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Summary of last lectures 

•  Semantics of top-k queries 
–  Items have score that are made up of components 
–  Components are aggregated using monotone aggregation 

•  Fundamental algorithms 
–  Use the inverted list indexing structure 
–  Have an access strategy and a stopping condition 
–  TA – instance-optimal over the class of reasonable algorithms 
–  NRA – useful when random access is expensive or impossible 

•  Network-aware search 
–  Ubiquitous on the Social Web 
–  Careful modeling of inverted lists enables top-k applicability 
–  Space/time tradeoff exploration for scalable network-aware search 

(Cluster-Seekers and Cluster-Taggers) 
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Quote of the day 

I don’t want to be a member of a club  
    that would have me as a member. 

    ~Groucho Marx via Woody Allen 
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Group recommendation 

•  How do you decide where to go to dinner with friends? 
–  email/text/phone 
–  not optimal for reaching consensus 

•  What if there was a system that knew each user’s 
preferred list? 

•  What is the best way to compute a group’s preferred 
list? 

•  How to efficiently do that? 
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Group recommendation by example 

•  Task: recommend a movie to group G ={u1, u2 ,u3} 
–  predictedRating(u1,”God Father”)   = 5 
–  predictedRating(u2, “God Father”)  = 1 
–  predictedRating(u3, ”God Father”)   = 1 

–  predictedRating(u1, ”Roman Holiday”)  =    3 
–  predictedRating(u2,  “Roman Holiday”)   =   3 
–  predictedRating(u3,  ”Roman Holiday”)    =  1 

•  Average Rating and Least Misery fail to distinguish between 
“God Father” and “Roman Holiday” 
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Outline 

  Intro 

•  Problem definition 

•  Top-k applicability 

•  Performance optimizations 

•  Experiments 
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Introducing group consensus 

Consensus function combines relevance (average or least misery) 
and disagreement (average pair-wise or variance)  in the score of a 
group recommendation 

•  Different from computing user affinities to find implicit networks 
[see slide 13 from Lecture 2]  
•  Consensus is computed per item and for groups formed in an 
ad-hoc fashion 
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Problem definition 

Given an ad-hoc user group G and a consensus 
function F, find the k best items according to F, such 
that each item is new to all users in G. 
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Outline 

  Intro 

  Problem definition 

•  Top-k applicability 
–  Enforcing monotonicity 
–  Performance bottleneck 

•  Performance optimizations 

•  Experiments 
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Top-k applicability 
•  Average and Least Misery are monotone 
•  Input: 3 relevance lists (ILu1 ,ILu2 ,ILu3 ) 

–  sorted on decreasing value of user’s predicted rating 
–  apply Fagin top-k algorithm (e.g., NRA) 

ILu1  

i1,4 

i3,4 

i4,4 

i2,2 

ILu2  

i2,4 
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i1,2 

i3,2 

ILU3  

I4,8 
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i3,3 

i2,3 
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Relevance-Only (RO) 
•  Input: 3 relevance lists (ILu1 ,ILu2 ,ILu3 ) 

–  problem: no pruning 
•  disagreement component of scoring function is not monotone!  

 [see slide 7 from Lecture 1] 
–  intuition: pruning only when disagreement “correlates” with score 
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Relevance Only (RO) algorithm 

Threshold is : 1.93 

ILu1  

i1,4 

i3,4 

i4,4, 

i2,2 

ILu2  
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Top-k Buffer 

i1,1.33 
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Relevance Only (RO) algorithm 

Threshold is : 1.86  

ILu1  
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Threshold is : 1.73 

ILu1  

i1,4 
i3,4 
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Relevance Only (RO) algorithm 
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Threshold is : 1.73 

ILu1  
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Relevance Only (RO) algorithm 
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Threshold is : 1.73 

ILu1  

i1,4 
i3,4 
i4,4, 
i2,2 

ILu2  

i2,4 
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i1,2 
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i2,3 
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Relevance Only (RO) algorithm 
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Threshold is : 1.73 

ILu1  
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Relevance Only (RO) algorithm 
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Threshold is : 1.73 

ILu1  
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Relevance Only (RO) algorithm 
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Relevance Only (RO) algorithm 

•  After 8 Sorted Accesses (3 on IL(u1), 3 on IL(u2) and 2 
on IL(u3)) 

Threshold is : 1.6 

 IT STOPS!  

