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Graph mining
Introduction

Social Media→ social presence, social interactions
graph G=G(V,E),

V is the set of vertices, or nodes,
E is the set of edges (edges may have weights)
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Graph mining
Example

‘user � user’ graphs on the base of social interactions (e.g.
friendship, communications: sharing, commenting)
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Graph mining
Example

‘user � properties’ bipartite graphs
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Graph mining
Example: Wikipedia

Social interactions on Wikipedia [Laniado et al., 2011]
hidden side of Wikipedia

article talk pages→ explicit coordination and discussion
user talk pages→ personal communications (sort of public inbox)

Article Barack Obama:
discussion split into 72 pages
22 000 comments in the article talk pages (17 500 edits done to the article)

(c) article page (d) discussion page
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Graph mining
Example: Wikipedia graphs construction

article reply network→
direct replies in articles
discussion pages.

Discussion:
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . user A(talk)

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . user B(talk)

Discussion:
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . user C(talk)

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . user B(talk)

C

B

A

article reply network

Article 1

Article 2

user reply network→ direct
replies in user talk pages.

wall network→ personal
messages posted on another
user’s talk page.

User talk: User A
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . user C(talk)

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . user B(talk)

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . user A(talk) C

A

B

C

A

B

usertalk networkwall network
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Graph mining
Example: Wikipedia graphs intersection

Jaccard coefficient of the overlap between the networks

Cjaccard =
|E1 ∩ E2|
|E1 ∪ E2|

· max(|E1|, |E2|)
min(|E1|, |E2|)

,

normalized to have a result in the interval [0,1]

article-NW talk-NW wall-NW
article-NW 1 0.11 0.09
talk-NW 0.11 1 0.35
wall-NW 0.09 0.35 1
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Graph mining
Adjacency matrix

Matrix analysis
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Graph mining
Adjacency matrix

to represent a graph: Adjacency matrix

A = {ai,j | ai,j = wi,j iff i → j};

example from [Langville and Meyer, 2004]
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Graph mining
What to measure?

local characteristics: in- and out-degrees, weighted degrees;
global characteristics: PageRank and modifications;

PR(i) = c
∑
j→i

1
dj

PR(j) +
1− c

N
.

stationary distribution of an ‘easily-bored-surfer ’ random walk on a
graph

V. Gorovoy & Y. Volkovich (Yandex & BM) SocM: RuSSIR/EDBT 2011 Summer School August, 15-19 2011 12 / 46



Graph mining
Power law

Power law
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Graph mining
Quiz (1)
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Graph mining
Quiz (2)
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Graph mining
Power law

What is the difference?

V. Gorovoy & Y. Volkovich (Yandex & BM) SocM: RuSSIR/EDBT 2011 Summer School August, 15-19 2011 16 / 46



Graph mining
Power law

Power law is a special family of distributions:
human heights, speed a car;
city population, # books sold, diameters of moon craters.
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Graph mining
Power law

random variable X has a power law distribution with exponent α:

P(X > x) ∼ x−α as x →∞;

Pareto principle: for many events roughly 80% of the effects
come from 20% of the causes;
α between 1 and 2: finite mean, infinite variance.
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Power law
Log-log plot

straight line on log-log plot:

P(X > x) ∼ x−α → log(P(X > x)) ∼ −α log(x)

plot cumulative distribution function rather than histogram

P(X > x) ∼ x−α → P(X = x) ∼ x−(α+1)

example from [Newman, 2004]
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Power law
Log-log plot: examples

Figure: (a) Numbers of occurrences of words in the novel Moby Dick by
Hermann Melville; (b) Numbers of citations to scientific papers published in
1981 until June 1997; (d) Numbers of copies of bestselling books sold in the
US between 1895 and 1965; (e) Number of calls received by AT&T telephone
customers in the US for a single day;
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Power law
Log-log plot: examples

The number of discussion chains (A→B→A) per discussion page in
Wikipedia [Laniado et al., 2011]
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Power law
Log-log plot: examples

The number of followings (solid line) and that of followers (dotted line)
on Twitter [Kwak et al., 2010].
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Graph mining
Preferential attachment

preferential attachment models: ‘rich gets richer’ approach
directed and undirected versions [Barabasi and Albert,
1999][de Solla Price, 1976]
growing network:

time 1: m nodes;
time t: add new node [t + m] and link it to m old nodes;

P([t + m]→ [i]) ∼ in-degree([i]) + 1
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Graph mining
Correlations

correlation coefficient:

corr(X ,Y ) =
E[(X − E(X ))(Y − E(Y ))]

σXσY
,

where σX and σY standard deviations.
if αX , αY ∈ (1,2), then σX and σY do not exist.
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Graph mining
Correlations

Angular Measure [Resnick, 2007],[Volkovich et al., 2008]:
to measure extremal dependencies between power-law distributed
parameters X and Y ;
rank transformation:

