An Introduction to Social Mining

Vladimir Gorovoy* and Yana Volkovich†

^T@vvolkovich Barcelona Media, Information, Technology & Society Group Barcelona, Spain

> @vgorovoy Yandex, Yandex. Uslugi Saint Petersburg, Russia

August, 15-19 2011

Outline

- Graph mining
 - Graph construction
 - Matrix analysis
 - Power law
 - Small-world effect
 - Assortativity
- 2 Influence propagation

- Social Media → social presence, social interactions
- graph G=G(V,E),
 - V is the set of vertices, or nodes,
 - E is the set of edges (edges may have weights)

Example

'user \rightleftharpoons user' graphs on the base of social interactions (e.g. friendship, communications: sharing, commenting)

Example

'user \rightleftharpoons user' graphs on the base of social interactions (e.g. friendship, communications: sharing, commenting)

Example: Wikipedia

- Social interactions on Wikipedia [Laniado et al., 2011]
- hidden side of Wikipedia
 - article talk pages → explicit coordination and discussion
 - user talk pages → personal communications (sort of *public inbox*)
- Article Barack Obama:
 - discussion split into 72 pages
 - 22 000 comments in the article talk pages (17 500 edits done to the article)

(c) article page

(d) discussion page

Example: Wikipedia graphs construction

■ article reply network → direct replies in articles discussion pages.

- user reply network → direct replies in user talk pages.
- wall network → personal messages posted on another user's talk page.

Example: Wikipedia graphs intersection

Jaccard coefficient of the overlap between the networks

$$C_{jaccard} = \frac{|E_1 \cap E_2|}{|E_1 \cup E_2|} \cdot \frac{\max(|E_1|, |E_2|)}{\min(|E_1|, |E_2|)},$$

normalized to have a result in the interval [0,1]

	article-NW	talk-NW	wall-NW
article-NW	1	0.11	0.09
talk-NW	0.11	1	0.35
wall-NW	0.09	0.35	1

Adjacency matrix

Matrix analysis

Adjacency matrix

to represent a graph: Adjacency matrix

$$A = \{a_{i,j} | a_{i,j} = w_{i,j} \text{ iff } i \rightarrow j\};$$

example from [Langville and Meyer, 2004]

What to measure?

- local characteristics: in- and out-degrees, weighted degrees;
- global characteristics: PageRank and modifications;

$$PR(i) = c \sum_{j \to i} \frac{1}{d_j} PR(j) + \frac{1-c}{N}.$$

 stationary distribution of an 'easily-bored-surfer' random walk on a graph

Power law

Power law

Quiz (2)

Power law

What is the difference?

Power law

- Power law is a special family of distributions:
 - human heights, speed a car;
 - city population, # books sold, diameters of moon craters.

• random variable X has a **power law distribution** with exponent α :

$$\mathbb{P}(X > x) \sim x^{-\alpha} \text{ as } x \to \infty;$$

- Pareto principle: for many events roughly 80% of the effects come from 20% of the causes:
- α between 1 and 2: finite mean, infinite variance.

Log-log plot

straight line on log-log plot:

$$\mathbb{P}(X > x) \sim x^{-\alpha} \rightarrow \log(\mathbb{P}(X > x)) \sim -\alpha \log(x)$$

plot cumulative distribution function rather than histogram

$$\mathbb{P}(X > X) \sim X^{-\alpha} \rightarrow \mathbb{P}(X = X) \sim X^{-(\alpha+1)}$$

example from [Newman, 2004]

Log-log plot: examples

Figure: (a) Numbers of occurrences of words in the novel Moby Dick by Hermann Melville; (b) Numbers of citations to scientific papers published in 1981 until June 1997; (d) Numbers of copies of bestselling books sold in the US between 1895 and 1965; (e) Number of calls received by AT&T telephone customers in the US for a single day:

Log-log plot: examples

The number of discussion chains $(A \rightarrow B \rightarrow A)$ per discussion page in Wikipedia [Laniado et al., 2011]

Log-log plot: examples

The number of followings (solid line) and that of followers (dotted line) on Twitter [Kwak et al., 2010].

Preferential attachment

- preferential attachment models: 'rich gets richer' approach
- directed and undirected versions [Barabasi and Albert, 1999][de Solla Price, 1976]
- growing network:
 - **time 1:** *m* nodes:
 - **time t**: add new node [t + m] and link it to m old nodes;

$$\mathbb{P}([t+m] \to [i]) \sim \text{in-degree}([i]) + 1$$

August, 15-19 2011

Correlations

correlation coefficient:

$$\operatorname{corr}(X,Y) = \frac{\mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))]}{\sigma_X \sigma_Y},$$

where σ_X and σ_Y standard deviations.

