Top-k Processing for Search and Information Discovery in Social Applications

Lecture 3: Group Recommendation

Sihem Amer-Yahia

Julia Stoyanovich

Social top-k @ Joint RuSSIR/EDBT Summer School 2011

Summary of last lectures

Semantics of top-k queries

- Items have score that are made up of components
- Components are aggregated using monotone aggregation

Fundamental algorithms

- Use the inverted list indexing structure
- Have an access strategy and a stopping condition
- TA instance-optimal over the class of reasonable algorithms
- NRA useful when random access is expensive or impossible

Network-aware search

- Ubiquitous on the Social Web
- Careful modeling of inverted lists enables top-k applicability
- Space/time tradeoff exploration for scalable network-aware search (Cluster-Seekers and Cluster-Taggers)

Quote of the day

I don't want to be a member of a club that would have me as a member. ~Groucho Marx via Woody Allen

Group recommendation

- How do you decide where to go to dinner with friends?
 - email/text/phone
 - not optimal for reaching consensus
- What if there was a system that knew each user's preferred list?
- What is the best way to compute a group's preferred list?
- How to efficiently do that?

Group recommendation by example

- Task: recommend a movie to group G ={u1, u2, u3}
 - predictedRating(u1,"God Father") = 5
 - predictedRating(u2, "God Father") = 1
 - predictedRating(u3, "God Father") = 1
 - predictedRating(u1, "Roman Holiday") = 3
 - predictedRating(u2, "Roman Holiday") = 3
 - predictedRating(u3, "Roman Holiday") = 1
- Average Rating and Least Misery fail to distinguish between "God Father" and "Roman Holiday"

Outline

- ✓ Intro
- Problem definition
- Top-k applicability
- Performance optimizations
- Experiments

Introducing group consensus

Consensus function combines **relevance** (average or least misery) and **disagreement** (average pair-wise or variance) in the score of a group recommendation

 $\mathcal{F}(\mathcal{G},i) = w_1 \times \text{rel}(\mathcal{G},i) + w_2 \times (1 - \text{dis}(\mathcal{G},i)), \text{ where } w_1 + w_2 = 1.0 \text{ and each specifies the relative importance of relevance and disagreement in the overall recommendation score.}$

- Different from computing user affinities to find implicit networks [see slide 13 from Lecture 2]
- Consensus is computed per item and for groups formed in an ad-hoc fashion

Problem definition

Given an ad-hoc user group G and a consensus function F, find the k best items according to F, such that each item is new to all users in G.

Outline

- ✓ Intro
- ✓ Problem definition
- Top-k applicability
 - Enforcing monotonicity
 - Performance bottleneck
- Performance optimizations
- Experiments

Top-k applicability

- Average and Least Misery are monotone
- Input: 3 relevance lists (IL_{u1}, IL_{u2}, IL_{u3})
 - sorted on decreasing value of user's predicted rating
 - apply Fagin top-k algorithm (e.g., NRA)

IL _{U1}	$IL_{\cup 2}$	IL _{U3}
i1,4	i2,4	14,8
i3,4	i4,4	11,5
i4,4	i1,2	i3,3
i2,2	i3,2	i2,3

Relevance-Only (RO)

- Input: 3 relevance lists (IL_{u1}, IL_{u2}, IL_{u3})
 - problem: no pruning
 - disagreement component of scoring function is not monotone!

[see slide 7 from Lecture 1]

intuition: pruning only when disagreement "correlates" with score

IL _{U1}	$IL_{\cup 2}$	IL _{U3}
i1,4	i2,4	14,8
i3,4	i4,4	11,5
i4,4	i1,2	i3,3
i2,2	i3,2	i2,3

Top-k Buffer i1,1.33

i1,4 i3,4 i4,4, i2,2 IL_{u2}
i2,4
i4,4
i1,2
i3,2

IL_{u3}
i3,3
i1,3
i4,3
i2,3

Top-k Buffer i1,1.33 i2,1.33 i3,1.33

$\mathrm{IL}_{\mathrm{u}3}$
i3,3
i1,3
i4,3
i2,3

Top-k Buffer
i4,1.6
i1,1.33
i2,1.33
i3,1.33

 After 8 Sorted Accesses (3 on IL(u1), 3 on IL(u2) and 2 on IL(u3))