{(Xj ,Yj ),1 ≤ j ≤ n} → {(rX
j , r

Y
j ),1 ≤ j ≤ n},

where rX
j and rY

j are the descending ranks of Xj in (X1, . . . ,Xn) and
Yj in (Y1, . . . ,Yn) respectively.
polar coordinate transformation:

POLAR

(
k
rX
j
,

k
rY
j

)
= (Rj,k ,Θj,k ),

where POLAR(x , y) =
(√

x2 + y2,arctan(y/x)
)
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Graph mining
Correlations (cont.)

empirical distribution of Θ for the k largest values of R:
Dependence: measure is concentrated around π/4;
Independence: measure is concentrated around 0 and π/2
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Graph mining
Diameter

Diameter
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Graph mining
Diameter

diameter is the “longest shortest path”
effective diameter is the distance at which 90% of nodes can be
reached.
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Graph mining
Small-world effect

Many real graphs display small diameter
‘6 degrees of separation’ [Travers and Milgram, 1969],[Dodds
et al., 2003]
smallworld.sandbox.yahoo.com

Shrinking diameter [Leskovec et al., 2005].
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Assortativity
Assortativity

Assortativity
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Assortativity
Assortativity

Mixing coefficient, or degree correlation, r allows to detect
whether highly connected nodes preferentially link to other highly
connected node [Newman, 2002]:

r =

M−1
∑
e∈E

ieje −

(
M−1

∑
e∈E

1
2

(ie + je)

)2

M−1
∑
e∈E

i2e j2e −

(
M−1

∑
e∈E

1
2

(ie + je)

)2 ,

where ie and je are the degrees at the beginning and the end of
edge e, E is the set of edges in the network and M its cardinality.
Assortative mixing (r > 0) is present in many social networks;
Dissortative mixing (r < 0) is present in food webs or in the
Internet.
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Assortativity
Directed assortativity

Directed assortativity:
Correlation between in and out degree of source and target
nodes Foster et al. [2010]
(α, β) ∈ {in,out} → degree types of (source, target)

r(α, β) =
E−1∑

e[(iαe − īα) ∗ (jβe − j̄β)]

σασβ

E → number of edges
īα = E−1∑

e iαe
σα =

√
E−1

∑
(iαe − ¯iα)2
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Directed assortativity profiles
Comparison of the directed Assortativity Significance Profile

Where ASP score is not significant ( |Z | < 2), the corresponding ASP is
marked with an appropriate symbol at the figure bottoms.
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Influence propagation
Introduction

Influence propagation
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Influence propagation
Introduction

Influence propagation:
Spread of information (rumors);
Model interest or trust;
Innovation adoption;
Expert finding;
Social search and recommendations;
Viral marketing (or “influence maximization”): Find a small
subset of nodes in a social network that could maximize the
spread of influences;
etc.
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Information propagation
Hotmail example

Add message “Get your free email at Hotmail” at the end of
each sent email.
jul. 1996: Hotmail.com launched
aug. 1996: 20 000 subscribers
dec. 1996: 100 000 subscribers
jan. 1997: 1 million subscribers
jul. 1998: 12 million subscribers
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Influence propagation
Models

Epidemiological models:
SIR-model: good model for Mumps;
SIS-model: good model for regular cold;

(S (for susceptible),I (for infectious) and R (for recovered))
[Kempe et al., 2003] “Maximizing the spread of influence through
a social network”.

IC Independent Cascade model
LT Linear Threshold model
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Influence propagation
SIR-models

initially: all nodes are in susceptible (S) state
one node in the infectious (I) state;
each time step

(1) I nodes attempt to infect their susceptible neighbors
with probability β

(2) I nodes enter to the recovered (R) state (can not be
infected again).
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Influence propagation
SIS-models

all nodes are initially in susceptible (S) state, except for one node
in the infectious (I) state;
each time step

(1) I nodes attempt to infect their susceptible neighbors
with probability β

(2) I nodes return to the susceptible state with probability
λ or remain infected with probability (1− λ).
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Influence propagation
Independent Cascade (IC) model

Independent Cascade (IC) model
links have associated probability;
when node v becomes active, it has a single chance of activating
each of currently inactive neighbor w ;
the activation attempt succeeds with probability pv ,w .
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Influence propagation
Linear Threshold (LT) model

Linear Threshold (LT) model
node v has random threshold Θv ∈ [0,1];
node v is influenced by each neighbor w according to weight bv ,w
such that ∑

w is a neighbor of v

bv ,w ≤ 1

node v becomes active when at least (weighted) Θv fraction of its
neighbors are active ∑

w is a neighbor of v

bv ,w ≥ Θv
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Influence propagation
Influence Maximization Problem

Influence Maximization Problem:
f(S) is influence of set of nodes S: the expected number of active
nodes at the end of propagation, if set S is the initial active set.
Problem: Given a parameter k (budget), find a k -nodes set S to
maximize f (S).
NP-hard optimization problem for both IC and LT models;
Greedy Algorithm: every round add node v∗ into S such that v∗

and S maximize the influence spread of f .
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Questions
Questions
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