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Summary of last lecture

 Semantics of top-k queries
— Items have score that are made up of components
— Components are aggregated using monotone aggregation

 Fundamental algorithms
— Use the inverted list indexing structure
— Have an access strategy and a stopping condition
— TA - instance-optimal over the class of reasonable algorithms
— NRA — useful when random access is expensive or impossible

» Generalizations and extensions
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Quote of the day

A city is oneness of the unlike. ~Aristotle

rOPOA - CAUHCTBO HCINOXoXux.
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Collaborative tagging sites

« Social content sites are cyber-cities!

« Collaborative tagging sites are a kind of social content sites
— Flickr, YouTube, Delicious, photo tagging in Facebook

 Users
— contribute content
« annotate items (photos, videos, URLs, ...) with tags
— form social networks
 friends/family, interest-based

— consume content
* browse own and other users’ items
* need help discovering relevant content
 Goal
— Personalize search and information discovery
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Outline

v Intro

« Semantics

» Personalized ranking functions
* Model and problem statement

 Fundamental indexing structures and algorithms

— EXACT
— Global Upper-Bound (GUB)
— gNRA and gTA

 Performance optimizations

— Cluster-Seekers
— Cluster-Taggers
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Why network-aware search?
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@ Result relevance depends on who is asking the query!
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Data model

Link (user u, user v) Tagged(user u,item i ,tag 1)

Roger, i1, music
Roger, i3, music

\ \\\\ Network (u) — Roger, i5, sports
N \‘.‘ % %\ {v|Link(uv)} Hugo, i1, music
N . ' Hugo, i22, music

Linda, i2, football
Linda, i28, news

\ o

\ \\~ \

‘| B —\\ ‘\ .... . .

% l \ % Minnie, i2, sports
ARG &

seeker taqqger

Seekers = I1

userLink

Taggers = 11

user 1agged

ttems (u) = L Lo (O ysor=y Ta9ged)
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Semantics of relevance

 The system may derive any number of networks
— Are they useful?
— Which of them are more useful than others?

« Goal: capture user interests based on social behavior
— Tagging: an implicit social tie
— Friendship: an explicit social tie

- Validation: modeling tagging patterns in Delicious [AAAI-SIP 2008]
— Is there over-all consensus on the tagging?
— Is my tagging similar to my that of my friends?
— |s my tagging similar to that of people who use the same tags as | do?
— |s my tagging similar to that of people who tag the same items as | do?
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Quantifying agreement between users

Let’s forget about top-k for a second
— Consider jitems(u) and items(v) as sets

Directed

‘items(u) M items(v)‘ agr(u,v) = agr(v,u)

agriu.y) = items(u)

Undirected (Jaccard similarity)

\ztems(u) N ltems(v)\ agr(uy) = agr(v.u)

agr(u,v) = ,
griuy) \items(u)Ultems(V)\

Many other options, we will focus on these two for simplicity
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Take 1: no need for personalization

Global top-10
ﬁnnk URL Votes\ ltems(Aawa)

1 google.com 980 URL Tag
2 facebook.com 820 ] ]
3 iTunes.com 729 Jars.com java
4 twitter com 790 java.sun.com Java
5 jonasbrothers.com 680 techcrunch.com news
6 cnn.com 678 Kdevshed. com tutorial
7 amazon.com 620
8 yahoo.com 525
9 youtube.com 524
w techcrunch.com 492/ Items(Mawa)
/URL Tag \
Quality: coverage (Global top-10) = 3% bbc.co.uk news
pbs.org news
. . tomwaits.com music
Applicability: scope (G1obal top-10) = 100% nick-cave.com  music
\loureed.com music /
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Take 2: account for tags only

Intuition: if a user tags with “music” she is interested in music

Top-10 for “music” Top-10 for “news”

