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Search Engine Results Page
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Search Engine Results Page

SNIPPET

} Very important to estimate relevance of the result for the user’s 
query 
◦  high-quality, query-biased
◦  expensive to generate
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Different queries....



Same title, same URL, same snippet (A)



Same title, same URL, different snippets (B)
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WSE Front End caching
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WSE Front End caching
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SERPs’ caching does not help in the cases A and B above, when the 
same or a similar snippet is generated for the same doc, but for 

slightly different queries



Doc Repository Caching strategies 
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} A DR cache can substantially reduce disk accesses 
} Two cache organizations discussed in literature:
◦ DRCachedoc storing integral copies of most accessed documents*

◦ DRCachesurr storing surrogates of most accessed documents**

Doc Repository Caching 
Given q and docID, the DR has to: 1) retrieve document content and URL, 2) generate an 
effective query-biased snippet

We propose DRCacheSsnip whose entries store supersnippets built on the basis of the past 
queries submitted to the WSE

*Andrew Turpin, Yohannes Tsegay, David Hawking, and Hugh E. Williams. Fast generation of result snippets in web search. SIGIR '07
**Y. Tsegay, S. J. Puglisi, A. Turpin, and J. Zobel, Document Compaction for Efficient Query Biased Snippet Generation. ECIR ‘09
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The Query Log used
} MSN RFP 2006 query log
◦ queries from a US Microsoft search site sampled over one month (May 2006)
◦ submitted to Yahoo! BOSS to retrieve top-10 results

◦ 9,000,000 queries
◦ 4,447,444 distinct queries
◦ 25,897,247 distinct URLS -> high URLs sharing!



} Double Pareto distribution

Fact 1: URLs occurrences in SERPs



} snippets generated for the same document are a few (<9)  
} a document may answer several different queries

Fact 2: top-1000 most frequently retrieved documents 



1. Relevant documents are characterized by a few snippets
2. Relevant documents are shared by different queries
3. Snippets are made of a few sentences
4. Different snippets from the same document share common 

sentences 

Evidences





Definition of QL-based supersnippet

Given the set Qd of all the past queries in QL for which 
document d was returned, we define supersnippet ssn 

of d the set of the n most frequent sentences 
occurring in the snippets Sd,q generated for answering 
the queries in Qd



Claim

Caching LRU supersnippets ssn is an effective and efficient 
strategy for DRCache



Effectiveness: DRCacheSsnip vs. Yahoo! BOSS



Efficiency

SERPs cache 
filtering out most 
recently submitted 

queries 



CacheLookup(q, DocID)
if InCache(DocID) then  

SS <- RetrieveSS(DocID)
snippet <- GenerateS(q,SS)
if Quality(q,SS) < Threshold then 
  snippet <- UpdateSS (SS, DocID, q)
UpdateLRU(DocID)

else
 SS <- null
 snippet <- UpdateSS (SS, DocID, q)
 ReplaceLRU(SS, DocID)

SS Cache peculiarities
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A “Quality” Miss 
may occur when 
the quality of the 
snippet generated 
from the available 

SS is below a 
given threshold



} We count a Quality Miss when even a single query term is not 
present in the snippet
◦ Also Yahoo! BOSS snippets sometimes do not contain ALL query terms
� misspellings, disjunctive queries, etc.

} We underestimate the Hit Ratio

Quality Miss count

What about considering a Quality Miss only when our snippets’ 
quality is lower than Yahoo!’s one ?



Refined Efficiency Measurement
SERPs cache 

filtering out most 
recently submitted 

queries 

Total Hit Ratio: ~62%



} Novel technique for scaling up search engine performance by snippet caching
◦ motivated by the analysis of a large real-world query log 
◦ enabling the generation of effective snippets even for queries and URLs not previously 

seen
◦ achieving high Hit Ratios (cumulatively up to 0.62!)
◦ evaluated by means of large-scale experiments

} Open issues
◦ study of dynamic vs static policies for managing supersnippets 
� quality of SSs suffers for aging?
◦ study of diversification in supersnippets?
◦ heuristics, machine learning approaches for managing Quality Misses

Conclusion & Future Work



Questions?


