Top-k Processing for Search and Information Discovery in Social Applications

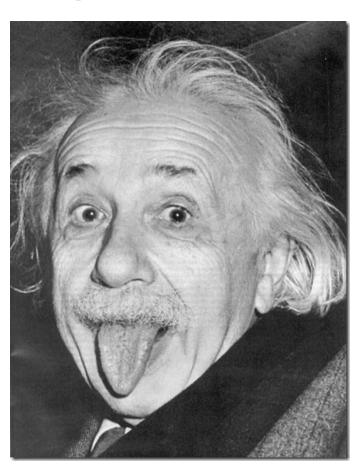
Lecture 5: Open Problems

Sihem Amer-Yahia

Social top-k @ Joint RuSSIR/EDBT Summer School 2011

Summary of last lectures

Fundamental algorithms


- Use the inverted list indexing structure
- Have an access strategy and a stopping condition
- TA and NRA
- Applicable to social applications (network-aware search and group recommendation)

User studies

- necessary to verify user satisfaction given a ranking semantics
- large-scale tools such as Amazon Mechanical Turk

Quote of the day

Imagination is more important than knowledge.

~Albert Einstein

Novel top-k challenges

Traditional top-k processing

- a single scoring function used to rank items
- highest scoring items are returned

Beyond traditional top-k

- what if the items we are returning are composite, i.e., formed by many other items?
 - e.g., composition based on peer pressure/co-purchasing/co-reviewing
 - goal: compute a ranked list of composite items satisfying a budget (price, time)
- what if rank aggregation relies on multiple scoring semantics?
 - e.g., ranking semantics may reflect different movie reviewer populations
 - · goal: compute multiple ranked lists, one for each semantics
- what if desirable items cannot be captured with a single score?
 - e.g., diversity may reflect preferences of different subsets of friends of a user
 - goal: find most diverse set of items s.t. their individual score does not drop below a given threshold

Outline

- ✓ Intro
- Composite top-k
 - Problem definition
 - Overview of a solution
- Multi-top-k
- Diverse top-k
- Concluding thoughts

Composite item

Item bundles on Amazon

Frequently Bought Together

Total List Price: \$45.94

Price For All Three: \$31.77

Show availability and shipping details

- ☑ This item: The Harafish by Naguib Mahfouz
- ☑ Children of the Alley: A Novel by Peter Christopher Theroux

Complementary items: JCPenney

Stafford® Essentials Single-Button Tuxedo Coat

\$90.00 to \$100.00

Original \$180.00 to \$200.00

"Why rent when you can own?"

- Single-button front or three-button front coat
- Satin lapel
- Natural shoulders
- 100% worsted wool
- Satin polyester lapel

Enamel Inlay Cuff Links and Stud Set

\$24.99 Orig. \$30.00

Stafford® Essentials Tuxedo Vest

\$29.99 Orig. \$60.00

Engravable Oval Cuff Links

\$29.99 Orig. \$35.00

Stafford® Essentials Tuxedo Shirt Set

\$29.99 Orig. \$60.00

Stafford® Essentials Pleated Tuxedo Pant

\$39.99 - 49.99 Orig. \$80.00 - 100.00

JCPenney (budget = \$175)

Composite retrieval problem

Given a user query Q (central item c, a budget b) retrieve top-k compatible satellite packages s.t. the total cost is within budget.

Properties of a composite item

- Type coverage: maximize user's exposure to as many instances of different satellite types as possible
- Validity: total cost of central item and compatible package is within price budget
- Compatibility: combine only co-purchased items
 - personalized: items co-bought by social acquaintances
- Maximality: build the largest valid package

Maximal star package (budget = \$350)

forms a **valid** composite item with iPhone 3G/8GB as does any strict subset of this package.

forms a maximal package. Addition of any new item violates validity

Top-k for maximality

Top-k version of a solution

- One inverted list per item type
- Items sorted by price
- For each central item, find all packages formed by compatible satellite items and pick the cheapest valid and maximal package

Well-know Knapsack problem for m-way joins [BDA'10 keynote]

- NP-hard, heuristics for two way-joins
- What is the best strategy to avoid replicating work?
 - Tip: maintain intermediate heaps, one for each shared satellite package
 - Tree-like structure akin to XML join processing [SIGMOD 2002]

Composite item: (social) applicability

Restaurant search

- type coverage: restaurant cuisines
- validity: total composite cost within vacation budget
- compatibility: places visited by friends or social acquaintances