Items(Mawa) ﬁnnk URL Votes\ @nk URL vgteh

URL Tag 1 iTunes.com 542 y chn.com 610
2 eMusic.com 420 2 bbe.co.uk 503
bbc.co.uk news 3 pandora.com 350 3 nor o rg. 427
pbs.org news 4 thebeatles.com 330 4 nyt/:mes com 414

tomwaits.com  music 5 jonasbrothers.com 215 '
. . 5 slashdot.org 392

nick-cave.com music 6 madonna.com 175
loureed.com music 7 rhapsody.com 148 6 reuters.com 330
NG ) psoay. 7 news.cnet.com 290
g ltOI‘;‘;WéiltS.COM ;gg 8 msnbc.msn.com 250
0 :S m.com 107 9 news.yahoo.com 180
K eyonce.com / w digg.com 149/

1 tag coverage = 10% scope = 32%

2 tags coverage = 14% scope = 14%

3 tags coverage = 18% scope = 6%
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Take 2: what’s the problem?
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Take 3: account for items only

Intuition: interests of users who tag similar items are similar

Items(Mawa) . .
Items(AHs1) - ~ \ztems( u) M ztems(v)\
URL Tag agr(u,v) = :
KJRL Tag\ \ltems(u)\
bbc.co.uk news
bbc.co.uk news pbs.org news Link (u, v, agr)
pbs.org news tomwaits.com music
nytimes.com news nick-cave.com music / \
nirvana.com  music \nirvana.com music / AHs, Mawa, 3/8
metallica.com music Mawa, AHs1, 3/5
acdc.com music Items(BaHs) Bans, Qawa, 1/2
jars.com work [Hawa, Bans, 1
\I‘GChCFUHCh-ComWWk / KJRL Tag\ AHs, BaHs, 1/4
. BaHs, AHs, 1/4
jars.com wor AHs, Jawa, 1/4
- ltems(Hawa) ~ java.sun.com WO”; Hawa, AHsa, 1/2
techcrunch.com WOl \ /
URL Tag devshed.com work
, , web2expo.com  WOrk
jars.com java technoraticom  Work
java.sun.com java javablogs.lco m  work coverage up to 85%
ngecfsc,fgg_i’g;"m nows \ renitli.i pay but scope very low, about 1%
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Other options?

Take 4:account for tags and items
— Intuition: multiple interests per user, overlap in items per tag

coverage up to 82%
scope up to 7%

Take 5: account for friendship
— Intuition: interests of users a similar to those of their friends

coverage = 43%
scope = 31%

Social behavior (friendship and tagging) is reflective of a user’s interests.
That is, network-aware search makes sense.
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Recall the data model

Link (user u, user v) Tagged(user u,item i ,tag 1)

Roger, i1, music
Roger, i3, music

\ \\\\ Network (u) — Roger, i5, sports
N \‘.‘ % %\ {v|Link(uv)} Hugo, i1, music
N . ' Hugo, i22, music

Linda, i2, football
Linda, i28, news

\ S

\ \\~ \

‘| h TN ‘\ . .

% l \ % Minnie, i2, sports
ARG &

seeker tagqger

Seekers = I y Link Taggers = Hu Tagged
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Problem statement

A query is a set of tags [VLDB 2008]
Q={t, t, .., t}

* Foraseekeru,atagt, and aitem
score(i, u, t) = | Network(u) N {v :Tagged(v, i, t)} |

score(i, u, Q) = score(i, u, t,) + score(i, u, t,) + .. + score(i, u, t.)

Given a query Q issued by a seeker u, we wish to efficiently
determine the top k items, i.e., the k items with highest over-all score.
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Outline

v Intro

v Semantics
v Personalized ranking functions
v' Model and problem statement

 Fundamental indexing structures and algorithms

— EXACT
— Global Upper-Bound (GUB)
— gNRA and gTA

 Performance optimizations

— Cluster-Seekers
— Cluster-Taggers
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Recall standard top-k algorithms

Q={t,t, ..., t} ; score(i, Q) = score(i, t,) + score(i, t,) + ... + score(i, t )

