

Information Studies

Introduction to Sentiment strength detection

Mike Thelwall University of Wolverhampton, UK

CYBER**EMOTIONS**

Sentiment Strength Detection with *SentiStrength*

- 1. Detect positive and negative sentiment *strength* in short informal text
 - 1. Develop workarounds for lack of standard grammar and spelling
 - 2. Harness emotion expression forms unique to MySpace or CMC (e.g., :-) or haaappppyyy!!!)
 - 3. Classify simultaneously as positive 1-5 AND negative 1-5 sentiment
- 2. Apply to MySpace comments and social issues

Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., & Kappas, A. (2010). <u>Sentiment strength detection in short informal text</u>. *Journal of the American Society for Information Science and Technology*, 61(12), 2544-2558.

SentiStrength 1 Algorithm - Core

- List of 890 positive and negative sentiment terms and strengths (1 to 5), e.g.
 - ache = -2, dislike = -3, hate=-4, excruciating -5
 - encourage = 2, coolest = 3, lover = 4
- Sentiment strength is highest in sentence; or highest sentence if multiple sentences

Examples

positive, negative

1, -2

3, -1

You are the coolest.

Term Strength Optimisation

 \bullet Term strengths (e.g., ache = -2) initially fixed by a human coder Term strengths optimised on training set with 10-fold cross-validation Adjust term strengths to give best training set results then evaluate on test set E.g., training set: "My legs <u>ache</u>": coder sentiment = 1,-3 = > adjust sentiment of "ache" from -2 to -3.

Summary of sentiment methods

sentiment word strength list terrify=-4 ■ "miss" = +2, -2 spelling corrected nicce -> nice booster words alter strength very happy negating words flip emotions not nice repeated letters boost sentiment/+ve niiiice emoticon list :) =+2 exclamation marks count as +2 unless -ve hi! repeated punctuation boosts sentiment good!!! negative emotion ignored in questions u h8 me?

Experiments

 Development data = 2600 MySpace comments coded by 1 coder
 Test data = 1041 MySpace comments coded by 3 independent coders
 Comparison against a range of standard machine learning algorithms

Test data: Inter-coder agreement

Krippendorff's inter-coder weighted alpha = 0.5743	Comparison for 1041 MySpace texts	+ve agree- ment	-ve agree- ment
for positive and 0.5634 for negative sentiment	Coder 1 vs. 2	51.0%	67.3%
Only moderate agreement between coders	Coder 1 vs. 3	55.7%	76.3%
but it is a hard 5-category task	Coder 2 vs. 3	61.4%	68.2%

SentiStrength vs. 693 other algorithms/variations

Results:+ve sentiment strength

Algorithm	Optimal #features	Accuracy	Accuracy +/- 1 class	Correlation
SentiStrength	_	60.6%	96.9%	.599
Simple logistic regression	700	58.5%	96.1%	.557
SVM (SMO)	800	57.6%	95.4%	.538
J48 classification tree	700	55.2%	95.9%	.548
JRip rule-based classifier	700	54.3%	96.4%	.476
SVM regression (SMO)	100	54.1%	97.3%	.469
AdaBoost	100	53.3%	97.5%	.464
Decision table	200	53.3%	96.7%	.431
Multilayer Perceptron	100	50.0%	94.1%	.422
Naïve Bayes	100	49.1%	91.4%	.567
Baseline	-	47.3%	94.0%	-
Random		19.8%	56.9%	.016

SentiStrength vs. 693 other algorithms/variations

Results:-ve sentiment strength

Algorithm	Optimal #features	Accuracy	Accuracy +/- 1 class	Correlation
SVM (SMO)	100	73.5%	92.7%	.421
SVM regression (SMO)	300	73.2%	91.9%	.363
Simple logistic regression	800	72.9%	92.2%	.364
SentiStrength	-	72.8%	95.1%	.564
Decision table	100	72.7%	92.1%	.346
JRip rule-based classifier	500	72.2%	91.5%	.309
J48 classification tree	400	71.1%	91.6%	.235
Multilayer Perceptron	100	70.1%	92.5%	.346
AdaBoost	100	69.9%	90.6%	-
Baseline	-	69.9%	90.6%	-
Naïve Bayes	200	68.0%	89.8%	.311
Random		20.5%	46.0%	.010

Example differences/errors

THINK 4 THE ADD
 Computer (1,-1), Human (2,-1)

