{f_{00} + f_{11}}{f_{00} + f_{01} + f_{10} + f_{11}} \qquad J = \frac{f_{11}}{f_{01} + f_{10} + f_{11}}$$

c) ACCARD

- √ pairs of queries instead of singleton
- \checkmark f₀₁, f₁₀, f₁₁

$$J = \frac{f_{11}}{f_{01} + f_{10} + f_{11}}$$

Results: TS-t

- 3 time thresholds used: 5, 15, and 26 minutes
- Note: TS-26 was used for splitting sample data set
 - task-based sessions == time-gap sessions

Results: TS-t

Table 1: TS-5, TS-15, and TS-26.

	F-measure	Rand	Jaccard
TS-5	0.28	0.75	0.03
TS-15	0.28	0.71	0.08
TS-26	0.65	0.34	0.34

- 3 time thresholds used: 5, 15, and 26 minutes
- Note: TS-26 was used for splitting sample data set
 - task-based sessions == time-gap sessions

Results: QFG

- ✓ trained on a segment of our sample data set
- ✓ best results using $\eta = 0.7$
- ✓ vs. baseline:
 - +16% F-measure
 - +52% Rand
 - +15% Jaccard

Results: QFG

Table 2: QFG: varying the threshold η .

	η	F-measure	Rand	Jaccard
	0.1	0.68	0.47	0.36
	0.1	0.68	0.47	0.36
	0.3	0.69	0.51	0.37
QFG	0.4	0.70	0.55	0.38
61	0.5	0.71	0.59	0.38
	0.6 0.7	0.74 0.77	0.65 0.71	0.39 0.40
	0.8	0.77	0.71	0.40
	0.9	0.77	0.71	0.40

- ✓ trained on a segment of our sample data set
- ✓ best results using $\eta = 0.7$
- ✓ vs. baseline:
 - +16% F-measure
 - +52% Rand
 - +15% Jaccard

Results: QC-WCC

```
✓ best results using μ₂ and η = 0.3
✓ vs. baseline:

+20% F-measure
+56% Rand
+23% Jaccard

✓ vs. QFG:

+5% F-measure
+9% Rand
+10% Jaccard
```

Results: QC-WCC

Table 5: QC-wcc: μ_1 vs. μ_2 varying the threshold η .

QC-wcc μ_1 ($\alpha = 0.5$)				
η	F-measure	Rand	Jaccard	
0.1	0.78	0.71	0.42	
0.2	0.81	0.78	0.43	
0.3	0.79	0.77	0.37	
0.4	0.75	0.73	0.27	
0.5	0.72	0.71	0.20	
0.6	0.75	0.70	0.14	
0.7	0.74	0.69	0.11	
0.8	0.74	0.68	0.07	
0.9	0.72	0.67	0.04	

	QC-wcc $\mu_2(t = 0.5, b = 4)$				
η	F-measure	Rand	Jaccard		
0.1	0.67	0.45	0.33		
0.2	0.78	0.71	0.42		
0.3	0.81	0.78	0.44		
0.4	0.81	0.78	0.41		
0.5	0.80	0.77	0.37		
0.6	0.78	0.75	0.32		
0.7	0.75	0.73	0.23		
0.8	0.71	0.70	0.15		
0.9	0.69	0.68	0.08		

```
✓ best results using \mu_2 and \eta = 0.3
```

- √ vs. baseline:
 - +20% F-measure
 - +56% Rand
 - +23% Jaccard
- ✓ vs. QFG:
 - +5% F-measure
 - +9% Rand
 - + 10% Jaccard

Results: QC-HTC

```
✓ best results using μ₂ and η = 0.3
✓ vs. baseline:

+19% F-measure
+56% Rand
+21% Jaccard

✓ vs. QFG:

+4% F-measure
+9% Rand
+8% Jaccard
```

Results: QC-HTC

Table 6: QC-HTC: μ_1 vs. μ_2 varying the threshold η .