Indexing: per-tag inverted lists, each sorted on score

[PODS 2001]
The NRA algorithm (no random access)
— access all lists sequentially, in parallel
— maintain a heap sorted on partial scores
— stop when score of k" item > sum of current list scores
O ) ) it
item score item score :e.m score K=1
- i5 99 15 128 -
=/ SR 2
i4 27 i1 78 i1 30
2 25 i7 73
i3 23 8 72 top-K heap
i7 15 4 9
, i3 . oy
913 ) —_ Stopping condition: 128 > 29 + 80
tag = shoes tag = shopping
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Naive solution: EXACT

« Maintain single inverted list per (seeker, tag), items
ordered by score

+ can use standard top-k algorithms
-- high space overhead

Conservative example:
—100K users, 1M items, 1K tags
—20 tags/item from 5% of the taggers
—10 bytes per inverted list entry
—1 Terabyte of storage!

Don't try this at home!

tag = sh
a s./oes

. . )
item score item score

» i5 99

i8 gg i2 80

i4 27 8 78

2 25 i7 79

i3 23 i1 72
550 i6 63

i7 15 i4 60
o 13 J\B %

seeker [Jawa seeker AHS

tag = shopping

item score item score

» 73 i5 53

> 65 9 36

i3 62 i2 30

i4 40 || 6 15

i5 39 i1 14

i6 18 ig 10

i7 16 i7 72

- i3
816 J\ J

seeker [lawa seeker AHs
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Exact scores vs. score upper-bounds

EXACT: 1 list per (seeker, tag)  Global Upper-Bound (GUB): 1 list per tag

g’" exact SCO’D i/tem exact SCOf) @n taggers upper-bounh
i1 73 i5 53 i1 Miguel,... 73
i2 65 i9 36 o Kath, ... 65
i3 62 i2 30 i3 Sam, ... 62
i5 39 i1 14 i4 Peter, ... 40
i7 16 i7 10 i6 Mary, .. 18
i8 16 i3 5 i7 Miguel, ... 16
¢ AN Y, Q Kath, ... 16 /
seeker [Jawa seeker AHs1

both seekers

How do we do top-k Same as for EXACT,
processing with but stopping condition

\ | score upper-bounds? uses score upper-bounds
/g

('/V

0 ‘
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Top-k with score upper-bounds

score(i,u,t) = |Network(u) N {v | Tagged(v,i,t)}|

ub(i,t) = max

ucSeekers SCOIN e(i,u,t)

gNRA - “almost no random access” generalization of NRA

access all lists sequentially in parallel
when an item is under the cursor, evaluate its partial exact score
maintain a heap with partial exact scores

stop when partial exact score of k" item > sum of current list upper-
bounds

complete exact scores of top-k items on the heap using random accesses

gTA - generalization of TA
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Example: gTA with GUB vs. with EXACT

tag = shopping

7&9;8’?%8
. a4 )
item score item score
i1 30 i5 99

i8 29 i2 80

4 27 g 78

i2 25 i7 79

i3 23 i1 72

= % i6 63

- i4 60

i7 15 . 0
o 1 )8 J

seeker [Jawa seeker AHA

@

i5
i2
i8
i7
i1
i6
i4
i3

@m taggers UB \

99
80
78
75
72
63
60
50

s/

GUB

Q = “shoes shopping”
k=3
Top-3 for Jawa:

i1 103
i2 90
i3 85

Top-3 for AHs:

15 152
i2 110
i8 88

When can we stop for each
user with GUB?

When can we stop for each
user with EXACT?

7 N N
item score item score

i1 73 i5 53

> 65 9 36

i3 62 i2 30

i4 40 i6 15

i5 39 i1 14

i6 18 g 10

i7 16 i7 72

- i3
816 J\ J

seeker [lawa seeker AHs

@
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Performance of GUB and EXACT

« Evaluation on Delicious, 1 month worth of data
— 6 queries, 30 seekers per query, common interest network

» Space overhead: total # number of entries in all inverted lists

* Query processing time: # of cursor moves

Social top-k @ Joint RuSSIR/EDBT Summer School 2011
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Outline

v Intro

v Semantics
v Personalized ranking functions
v' Model and problem statement

v Fundamental indexing structures and algorithms
v EXACT
v' Global Upper-Bound (GUB)
v gNRA and gTA