• Computer (2,-1), Human (5,-1)

Application - Evidence of emotion homophily in MySpace

 Automatic analysis of sentiment in 2 million comments exchanged between MySpace friends

Correlation of 0.227 for +ve emotion strength and 0.254 for -ve

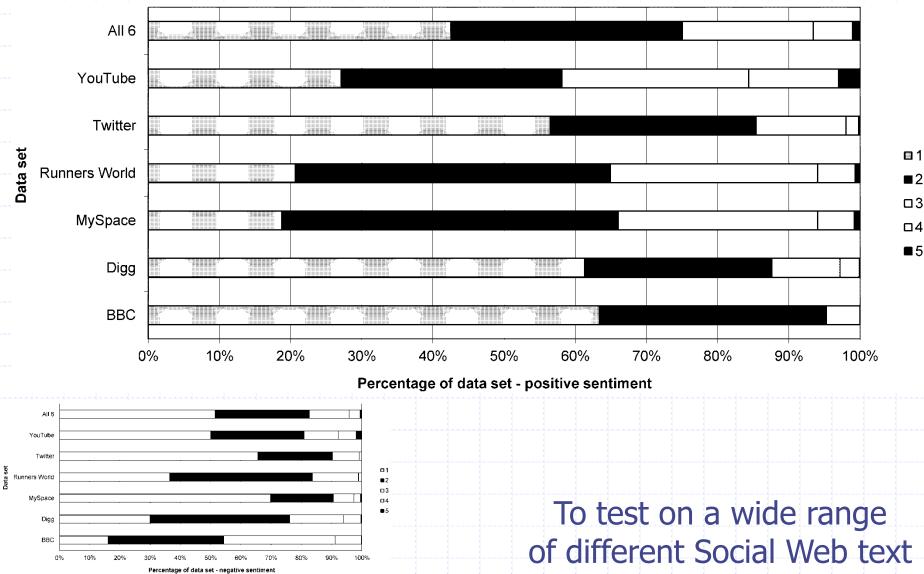
People tend to use similar but not identical levels of emotion to their friends in messages

SentiStrength 2

Sentiment analysis programs are typically domain-dependant SentiStrength is designed to be quite generic Does not pick up domain-specific nonsentiment terms, e.g., G3 SentiStrength 2.0 has extended negative sentiment dictionary In response to weakness for negative sentiment

> Thelwall, M., Buckley, K., Paltoglou, G. (submitted). High Face Validity Sentiment Strength Detection for the Social Web

6 Social web data sets



SentiStrength 2 (unsupervised) tests

Social web sentiment analysis is less domain dependant than reviews

Data set	Positive Correlation	Negative Correlation
YouTube	0.589	0.521
MySpace	0.647	0.599
Twitter	0.541	0.499
Sports forum	0.567	0.541
Digg.com news	0.352	0.552
BBC forums	0.296	0.591
All 6	0.556	0.565

Why the bad results for BBC?

- Long texts, mainly negative, expressive language used, e.g.,
 - David Cameron must be very happy that I have lost my job.
 - It is really interesting that David Cameron and most of his ministers are millionaires.
 - Your argument is a joke.

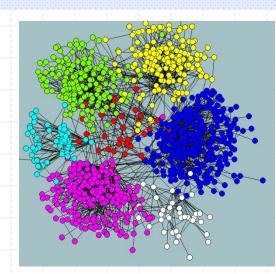
SentiStrength vs. Machine learning for Social Web texts

- Machine learning performs a bit better overall (7 out of 12 data sets/+ve or negative)
- Logistic Regression with trigrams, including punctuation and emoticons; 200 features
 But has "domain transfer" and "face validity" problems for *some* tasks

SentiStrength software

Versions: Windows, Java, live online (sentistrength.wlv.ac.uk) German version (Hannes Pirker) Variants: Binary (positive/negative), trinary (positive/neutral/negative) and scale (-4 to +4) Sold commercially - & purchasers converting to French, Spanish, Portuguese, & ?