Top-1 Item is i4 

ILu1  

i1,4 

i3,4 

i4,4 

i2,2 

ILu2  

i2,4 
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i2,1.33 

i3,1.33 
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Enforcing monotonicity 
•  Input: 3 relevance lists (ILu1 ,ILu2)  
•  … and one disagreement list DLu1,u2 

•  Disagreement lists sorted in increasing disagreement value 

ILu1  

i1,4 

i3,4 

i4,4 

i2,2 

ILu2  

i2,4 

i4,4 

i1,2 

i3,2 

DLu1,u2 

i4,0 

i3,2 

i2,2 

i1,2 
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Full Materialization (FM)  
•  Input: relevance lists (ILu1 ,ILu2 ,ILu3 ) and 3 pair-wise disagreement 

lists (DLu1,u2, DLu1,u3, DLu2,u3) 
•  getNext() accesses cursors in all lists 
•  Items encountered in disagreement lists play a role in pruning 

(when disagreement values drop considerably) 

ILu1  

i1,4 

i3,4 
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i2,2 
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i2,4 
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Full Materialization (FM) algorithm 

Threshold is : 1.93 
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Full Materialization (FM) algorithm 

Threshold is : 1.86 
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Full Materialization (FM) algorithm 

Threshold is : 1.73 
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Full Materialization (FM) algorithm 

Threshold is : 1.73 

ILu1  
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Full Materialization (FM) algorithm 

Threshold is : 1.66 

ILu1  

i1,4 
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Full Materialization (FM) algorithm 

After 6 Sorted Accesses(1 on each list) 

Threshold is : 1.6 

Score(i4) = Threshold = 1.6 

IT STOPS!  

Top-1 item is i4  

ILu1  
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Full Materialization (FM)  

ILu1  

i1,4 
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•  Proliferation of disagreement lists 
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Conservative example: 
–  70K users, 10K items 
–  14 trillion entries in pair-wise disagreement lists 
–  2 Terabyte of storage! 

FM space overhead 

Don’t try this at home either! 
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Outline 

  Intro 

  Problem definition 

  Top-k applicability 

•  Performance optimizations 
–  Behavior factoring 
–  Partial materialization 
–  Threshold sharpening  

•  Experiments 
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Optimizations  

•  Behavior Factoring 
–  store shared disagreement only once 
–  does not always reach space budget 

•  Partial Materialization 
–  given a space budget, which m out of n(n-1)/2 disagreement lists, 

to materialize? 

•  Threshold Sharpening 
–  exploit the dependencies between relevance and disagreement 

lists and sharpen thresholds in FM, RO and PM algorithms? 
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Behavior Factoring 

•  Intuition: If two users u and v agree on a set of items S, their lists 
DL(u,w) and DL(v,w) with any other user w share the same values 
for S. 

•  Store DL(S,w) once 
•  Overall space reduce by size of S 
•  Redefine getNext() to work on both disagreement lists and factored 

out lists 
•  Virtually, no impact on performance 
•  Does not always guarantee fitting into a space budget 
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Factoring steps 
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Why Partial Materialization ?  

•  A set of 10,000 users has 49995000 disagreement lists 
•  Only 10% of the disagreement lists can be materialized, 

given a space budget 
•  Problem : Which 4999500 lists should we choose so that 

those gives “maximum benefit” during query processing?  
•  Intuition : Materialize only those lists that significantly 

improves efficiency. 
•  Recommendation Algorithm needs to be adapted to it 

(referred to as PM in the paper) 
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Partial Materialization (PM)  

•  Problem: which lists should we choose so that those 
give “maximum benefit” during query processing?  

•  Intuition:  
–  overall performance is a balance between the total number of distinct 

items which need to be processed and the number of SAs 
–  If none of top items in DL2 is in final output, every SA on DL2 is 

overhead  best not to materialize DL2 
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•  Determine the subset of pairs M ⊆ S s.t. |M| = m/r and 
    tM = G ⊆ U p(G) tM(G) is minimized. 