Team building for problem solving [KDD 2009]

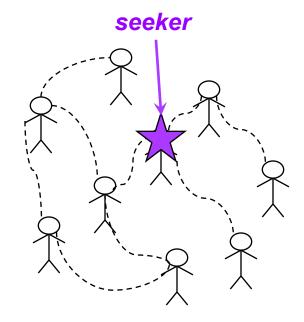
- type coverage: complementary expertise of team members
- validity: size of a team
- compatibility: team members who previously worked together

Outline

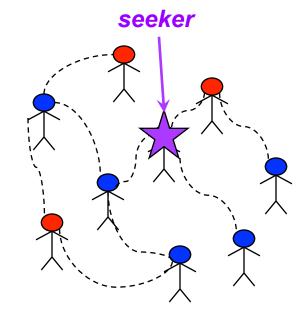
- ✓ Intro
- ✓ Composite top-*k*
- Multi-top-k
 - Problem definition
 - Overview of a solution
- Diverse top-k
- Concluding thoughts

Computing multiple top-k lists

Recall: network-aware search


- Start with a *network* that gives ranking semantics, e.g., common interest based on tagged items
- For a given user, compute a single top-k list w.r.t. that network

What if we wanted to compute multiple ranked lists per user, simultaneously?


- Define precise semantics
- What are the right indexing structures that: (a) have reasonable space consumption and (b) support efficient processing?
- What are the processing algorithms?

Example

Link (user u, user v)

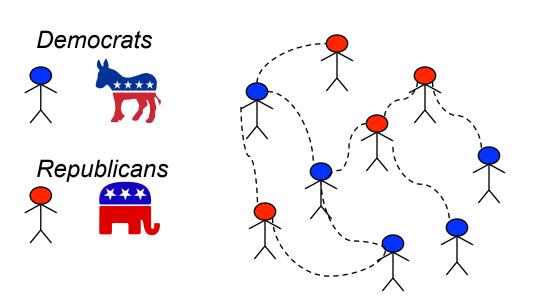
Coloring (user u, color c)

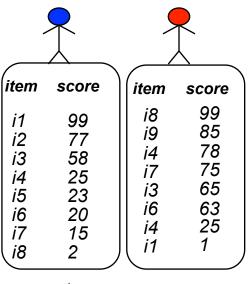
Problem statement

- We are given a seeker u, and relations Link (user u, user v),
 Tagged(user u, item i, tag t) and Coloring (user u, color c).
- A query is a set of tags $Q = \{t_1, t_2, ..., t_p\}$
- For a seeker u, a tag t, an item i, and a color c

score(i, u, t, c) = number of taggers in Network(u) who:

- tagged i with c
- · and are labeled with color c


$$score(i, u, Q, c) = score(i, u, t_1, c) + ... + score(i, u, t_n, c)$$

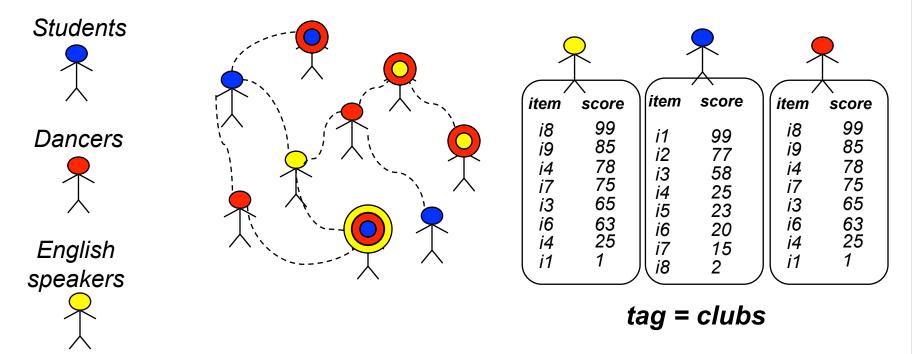

Given a query Q issued by a seeker u, we wish to efficiently determine the top k items according to each color.