CYBEREMOTIONS



Sentistrength

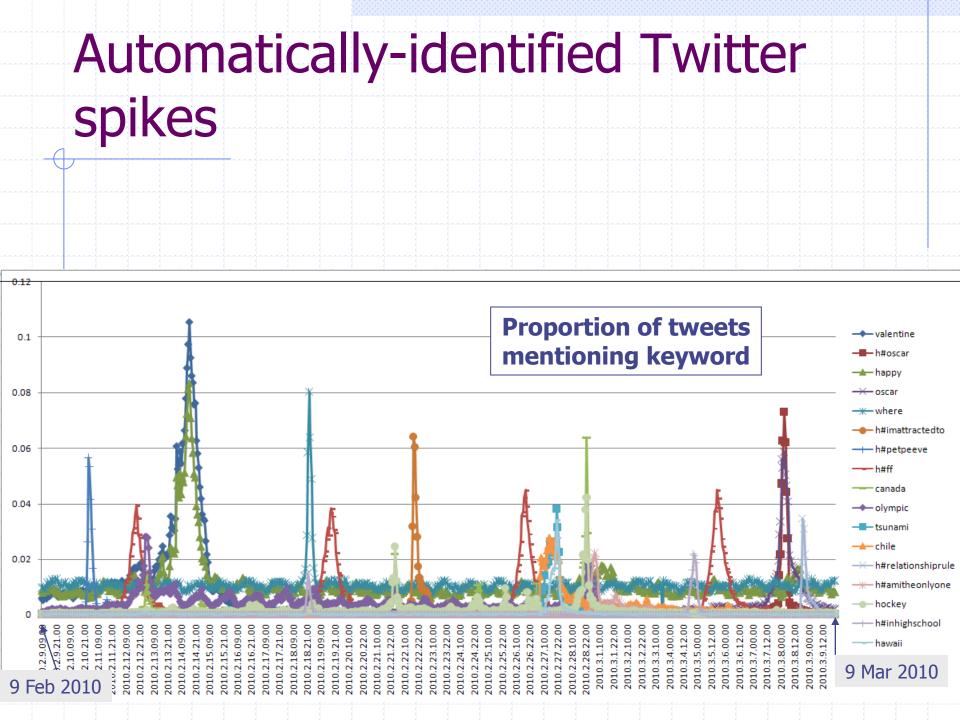
Collective Emotions in Cyberspace

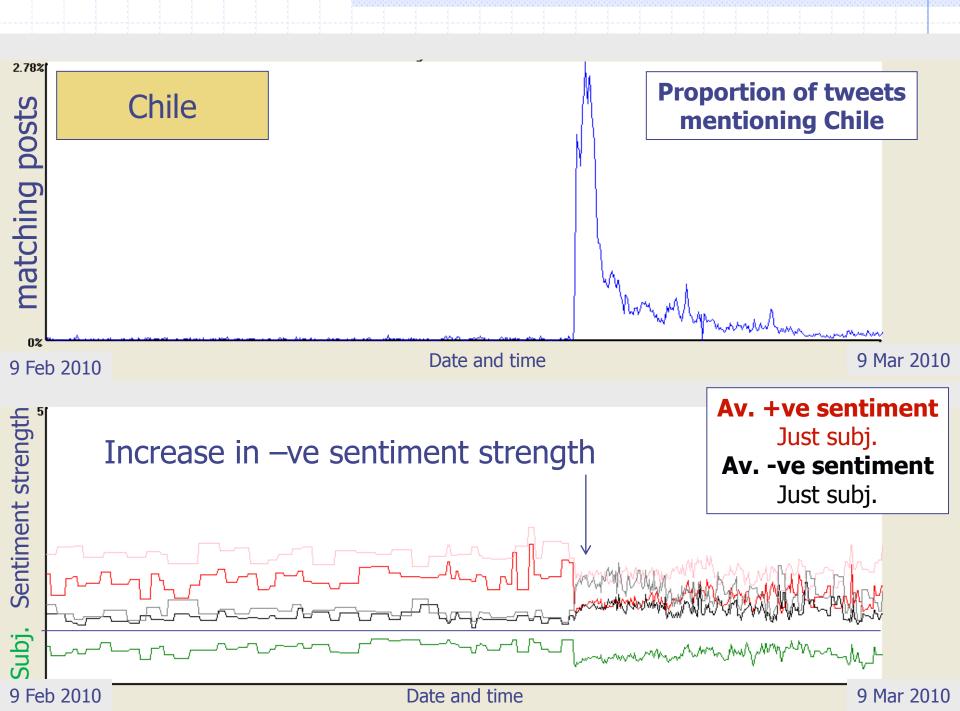
CYBEREMOTIONS = data gathering + complex systems methods + ICT outputs