 Performance optimizations

— Cluster-Seekers
— Cluster-Taggers
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Clustering seekers

Global Upper-Bound
ub(i,t) = max s ....Score(i,u,t)

* Problem: upper-bound order differs from exact score order
for most users

— I.e. items that are most popular globally may not be most popular
among particular networks for users (as we saw in Part 2 of the
class)

@ Idea: cluster seekers based on network overlap
— score of an item for a seeker depends on the network

— if two seekers have overlapping networks -- they will have similar
scores for many of the items
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Seekers: network overlap

— :
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Clustering methods

« Clustered seekers independently for each tag
* Fix the number of clusters

« Use Graclus software package (University of Texas)

« Random (RND): assign a seeker to a random cluster

* Ratio Association (ASC): maximize edge density inside clusters
 Normalized Cut (NCT): minimize edge-density across clusters

Mike \
\/_jne —

Ann

Lee

Lea —

N

:

LUC

Jack

~~— Mary

Pete

Social top-k @ Joint RuSSIR/EDBT Summer School 2011

64



Cluster-Seekers: space

Space Overhead of Clustering Seekers (LOG SCALE)
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Cluster-Seekers: time

» Cluster-Seekers improves execution time over GUB by at
least an order of magnitude, for all queries and all users

— Inverted lists are shorter

— Score upper-bound order similar to exact score order for many
users

« Average improvement between 38-87%
— Depends on the clustering method and on the number of clusters

— Interestingly, normalized cut (NCT) has better space utilization,
but ratio association (ASC) improves run-time performance more

— Improvement even for a random clustering, why?
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Clustering taggers: item overlap

item taggers UB item taggers UB item taggers UB
prada ... 2 puma 3 nike 4
louisv ucci 3 ; ..
puma - 4 gdidas e 2 d'e,f e;l( g
gucci ... m\/ reebo

o %

pumns A
-
GUCCI —
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Cluster-Taggers: space

Space Overhead of Clustering Taggers (LOG SCALE)
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Cluster-Taggers: time

« We found that Cluster-Taggers worked best for seekers
whose network falls into at most 3 * #tags clusters

— For others, query execution time degraded due to the number of
inverted lists that had to be processed

 For these seekers
— Cluster-Taggers outperformed Cluster-Seekers in all cases

— Cluster-Taggers outperforms Global Upper-Bound by 94-97%, in all
cases.

Social top-k @ Joint RuSSIR/EDBT Summer School 2011

69



Discussion

* Interesting follow-up work
— How to incorporate degree of friendship / network distance?

— What about negative weights, can we accommodate these?

— Do the performance results hold for different networks, different
semantics of affinity? What would that depend on?
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An alternative formulation

- Alternative semantics — holistic personalized ranking  [S/GIR 2008]

— Incorporate affinities between the seeker and taggers, e.g., friends, friends-
of-friends, taggers who tag similarity

— Incorporate personalized importance of tags for the seeker
— Dynamically expand the query to similar tags
— Combine score components using a tf-idf — style score (common in IR)

« The ContextMerge algorithm
— ltems(tag) — sorted on score-upper bounds for all users (like our GUB)
— UserDocs(user), Friends(user), SimTags(tag)
— Maintain upper / lower bounds for items; top-k and candidate heaps

« QOver-all

— The same motivation, but different ranking semantics, leading to a different
technical approach

— Processing could benefit from Cluster-Seekers
Social top-k @ Joint RuSSIR/EDBT Summer School 2011 /1



Summary and outlook

« Semantics of personalized search in social tagging sites
— Exploring tagging and friendship to derive user affinity

 Fundamentals of network-aware search
— Indexing structures: EXACT and global upper-bound
— Top-k algorithms: gNRA and gTA
— Time / space trade-off

 Performance optimizations
— Cluster-Seekers: grouping seekers based on network similarity
— Cluster-Taggers: grouping seekers based on item similarity

* Next lecture
— Using top-k to generate recommendations for groups of users
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Questions?
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