Case 1: disjoint networks

Partition the social network

- Each node in the network is assigned exactly one color
- Partitioning of the taggers is independent of the seeker (i.e., tagger node labels are fixed)

tag = news

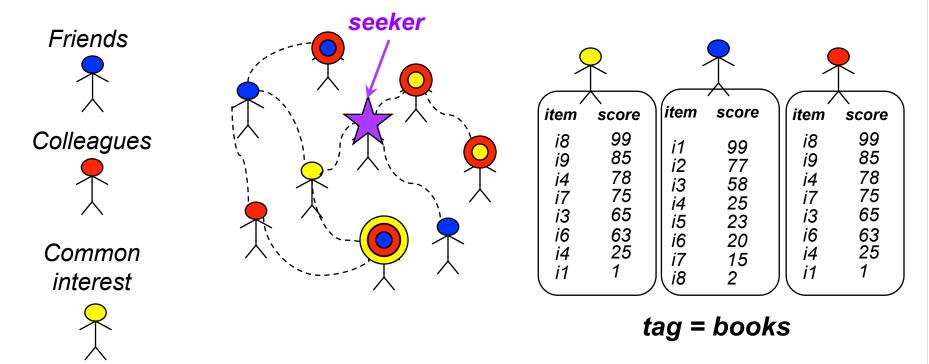

Case 1: disjoint networks

Algorithmic approach?

- Compute multiple ranked lists per seeker, each list is derived from a particular partition of the taggers
- What type of information can be factored out?
- Any other ideas?

Case 2: multi-coloring

- A non-partitioning assignment (networks overlap)
 - Each node in the network is assigned 0, 1, or several colors
 - Color assignment to taggers is independent of the seeker (i.e., tagger node labels are fixed)


Case 2: multi-coloring

Algorithmic approach?

- Compared to the case with disjoint networks, what are the new challenges?
- What new information can be factored out?

Case 3: personalized (multi-)coloring

- Colors are assigned to taggers depending on the seeker
 - Each node in the network is assigned 0, 1, or several colors
 - Color assignment to taggers depends on the seeker, not fixed

Case 3: personalized (multi-)coloring

Algorithmic approach?

- Compared to the case with seeker-independent coloring, what are the new challenges?
- What new information can be factored out?

Discussion

- What are some ways of presenting multiple ranked lists to the user?
 - Side-by-side [SIGMOD 2008 demo]
 - Merge together into a single list, diverse w.r.t. source (next part)
- What is the right type of evaluation for this application?

Outline

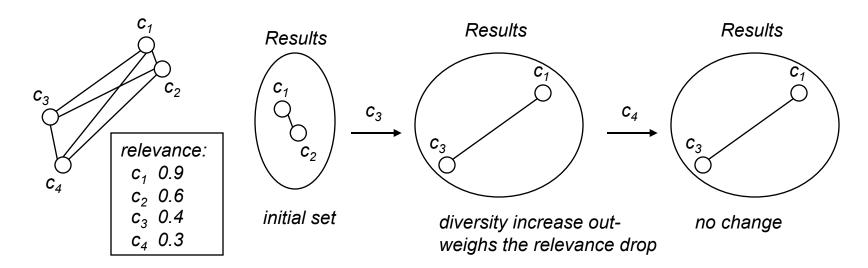
- ✓ Intro
- ✓ Composite top-*k*
- ✓ Multi-top-k
- Diverse top-k
 - Problem definition
 - Overview of a solution
- Concluding thoughts

Diversity problem

From the pool of relevant items, identify a list of items that are dissimilar to each other and maintain a high cumulative relevance, i.e., strike a good balance between relevance and diversity

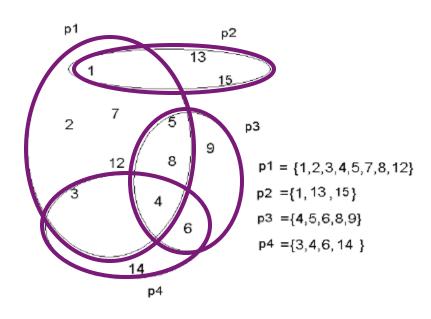
Diversity challenges

Two kinds of diversity computations


- Pair-wise: a set of movies that overlap the least on genre and director
- Set-based: a set of composite items that overlap the least on their satellite items

