
Caching query-biased snippets for
efficient retrieval
Salvatore Orlando+, Raffaele Perego*, Fabrizio Silvestri*

*ISTI - CNR, Pisa, Italy
+Università Ca’ Foscari Venezia, Italy

Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando, Raffaele Perego, Fabrizio Silvestri: Caching
query-biased snippets for efficient retrieval. EDBT 2011: 93-104

Search Engine Results Page

Top-k results relevant
for the query

TITLE

SNIPPET
URL

Search Engine Results Page

SNIPPET

} Very important to estimate relevance of the result for the user’s
query
◦ high-quality, query-biased
◦ expensive to generate

3

Different queries....

Same title, same URL, same snippet (A)

Same title, same URL, different snippets (B)

Web Searching process

WSE BACK END

Query
Processor Query

Processor
Query

Processor

WSE FRONT END DOCUMENT REPOSITORY

5

3

6

1

2

4

WSE Front End caching

WSE BACK END

Query
Processor Query

Processor
Query

Processor

WSE FE

FE Cache

DOCUMENT REPOSITORY

5

3

6

1

2

4

WSE Front End caching

WSE BACK END

Query
Processor Query

Processor
Query

Processor

WSE FE

FE Cache

DOCUMENT REPOSITORY

5

3

6

1

2

4

SERPs’ caching does not help in the cases A and B above, when the
same or a similar snippet is generated for the same doc, but for

slightly different queries

Doc Repository Caching strategies

WSE BACK END

Query
Processor Query

Processor
Query

Processor

WSE FRONT END

FE Cache

DOCUMENT REPOSITORY

5

3

6

1

2

4 DR Cache

} A DR cache can substantially reduce disk accesses
} Two cache organizations discussed in literature:
◦ DRCachedoc storing integral copies of most accessed documents*

◦ DRCachesurr storing surrogates of most accessed documents**

Doc Repository Caching
Given q and docID, the DR has to: 1) retrieve document content and URL, 2) generate an
effective query-biased snippet

We propose DRCacheSsnip whose entries store supersnippets built on the basis of the past
queries submitted to the WSE

*Andrew Turpin, Yohannes Tsegay, David Hawking, and Hugh E. Williams. Fast generation of result snippets in web search. SIGIR '07
**Y. Tsegay, S. J. Puglisi, A. Turpin, and J. Zobel, Document Compaction for Efficient Query Biased Snippet Generation. ECIR ‘09

http://goanna.cs.rmit.edu.au/~sjp/
http://goanna.cs.rmit.edu.au/~sjp/
http://www.cs.rmit.edu.au/~aht
http://www.cs.rmit.edu.au/~aht
http://www.cs.rmit.edu.au/~jz
http://www.cs.rmit.edu.au/~jz

The Query Log used
} MSN RFP 2006 query log
◦ queries from a US Microsoft search site sampled over one month (May 2006)
◦ submitted to Yahoo! BOSS to retrieve top-10 results

◦ 9,000,000 queries
◦ 4,447,444 distinct queries
◦ 25,897,247 distinct URLS -> high URLs sharing!

} Double Pareto distribution

Fact 1: URLs occurrences in SERPs

} snippets generated for the same document are a few (<9)
} a document may answer several different queries

Fact 2: top-1000 most frequently retrieved documents

1. Relevant documents are characterized by a few snippets
2. Relevant documents are shared by different queries
3. Snippets are made of a few sentences
4. Different snippets from the same document share common

sentences

Evidences

Definition of QL-based supersnippet

Given the set Qd of all the past queries in QL for which
document d was returned, we define supersnippet ssn

of d the set of the n most frequent sentences
occurring in the snippets Sd,q generated for answering
the queries in Qd

Claim

Caching LRU supersnippets ssn is an effective and efficient
strategy for DRCache

Effectiveness: DRCacheSsnip vs. Yahoo! BOSS

Efficiency

SERPs cache
filtering out most
recently submitted

queries

CacheLookup(q, DocID)
if InCache(DocID) then

SS <- RetrieveSS(DocID)
snippet <- GenerateS(q,SS)
if Quality(q,SS) < Threshold then
 snippet <- UpdateSS (SS, DocID, q)
UpdateLRU(DocID)

else
 SS <- null
 snippet <- UpdateSS (SS, DocID, q)
 ReplaceLRU(SS, DocID)

SS Cache peculiarities

CacheLookup(q, DocID)
if InCache(DocID) then

SS <- RetrieveSS(DocID)
snippet <- GenerateS(q,SS)
if Quality(q,SS) < Threshold then
 snippet <- UpdateSS (SS, DocID, q)
UpdateLRU(DocID)

else
 SS <- null
 snippet <- UpdateSS (SS, DocID, q)
 ReplaceLRU(SS, DocID)

SS Cache peculiarities

A “Quality” Miss
may occur when
the quality of the
snippet generated
from the available

SS is below a
given threshold

} We count a Quality Miss when even a single query term is not
present in the snippet
◦ Also Yahoo! BOSS snippets sometimes do not contain ALL query terms
� misspellings, disjunctive queries, etc.

} We underestimate the Hit Ratio

Quality Miss count

What about considering a Quality Miss only when our snippets’
quality is lower than Yahoo!’s one ?

Refined Efficiency Measurement
SERPs cache

filtering out most
recently submitted

queries

Total Hit Ratio: ~62%

} Novel technique for scaling up search engine performance by snippet caching
◦ motivated by the analysis of a large real-world query log
◦ enabling the generation of effective snippets even for queries and URLs not previously

seen
◦ achieving high Hit Ratios (cumulatively up to 0.62!)
◦ evaluated by means of large-scale experiments

} Open issues
◦ study of dynamic vs static policies for managing supersnippets
� quality of SSs suffers for aging?
◦ study of diversification in supersnippets?
◦ heuristics, machine learning approaches for managing Quality Misses

Conclusion & Future Work

Questions?