• if α_X , $\alpha_Y \in (1,2)$, then σ_X and σ_Y do not exist.

Correlations

- Angular Measure [Resnick, 2007],[Volkovich et al., 2008]:
 - to measure extremal dependencies between power-law distributed parameters X and Y;
 - rank transformation:

$$\{(X_j, Y_j), 1 \le j \le n\} \to \{(r_j^X, r_j^Y), 1 \le j \le n\},\$$

where r_i^X and r_i^Y are the descending ranks of X_i in (X_1, \dots, X_n) and Y_i in (Y_1, \ldots, Y_n) respectively.

polar coordinate transformation:

POLAR
$$\left(\frac{k}{r_j^X}, \frac{k}{r_j^Y}\right) = (R_{j,k}, \Theta_{j,k}),$$

where
$$POLAR(x, y) = (\sqrt{x^2 + y^2}, arctan(y/x))$$

Correlations (cont.)

empirical distribution of Θ for the k largest values of R:
Dependence: measure is concentrated around π/4;
Independence: measure is concentrated around 0 and π/2

Diameter

Graph mining Diameter

- diameter is the "longest shortest path"
- effective diameter is the distance at which 90% of nodes can be reached.

Graph mining Small-world effect

- Many real graphs display small diameter
- '6 degrees of separation' [Travers and Milgram, 1969], [Dodds] et al., 2003]
- smallworld.sandbox.yahoo.com

Shrinking diameter [Leskovec et al., 2005].

Assortativity

Assortativity

Assortativity

Assortativity

Assortativity

Mixing coefficient, or degree correlation, r allows to detect whether highly connected nodes preferentially link to other highly connected node [Newman, 2002]:

$$r = \frac{M^{-1} \sum_{e \in E} i_e j_e - \left(M^{-1} \sum_{e \in E} \frac{1}{2} (i_e + j_e)\right)^2}{M^{-1} \sum_{e \in E} i_e^2 j_e^2 - \left(M^{-1} \sum_{e \in E} \frac{1}{2} (i_e + j_e)\right)^2},$$

where i_e and j_e are the degrees at the beginning and the end of edge e, E is the set of edges in the network and M its cardinality.

- **Assortative mixing** (r > 0) is present in many social networks;
- **Dissortative mixing** (r < 0) is present in food webs or in the RUSSIR Internet.

Assortativity

Directed assortativity

- Directed assortativity:
- Correlation between in and out degree of source and target nodes Foster et al. [2010]
- $(\alpha, \beta) \in \{in, out\} \rightarrow degree types of (source, target)$

$$r(\alpha,\beta) = \frac{E^{-1} \sum_{\mathbf{e}} [(i_{\mathbf{e}}^{\alpha} - \bar{i}^{\alpha}) * (j_{\mathbf{e}}^{\beta} - \bar{j}^{\beta})]}{\sigma^{\alpha} \sigma^{\beta}}$$

- E → number of edges
- $i^{\bar{\alpha}} = E^{-1} \sum_{e} i_{e}^{\alpha}$
- $\sigma^{\alpha} = \sqrt{E^{-1} \sum (i_e^{\alpha} i_e^{\alpha})^2}$

August. 15-19 2011

Directed assortativity profiles

Comparison of the directed Assortativity Significance Profile

Where ASP score is not significant (|Z| < 2), the corresponding ASP marked with an appropriate symbol at the figure bottoms.

Influence propagation

Influence propagation:

- Spread of information (rumors);
- Model interest or trust:
- Innovation adoption;
- Expert finding;
- Social search and recommendations:
- Viral marketing (or "influence maximization"): Find a small subset of nodes in a social network that could maximize the spread of influences;
- etc.

Information propagation

Hotmail example

- Add message "Get your free email at Hotmail" at the end of each sent email.
- jul. 1996: Hotmail.com launched aug. 1996: 20 000 subscribers dec. 1996: 100 000 subscribers jan. 1997: 1 million subscribers jul. 1998: 12 million subscribers

Influence propagation Models

- Epidemiological models:
 - **SIR-model**: good model for Mumps;
 - **SIS-model**: good model for regular cold;

(S (for susceptible), I (for infectious) and R (for recovered))

- [Kempe et al., 2003] "Maximizing the spread of influence through a social network".
 - IC Independent Cascade model
 - LT Linear Threshold model

Influence propagation SIR-models

- initially: all nodes are in susceptible (S) state one node in the **infectious** (I) state;
- each time step
 - (1) I nodes attempt to infect their susceptible neighbors with probability β
 - (2) I nodes enter to the **recovered** (R) state (can not be infected again).