Most relevant items are not necessarily most diverse

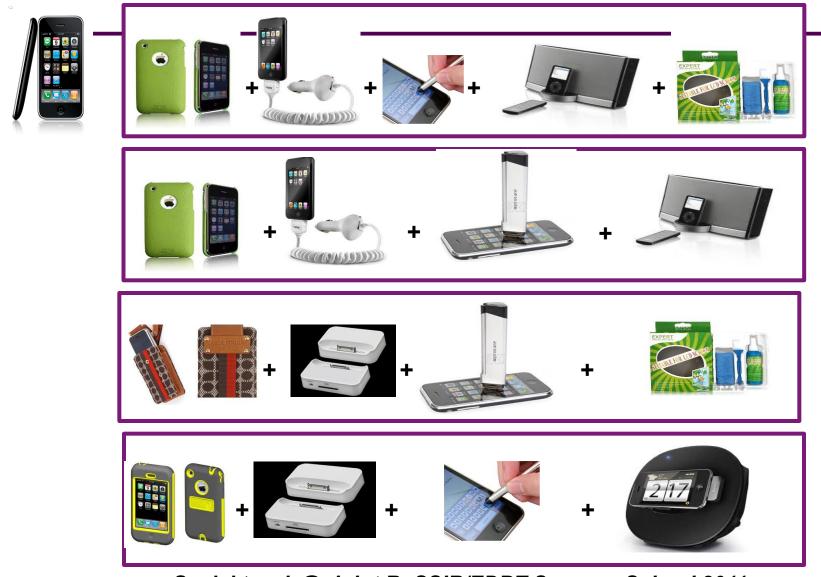
- Movies most relevant to a user are all by the same 2 directors
- Cheapest composite items all contain the same case, speaker and cleaning kit


Pairwise diversity: the swap algorithm

- Sort candidate items according to their relevance
- Start by adding the K most relevant items to the result set
- Go through the rest of the candidate one by one, swap an item into the result set if the item:
 - Increases the set diversity above a certain threshold
 - Does not drop the relevance by a certain threshold
- A simple top-2 example:

Set-based diversity: k representatives

☐ Diversity formulated as a max-k set coverage problem and achieved by leveraging the principle of *maximizing coverage*



- •p1 consists of 255 packages
- p2 consists of 7 packages
- p3 and p4 consists of 31 packages

$$k=2$$
,

- ➤ Best summary: {p1,p3}
- ≥ 279 packages (255 + 31 7)
- > {p2,p3} only 38 packages

Set-based diversity

Diversity: k = 2

Top-k and diversity

- Find most diverse set during top-k processing
- Tip: probe inverted lists according to distance function
 - e.g., if distance based on attributes, partition lists on attributes and probe most diverse first, then next most diverse, etc [ICDE 2008]
- What is the right type of evaluation for diversity?

Outline

- ✓ Intro
- ✓ Composite top-*k*
- ✓ Multi-top-k
- ✓ Diverse top-*k*
- Concluding thoughts

Course summary

Top-k and its applications

- Fundamental top-k algorithms
- Personalized search
- Group recommendation
- Social: user studies
 - Group recommendation (MovieLens)
 - Travel itinerary extraction (Flickr)
- Open problems in top-k and social

Insights

Algorithmic / technical

- Top-k is a fundamental data processing paradigm
- Techniques aimed at making I/O efficient, explore trade-off between processing time and space overhead
- Applicability is wide, but not universal: ranking functions must be monotone!

Usability

- All user-facing applications, e.g., social search and recommendation, are aimed at user satisfaction
- Semantics must be realistic
- Validation with real datasets and user studies is essential!

Novelty

- The Social Web is young, it will become what we, as users, researchers and developers make of it!
- Many unexplored technical opportunities over-all, and also in top-k

References and further reading

Two keynotes at BDA 2010

- 1. *Top-k knapsack joins.* Witold Litwin, Thomas Schwarz. http://www.irit.fr/BDA2010/cours/LitwinBDA10.pdf
- 2. Composite Retrieval of Stars and Chains. Sihem Amer-Yahia. http://www.irit.fr/BDA2010/cours/AmerYahiaBDA10.pdf
- 3. Holistic twig joins: optimal XML pattern matching.
 Nicolas Bruno, Nick Koudas, Divesh Srivastava. SIGMOD 2002.
- 4. Battling Predictability and Overconcentration in Recommender Systems.

 Sihem Amer-Yahia, Laks Lakshmanan, Sergei Vassilvitskii, Cong Yu. DEBU 2009.
- 5. From del.icio.us to x.qui.site: Recommendations in Social Tagging Sites. Sihem Amer-Yahia, Alban Galland, Julia Stoyanovich, Cong Yu. SIGMOD 2008 (demo).
- 6. Efficient Computation of Diverse Query Results. Erik Vee. Utkarsh Srivastava, Jayavel Shanmugasundaram, Prashant Bhat, Sitem Amer-Yahia. ICDE 2008.
- 7. Finding a team of experts in social networks.

 Theodoros Lappas and Kun Liu and Evimaria Terzi. KDD 2009.

Questions?

