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Are these

positive or negative, and

what are the sentiment terms?

\V

#The Maxtor hard disk was very large

and cou
#The cell

d fit all of my data.

bhone was very large and could

not fit in my pocket.
#The horror movie was very frightening.
brakes were very frightening.

...-[

#The car

)




Two Issues
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1. Non-sentiment words may express clearly positive or
negative opinions in a particular context

= E.g., large (memory, screen), heavy (computer,
cellphone), long (travel time, film duration),
reliable (brakes), unpredictable (movie plot)

Non-sentiment words (and even some sentiment
words) vary in typical meaning according to context

= Typically positive words in horror movie reviews

+ Frightening, scary, unexpected, entertaining, Depp(?), good, excellent,
recommend e

= Typically positive words in family car reviews <o

+ Reliable, economical, roomy, large, strong, Honda(?), good, cheap

+ What could be typically negative words in these contexts?



N

vary by d

Domain dependence

#The polarity and strength of words may

omain

#®This is ty

nically opinion or judgement

words rather than direct sentiment

words — e.q.,

horror movie review, but negative for a car

\w‘g/ s "frightening” is typically positive for a

review

= large” is typically positive for hard disk
reviews, negative for cellphones




Domain context dependence
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#The polarity and strength of words may
also vary by context within a domain,
€.g.,

| = “large” is typically positive for a cellphone
screen but negative for cellphone size

= 'cheap” may be positive for a car overall

~ but negative for the seats (or individual
SO0 harts)

= Any other examples??
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Domain dependence — implications

for sentiment analysis
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# Generic sentiment algorithms will miss
some domain-specific expressions

# Domain-specific algorithms can
therefore be more accurate

# But domain-specific algorithms need
domain-specific training data — often
time consuming and difficult to produce




Cross-domain sentiment analysis
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#Domain transfer is the problem of
taking a sentiment classifier trained on
one domain and adapting it to work on
another domain

#\Why not train a new classifier on the
new domain?

= Because of the problem creating training
data

» Especially if many new domains need
sentiment classifiers
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Cross domain A -> B: 5 methods
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1. Train classifier on A, apply to B (no domain transfer)

2. Use ensembles of classifiers trained on different
domain As

3. Train classifier on A, classify texts in B with the
classification of texts in A that they are most similar
to (e.g., TF-IDF)

4. Train classifier on A, annotate texts in B with the

classification of texts in A that they are most similar
to (e.qg., TF-IDF) & retrain classifier on A & B

5. Train a classifier for B on the data from A but with
only features found in B




f How should the B be classified?
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/Summary ! % =

# Domain-specific sentiment analysis can
be more accurate than general
sentiment analysis

m Especially for product reviews

# Domain-specific algorithms can be
difficult to create due to the need for
large gold standard text collections

# Cross-domain methods make it easier to
generate domain-specific algorithms
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