August, 15-19 2011

SIS-models

- all nodes are initially in susceptible (S) state, except for one node in the *infectious* (I) state;
- each time step
 - (1) I nodes attempt to infect their susceptible neighbors with probability β
 - (2) I nodes return to the susceptible state with probability λ or remain infected with probability $(1 - \lambda)$.

Independent Cascade (IC) model

Independent Cascade (IC) model

- links have associated probability;
- when node v becomes active, it has a single chance of activating each of currently inactive neighbor w;
- the activation attempt succeeds with probability $p_{\nu,w}$.

Linear Threshold (LT) model

Linear Threshold (LT) model

- node v has random threshold $\Theta_v \in [0, 1]$;
- node v is influenced by each neighbor w according to weight b_{v,w} such that

$$\sum_{w \; is \; a \; neighbor \; of \; v} b_{v,w} \leq 1$$

• node v becomes active when at least (weighted) Θ_v fraction of its neighbors are active

$$\sum_{ extit{w is a neighbor of } v} b_{v,w} \geq \Theta_v$$

Influence Maximization Problem

Influence Maximization Problem:

- f(S) is *influence* of set of nodes S: the expected number of active nodes at the end of propagation, if set S is the initial active set.
- Problem: Given a parameter k (budget), find a k-nodes set S to maximize f(S).
- NP-hard optimization problem for both IC and LT models;
- Greedy Algorithm: every round add node v* into S such that v* and S maximize the influence spread of f.

```
\label{eq:local_state} \begin{split} & \overline{\textbf{Algorithm 1 Greedy}} \\ & \overline{\textbf{Input: } G, k, \sigma_m} \\ & \overline{\textbf{Output: seed set } S} \\ & 1: S \leftarrow \emptyset \\ & 2: \text{ while } |S| < k \text{ do} \\ & 3: \quad \text{select } u = \text{arg } \max_{w \in V \setminus S} (\sigma_m(S \cup \{w\}) - \sigma_m(S)) \\ & 4: \quad S \leftarrow S \cup \{u\} \end{split}
```


Questions

Questions

Bibliography I

- A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509, 1999.
- D. de Solla Price. A general theory of bibliometric and other cumulative advantage processes. J. Amer. Soci. Inform. Science, 27(5): 292–306, 1976,
- P. Dodds, R. Muhamad, and D. Watts. An experimental study of search in global social networks. *Science*, 301(5634):827, 2003.
- J. G. Foster, D. V. Foster, P. Grassberger, and M. Paczuski. Edge direction and the structure of networks. Proceedings of the National Academy of Sciences, 107(24):10815-10820, 2010. URL http://dx.doi.org/10.1073/pnas.0912671107.
- D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '03, New York, NY, USA, 2003. ACM.

Bibliography II

- H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a news media? In Proceedings of the 19th international conference on World wide web, pages 591-600. ACM, 2010.
- A. N. Langville and C. D. Meyer. Deeper inside PageRank. *Internet* Mathematics, 1:2004, 2004.
- D. Laniado, R. Tasso, Y. Volkovich, and A. Kaltenbrunner. When the wikipedians talk: network and tree structure of wikipedia discussion pages. 2011.
- J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws, shrinking diameters and possible explanations. In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pages 177-187. ACM, 2005.
- M. E. J. Newman. Assortative mixing in networks. *Phys. Rev. Lett.*, 89 (20):208701, Oct 2002. doi: 10.1103/PhysRevLett.89.208701.

Bibliography III

- M. E. J. Newman. Power laws, pareto distributions and zipf's law. *Arxiv* preprint cond-mat/0412004, 2004.
- S. I. Resnick. Heavy-tail phenomena: probabilistic and statistical modeling, volume 10. Springer Verlag, 2007.
- J. Travers and S. Milgram. An experimental study of the small world problem. Sociometry, 32(4):425–443, 1969.
- Y. Volkovich, N. Litvak, and B. Zwart. Measuring extremal dependencies in web graphs. In Proceedings of the 17th international conference on World Wide Web, WWW '08, pages 1113-1114. ACM, 2008. ISBN 978-1-60558-085-2.