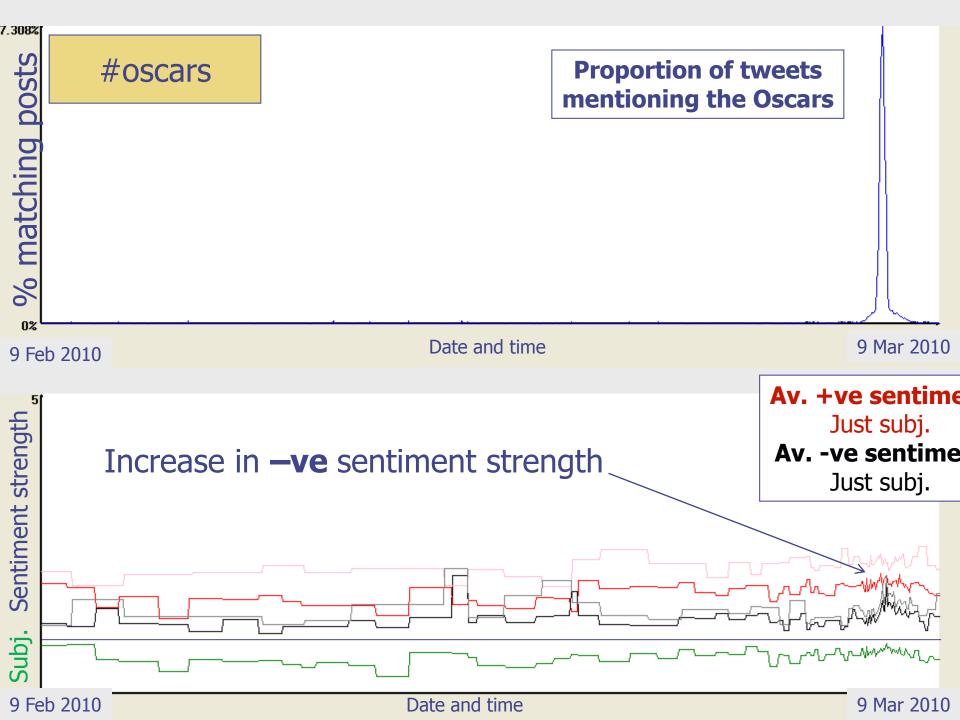
Application – sentiment in Twitter events

 Analysis of a corpus of 1 month of English Twitter posts
 Automatic detection of spikes (events)
 Sentiment strength classification of all posts
 Assessment of whether sentiment strength increases during important events

Thelwall, M., Buckley, K., & Paltoglou, G. (2011). <u>Sentiment in Twitter events</u>. *Journal of the American Society for Information Science and Technology*, 62(2), 406-418.