QC-HTC $\mu_1 \ (\alpha = 0.5)$				
η	F-measure	Rand	Jaccard	
0.1	0.78	0.72	0.41	
0.2	0.80	0.78	0.41	
0.3	0.78	0.76	0.35	
0.4	0.75	0.73	0.25	
0.5	0.73	0.70	0.18	
0.6	0.75	0.70	0.13	
0.7	0.74	0.69	0.10	
0.8	0.74	0.68	0.06	
0.9	0.72	0.67	0.03	

	QC-HTC $\mu_2(t=0.5, b=4)$				
η	F-measure	Rand	Jaccard		
0.1	0.68	0.56	0.32		
0.2	0.78	0.73	0.41		
0.3	0.80	0.78	0.43		
0.4	0.80	0.77	0.38		
0.5	0.78	0.76	0.34		
0.6	0.77	0.74	0.30		
0.7	0.74	0.72	0.21		
0.8	0.71	0.70	0.14		
0.9	0.68	0.67	0.07		

```
✓ best results using \mu_2 and \eta = 0.3
```

- √ vs. baseline:
 - +19% F-measure
 - +56% Rand
 - +21% Jaccard
- ✓ vs. QFG:
 - +4% F-measure
 - +9% Rand
 - +8% Jaccard

Results: best

Table 7: Best results obtained with each method.

	F-measure	Rand	Jaccard
TS-26 (baseline)	0.65	0.34	0.34
QFG best (state of the art)	0.77	0.71	0.40
QC-Means $_{best}$	0.72	0.74	0.27
QC-Scan best	0.77	0.71	0.19
$QC\text{-}WCC_{best}$	0.81	0.78	0.44
QC-HTC best	0.80	0.78	0.43

Results: best

Table 7: Best results obtained with each method.

	F-measure	Rand	Jaccard
TS-26 (baseline)	0.65	0.34	0.34
QFG best (state of the art)	0.77	0.71	0.40
QC-Means $_{best}$	0.72	0.74	0.27
QC-Scan best	0.77	0.71	0.19
QC-wcc_{best}	0.81	0.78	0.44
QC-HTC $_{best}$	0.80	0.78	0.43