•  Solution  
 Group query G will two users,  
  p(G) is reliably known for all pairs of users G. 
 Avoid examining all user pairs for any user pair (u, v),  
     p({u, v}) =  |{Gi |u, v ∈ Gi }| 

Partial materialization without factoring 
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  To  identify the subset of the factored as well as common 
component of the original disagreement list for each pair is 
materialized. 

  Disagreement lists have already been factored. 

•  Determine the subset of pairs M ⊆ S s.t. the space required by all 
factored and common lists  corresponding to all pairs in M is at 
most m, and tM = G ⊆ U p(G) tM(G) is minimized. 

Partial materialization after factoring 
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PM algorithm 

Adaptation of the ½-approx algorithm for 0/1 Knapsack Problem 
Sort the table on decreasing difference (#SAs) and consider first m rows 

 User Pair  #SAs without 
disagreement list 

#SAs with 
disagreement 
lists 

Difference in 
#SAs 

{u1,u2} 200 100 100 

{u3,u4} 290 195 95 

{u10,u9} 170 100 70 

{u6,u7} 230 190 40       

{u2,u3} 175 145 30 

{u5,u6} 200          179 21 

{u7,u8} 120           100 20 

-- -- -- -- 

-- -- -- -- 

<= m 
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Threshold sharpening 

Maximize 
        (iu1+ iu2)/2 + (1- |iu1-iu2|)   
s.t. 
             0 <= iu1 <= 0.5 
              0 <= iu1 <= 0.5 
              0.2 <=| iu1 – iu2 |<= 1                       

Threshold  = 1.3   

 New Threshold  = 
1.2   

ILu1 

i1,0.5 

i3,0.5 

  --- 

  --- 

ILu2 

i2,0.5 
i3, 0.4 
  --- 
  --- 

DLu1,u2 

i3,0.2 
I1,0.3 
   --- 
   --- 



Social top-k @ Joint RuSSIR/EDBT Summer School 2011 114 

Outline 

  Intro 

  Problem definition 

  Top-k applicability 

  Performance optimizations 

•  Experiments 
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Experiments 

•  Dataset 
–  MovieLens data set 
–  71,567 users, 10,681 movies, 10,000,054 ratings 

•  Performance Experiments 
 Dynamic Computation with Predicted Rating List Only (RO), 
 Full Materialization (FM)  
 Partial Materialization 

–  Performance (#SAs) comparison of FM, RO and PM varying group 
size, similarity and k. 

–  Effectiveness of behavior factoring, partial materialization and 
threshold sharpening 
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Group recommendation algorithms 

•  The Full Materialization (FM) Algorithm 
  IL of each user in the input group G and disagreement lists DL for every 

pair of users in G. 
•  The Ratings Only (RO) Algorithm 

 Only when the predicted rating lists are present and none of the DLs are 
available. 

 Consume less space. 
•  The Partial Materialization (PM) Algorithm 

 Some disagreement lists are materialized, 
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Space reduction techniques and their 
impact on query processing  

•  FM gets better as group size is increased 
•  RO performs the worst among all three in all cases 
•  PM is the best solution 
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Space reduction techniques and their 
impact on query processing  

Factoring algorithm is effective and performs well 
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• Less sorted accesses (SAs) are required for more similar user groups 

• Disagreement lists are important for Dissimilar user groups 

• FM is the best performer for very dissimilar user groups, RO is the best algorithm for very 
similar user groups. 

Performance results 
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Performance results 

Optimization during threshold 
calculation always achieves better 
performance (less #SAs) than 
without optimization case.   
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Sometimes only few disagreement lists attain the best performance. Therefore 
Partial Materialization is important 
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Summary and outlook 

•  Recommendations to ad-hoc groups will become more 
important  
–  think Google+ 

•  Efficient group recommendation 
–  maintaining disagreement lists enables efficient top-k processing 
–  threshold sharpening optimizes response time 
–   behavior factoring and partial materialization reduce index size 
–  full materialization does not always perform better than partial 

materialization  potential for new optimization problem 

•  Next lecture 
–  How do we measure answer quality and user satisfaction? 
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Questions? 