IL_{U3}	
i3,3	
i1,3	
i4,3	
i2,3	

Top-k Buffer
i4,1.6
i1,1.33
i2,1.33
i3,1.33

Threshold is: 1.6
IT STOPS!
Top-1 Item is i4

Enforcing monotonicity

- Input: 3 relevance lists (IL_{u1},IL_{u2})
- ... and one disagreement list DL_{u1,u2}
- Disagreement lists sorted in increasing disagreement value

IL_{U1}	IL_{U2}	$DL_{U1,U2}$
i1,4	i2,4	i4,0
i3,4	i4,4	i3,2
i4,4	i1,2	i2,2
i2,2	i3,2	i1,2

Full Materialization (FM)

- Input: relevance lists (IL_{u1}, IL_{u2}, IL_{u3}) and 3 pair-wise disagreement lists (DL_{u1},_{u2}, DL_{u1,u3}, DL_{u2,u3})
- getNext() accesses cursors in all lists
- Items encountered in disagreement lists play a role in pruning (when disagreement values drop considerably)

IL _{u1}	$IL_{\cup 2}$	IL _{U3}	$DL_{U1,U2}$	$DL_{u1,u3}$	$DL_{U2,U3}$
i1,4	i2,4	i3,3	i4,0	i4,1	i4,1
i3,4	i4,4	i1,3	i3,2	i3,1	i1,1
i4,4	i1,2	i3,3	i2,2	i2,1	i3,1
i2,2	i3,2	i2,3	i1,2	i1,2	i2,1

IL_{U1}	IL_{U2}	IL _{U3}	$DL_{U1,U2}$	$DL_{u1,u3}$	$DL_{U2,U3}$
i1,4	i2,4	i3,3	i4,0	i4,1	i4,1
i3,4	i4,4	i1,3	i3,2	i3,1	i1,1
i4,4	i1,2	i3,3	i2,2	i2,1	i3,1
i2,2	i3,2	i2,3	i1,2	i1,2	i2,1

i1,1.33

Top-k Buffer

IL _{U1}	$IL_{\cup 2}$	$IL_{\cup 3}$	DL _{U1,U2}	$DL_{U1,U3}$	$DL_{U2,U3}$
i1,4	i2,4	i3,3	i4,0	i4,1	i4,1
i3,4	i4,4	i1,3	i3,2	i3,1	i1,1
i4,4	i1,2	i3,3	i2,2	i2,1	i3,1
i2,2	i3,2	i2,3	i1,2	i1,2	i2,1

i1,1.33 i2,1.33

Top-k Buffer

IL_{U1}	$IL_{\cup 2}$	$IL_{\cup 3}$	$DL_{u1,u2}$	$DL_{U1,U3}$	$DL_{U2,U3}$
i1,4	i2,4	i3,3	i4,0	i4,1	i4,1
i3,4	i4,4	i1,3	i3,2	i3,1	i1,1
i4,4	i1,2	i3,3	i2,2	i2,1	i3,1
i2,2	i3,2	i2,3	i1,2	i1,2	i2,1

i1,1.33i2,1.33i3,1.33

Top-k Buffer

IL_{U1}	IL_{U2}	IL_{U3}	DL _{U1,U2}	DL _{u1,u3}	$DL_{U2,U3}$
i1,4	i2,4	i3,3	i4,0	i4,1	i4,1
i3,4	i4,4	i1,3	i3,2	i3,1	i1,1
i4,4	i1,2	i3,3	i2,2	i2,1	i3,1
i2,2	i3,2	i2,3	i1,2	i1,2	i2,1

i4,1.6 i2,1.33 i3,1.23 i4,1.33

Top-k Buffer

IL _{U1}	IL_{U2}	IL_{U3}	$DL_{U1,U2}$	$DL_{U1,U3}$	$DL_{U2,U3}$
i1,4	i2,4	i3,3	i4,0	i4,1	i4,1
i3,4	i4,4	i1,3	i3,2	i3,1	i1,1
i4,4	i1,2	i3,3	i2,2	i2,1	i3,1
i2,2	i3,2	i2,3	i1,2	i1,2	i2,1