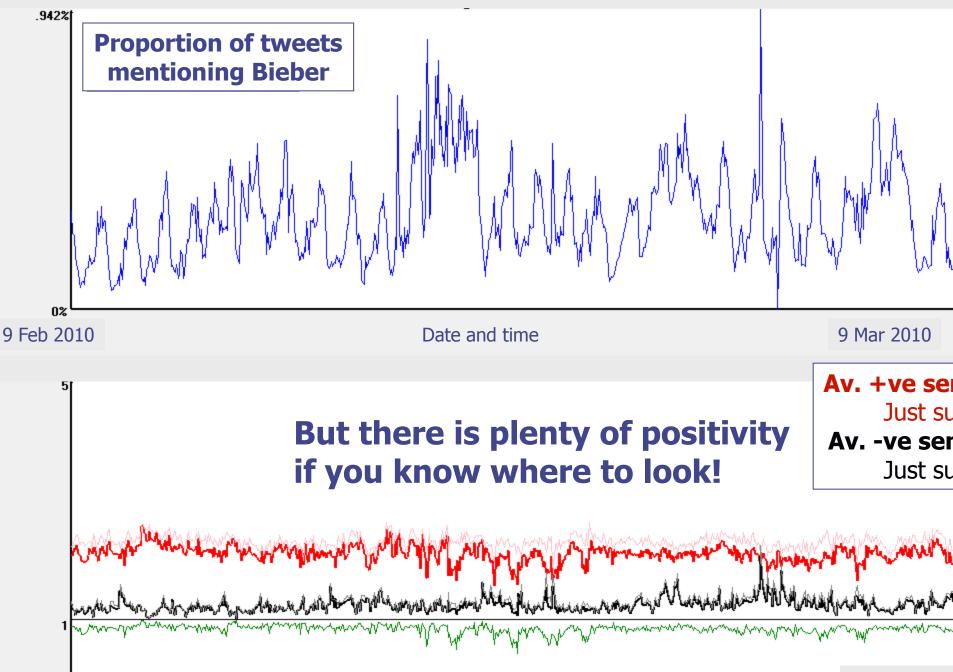




Sentiment and spikes

Analysis of top 30 spiking events Strong evidence (p=0.001) that higher volume hours have stronger negative sentiment than lower volume hours Insufficient evidence (p=0.014) that higher volume hours have different positive sentiment strength than lower volume hours

=> Spikes are typified by increases in *negativity*

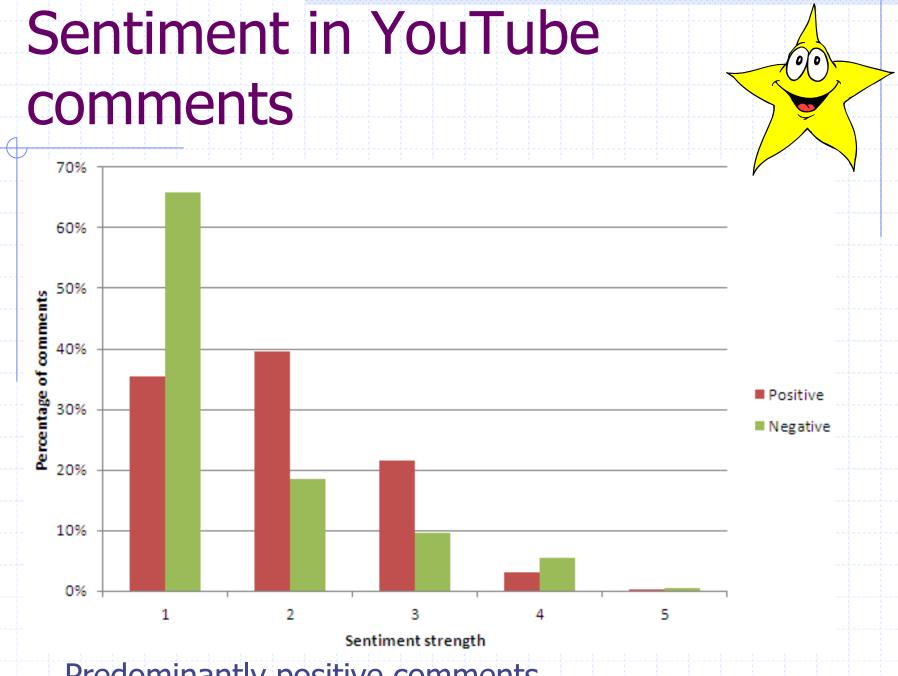


YouTube Video comments

Short text messages left for a video by viewers
 Up to 1000 per video accessible via the YouTube API
 A good source of social web text data

THAT'S RIGHT. BB UR AMAZING :D iTrolledABearOnce 19 minutes ago

Mike Thelwall Pardeep Sud Farida Vis (submitted) Commenting on YouTube Videos: From Guatemalan Rock to El Big Bang



Predominantly positive comments

Trends in YouTube comment sentiment

+ve and -ve sentiment strengths negatively correlated for videos (Spearman's rho -0.213) # comments on a video correlates with -ve sentiment strength (Spearman's rho 0.242, p=0.000) and negatively correlates with +ve sentiment strength (Spearman's rho -0.113) negativity drives commenting even though it is rare!

Qualitative: Big debates over religion
 No discussion about aging rock stars!

Conclusion

Automatic classification of sentiment strength is possible for the social web even unsupervised! ...not good for longer, political messages? Hard to get accuracy much over 60%? Can identify trends through automatic analysis of sentiment in millions of social web messages

CYBER**EMOTIONS**

Bibliography

Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., & Kappas, A. (2010). <u>Sentiment strength detection in</u> <u>short informal text</u>. *Journal of the American Society for Information Science and Technology*, 61(12), 2544–2558.

Thelwall, M., Buckley, K., & Paltoglou, G. (2011). <u>Sentiment in Twitter events</u>. *Journal of the American Society for Information Science and Technology*, 61(12), 2544–2558.