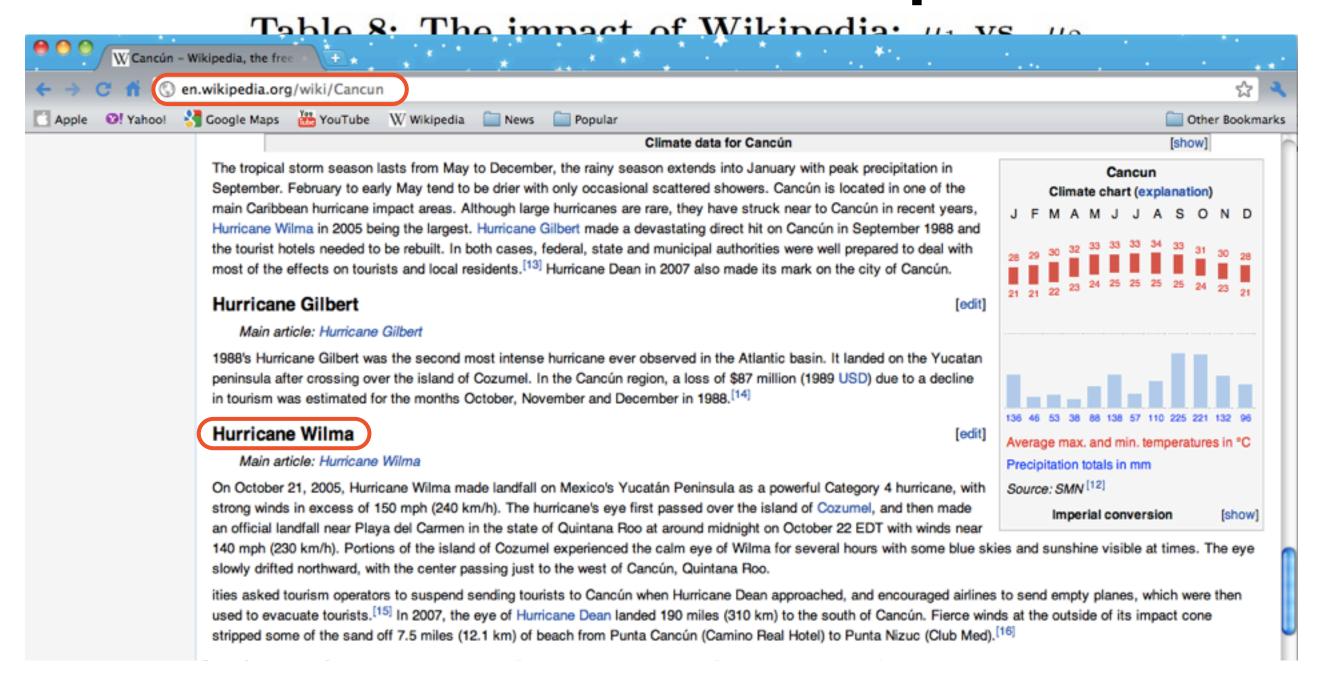
Results: Wiki impact

Table 8: The impact of Wikipedia: μ_1 vs. μ_2

QC-HTC μ_1 $(\alpha = 1)$		QC-HTC μ_2 (0.5, 4)	
Query ID	Query String	Query ID	Query String
		63	los cabos
	99	64	cancun
65	hurricane wilma	65	hurricane wilma
68	hurricane wilma	68	hurricane wilma

- Benefit of using Wikipedia instead of only lexical content when computing query distance function
- Capturing other two queries that are lexically different but somehow "semantically" similar
- Try going here: http://en.wikipedia.org/wiki/Cancun

Results: Wiki impact



Conclusions

- Introduced the Task-based Session Discovery Problem
 - from a WSE log of user activities extract several sets of queries which are all related to the same task
- Compared clustering solutions exploiting two distance functions based on query content and semantic expansion (i.e., Wiktionary and Wikipedia)
- Proposed novel graph-based heuristic QC-HTC, lighter than QC-WCC, outperforming other methods in terms of F-measure, Rand and Jaccard index

Future Work

- Why should we stop here?
- Once discovered, smaller tasks might be part of larger and more complex tasks
- The task "fly to St. Petersburg" might be a step of a larger task, e.g., "holidays in St. Petersburg", which in turn could involve several other tasks...

Vision

- Make Web Search Engine the "universal driver" for executing our daily activities on the Web
- Once user types in a query, WSE should "infer the tasks" user aims to perform (if any) ⇒ serendipity!
- Results should be no longer only list of plain links but also tasks, either simple and complex
- Recommendation of queries and/or Web pages both intra- and inter-task

task vs. query recommendation

References

- [1] Silverstein, Marais, Henzinger, and Moricz. "Analysis of a very large web search engine query log". In SIGIR Forum, 1999
- [2] He and Göker. "Detecting session boundaries from web user logs". In BCS-IRSG, 2000
- [3] Radlinski and Joachims. "Query chains: Learning to rank from implicit feedback". In KDD '05
- [4] Jansen and Spink. "How are we searching the world wide web?: a comparison of nine search engine transaction logs". In IPM, 2006
- [5] Lau and Horvitz. "Patterns of search: Analyzing and modeling web query refinement". In UM '99
- [6] He and Harper. "Combining evidence for automatic web session identification". In IPM, 2002
- [7] Ozmutlu and Çavdur. "Application of automatic topic identification on excite web search engine data logs". In IPM, 2005
- [8] Shen, Tan, and Zhai. "Implicit user modeling for personalized search". In CIKM '05
- [9] Boldi, Bonchi, Castillo, Donato, Gionis, and Vigna. "The query-flow graph: model and applications". In CIKM '08
- [10] Jones and Klinkner. "Beyond the session timeout: automatic hierarchical segmentation of search topics in query logs". In CIKM '08
- [11] MacQueen. "Some methods for classification and analysis of multivariate observations". In BSMSP, 1967
- [12] Ester, Kriegel, Sander, and Xu. "A density-based algorithm for discovering clusters in large spatial databases with noise". In KDD '96

Questions?