i4,1.6 i2,1.33 i3,1.23 i4,1.33

Top-k Buffer Threshold is: 1.66

IL_{U1}	IL_{U2}	IL _{u3}	DL _{U1,U2}	$DL_{U1,U3}$	$DL_{U2,U3}$
i1,4	i2,4	i3,3	i4,0	i4,1	i4,1
i3,4	i4,4	i1,3	i3,2	i3,1	i1,1
i4,4	i1,2	i3,3	i2,2	i2,1	i3,1
i2,2	i3,2	i2,3	i1,2	i1,2	i2,1

i4,1.6 i2,1.33 i3,1.23

i4,1.33

After 6 Sorted Accesses (1 on each list)

Top-k Buffer Threshold is: 1.6

Score(i4) = Threshold = 1.6

IT STOPS!

Top-1 item is i4

Full Materialization (FM)

Proliferation of disagreement lists

IL _{U1}	$IL_{\cup 2}$	IL _{U3}	$DL_{U1,U2}$	$DL_{u1,u3}$	DL _{U2,U3}
i1,4	i2,4	i3,3	i4,0	i4,1	i4,1
i3,4	i4,4	i1,3	i3,2	i3,1	i1,1
i4,4	i1,2	i3,3	i2,2	i2,1	i3,1
i2,2	i3,2	i2,3	i1,2	i1,2	i2,1

FM space overhead

Conservative example:

- 70K users, 10K items
- 14 trillion entries in pair-wise disagreement lists
- 2 Terabyte of storage!

Don't try this at home either!

Outline

- ✓ Intro
- ✓ Problem definition
- √ Top-k applicability
- Performance optimizations
 - Behavior factoring
 - Partial materialization
 - Threshold sharpening
- Experiments

Optimizations

Behavior Factoring

- store shared disagreement only once
- does not always reach space budget

Partial Materialization

– given a space budget, which m out of n(n-1)/2 disagreement lists, to materialize?

Threshold Sharpening

 exploit the dependencies between relevance and disagreement lists and sharpen thresholds in FM, RO and PM algorithms?

Behavior Factoring

- Intuition: If two users *u* and *v* agree on a set of items *S*, their lists DL(u,w) and DL(v,w) with any other user *w* share the same values for *S*.
- Store DL(S,w) once
- Overall space reduce by size of S
- Redefine getNext() to work on both disagreement lists and factored out lists
- Virtually, no impact on performance
- Does not always guarantee fitting into a space budget

Factoring steps

Why Partial Materialization?

- A set of 10,000 users has 49995000 disagreement lists
- Only 10% of the disagreement lists can be materialized, given a space budget
- Problem: Which 4999500 lists should we choose so that those gives "maximum benefit" during query processing?
- Intuition: Materialize only those lists that significantly improves efficiency.
- Recommendation Algorithm needs to be adapted to it (referred to as PM in the paper)

Partial Materialization (PM)

 Problem: which lists should we choose so that those give "maximum benefit" during query processing?

Intuition:

- overall performance is a balance between the total number of distinct items which need to be processed and the number of SAs
- If none of top items in DL2 is in final output, every SA on DL2 is overhead → best not to materialize DL2

Partial materialization without factoring

• Determine the subset of pairs $M \subseteq S$ s.t. |M| = m/r and $tM = G \subseteq U p(G) tM(G)$ is minimized.

Solution

- > Group query G will two users,
- \triangleright p(G) is reliably known for all pairs of users G.
- Avoid examining all user pairs for any user pair (u, v), $p(\{u, v\}) = |\{Gi \mid u, v \in Gi\}|$

Partial materialization after factoring

- > To identify the subset of the factored as well as common component of the original disagreement list for each pair is materialized.
- > Disagreement lists have already been factored.

• Determine the subset of pairs $M \subseteq S$ s.t. the space required by all factored and common lists corresponding to all pairs in M is at most m, and $tM = G \subseteq U p(G) tM(G)$ is minimized.

$$Space(S') = \sum_{P_i \in S'} |\mathcal{DL}_{S(P_i)}| + \sum_{\mathcal{DL}_C \in C(S')} |\mathcal{DL}_C|$$

PM algorithm

Adaptation of the ½-approx algorithm for 0/1 Knapsack Problem Sort the table on decreasing difference (#SAs) and consider first m rows

User Pair	#SAs without disagreement list	#SAs with disagreement lists	Difference in #SAs	
{U ₁ ,U ₂ }	200	100	100	
$\{U_3, U_4\}$	290	195	95	<= m
{U ₁₀ ,U ₉ }	170	100	70	
L _{U₆,U₇}	230	190	40	
$\{U_2,U_3\}$	175	145	30	
$\{U_5, U_6\}$	200	179	21	
{∪ ₇ ,∪ ₈ }	120	100	20	
				112

Threshold sharpening

Threshold = 1.3

Maximize
$$(i_{U1} + i_{U2})/2 + (1 - |i_{U1} - i_{U2}|)$$
 s.t.
$$0 <= i_{U1} <= 0.5$$

$$0 <= i_{U1} <= 0.5$$

$$0.2 <= |i_{U1} - i_{U2}| <= 1$$

New Threshold = 1.2

Outline

- ✓ Intro
- √ Problem definition
- √ Top-k applicability
- ✓ Performance optimizations
- Experiments

Experiments

Dataset

- MovieLens data set
- 71,567 users, 10,681 movies, 10,000,054 ratings

Performance Experiments

- Dynamic Computation with Predicted Rating List Only (RO),
- > Full Materialization (FM)
- Partial Materialization
- Performance (#SAs) comparison of FM, RO and PM varying group size, similarity and k.
- Effectiveness of behavior factoring, partial materialization and threshold sharpening

Group recommendation algorithms

The Full Materialization (FM) Algorithm

➤ *IL* of each user in the input group *G* and disagreement lists *DL* for every pair of users in *G*.

The Ratings Only (RO) Algorithm

- Only when the predicted rating lists are present and none of the DLs are available.
- > Consume less space.

The Partial Materialization (PM) Algorithm

Some disagreement lists are materialized,

Space reduction techniques and their impact on query processing

- FM gets better as group size is increased
- RO performs the worst among all three in all cases
- PM is the best solution

Space reduction techniques and their impact on query processing

Factoring algorithm is effective and performs well

Performance results

- ·Less sorted accesses (SAs) are required for more similar user groups
- •Disagreement lists are important for Dissimilar user groups
- •FM is the best performer for very dissimilar user groups, RO is the best algorithm for very similar user groups.

Performance results

Optimization during threshold calculation always achieves better performance (less #SAs) than without optimization case.

Sometimes only few disagreement lists attain the best performance. Therefore **Partial Materialization** is important

Summary and outlook

- Recommendations to ad-hoc groups will become more important
 - think Google+
- Efficient group recommendation
 - maintaining disagreement lists enables efficient top-k processing
 - threshold sharpening optimizes response time
 - behavior factoring and partial materialization reduce index size
 - full materialization does not always perform better than partial materialization → potential for new optimization problem

Next lecture

– How do we measure answer quality and user satisfaction?

References and further reading

- 1. *Group Recommendation: Semantics and Efficiency.*Sihem Amer-Yahia, Senjuti Roy, Ashish Chawla, Gautam Das, Cong Yu. VLDB 2009.
- 2. Space Efficiency in Group Recommendation.
 Senjuti Roy, Sihem Amer-Yahia, Ashish Chawla, Gautam Das, Cong Yu. VLDB J. 2010.
- 3. Group recommendation system for Facebook.
 Enkh-Amgalan Baatarjav, Santi Phithakkitnukoon, Ram Dantu. OTM Workshops, 2008.
- 4. A group recommendation system with consideration of interactions among group members. Yen-Liang Chen and Li-Chen Cheng and Ching-Nan Chuang. ESWA 2008.
- 5. Case-based group recommendation: Compromising for success. Kevin McCarthy, Lorraine McGinty, and Barry Smyth. ICCBR, 2007.
- PolyLens: A recommender system for groups of users.
 Mark O'Connor, Dan Cosley, Joseph A. Konstan, John Riedl. ECSCW, 2001.
- Restaurant recommendation for group of people in mobile environments using probabilistic multi-criteria decision making.
 Moon-Hee Park and Han-Saem Park and Sung-Bae Cho. APCHI 2008.

Questions?

